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Abstract 13 

Sensory neurons reconstruct the world from action potentials (spikes) impinging on them. Recent work 14 

argues that the formation of sensory representations are cell-type specific, as excitatory and inhibitory 15 

neurons use complementary information available in spike trains to represent sensory stimuli. Here, by 16 

measuring the mutual information between synaptic input and spike trains, we show that inhibitory and 17 

excitatory neurons in the barrel cortex transfer information differently: excitatory neurons show strong 18 

threshold adaptation and a reduction of intracellular information transfer with increasing firing rates. 19 

Inhibitory neurons, on the other hand, show threshold behaviour that facilitates broadband information 20 

transfer. We propose that cell-type specific intracellular information transfer is the rate-limiting step for 21 

neuronal communication across synaptically coupled networks. Ultimately, at high firing rates, the 22 

reduction of information transfer by excitatory neurons and its facilitation by inhibitory neurons together 23 

provides a mechanism for sparse coding and information compression in cortical networks.  24 

Introduction 25 

The intracellular computation from synaptic input to action potential shows a strong compression (Huang 26 

et al., 2020). Even though the spike train of a single neuron contains only limited stimulus information, the 27 

full stimulus information can be recovered using the spike trains of a small population of (tens) of neurons. 28 

How many neurons are needed for full information recovery depends on a combination of the type of code 29 

the presynaptic neurons use (rate or timing) and on whether spike trains from interneurons or pyramidal 30 

cells are used. So the decoding of neural spike trains depends critically on how they were encoded.  31 

 32 
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Cortical excitatory pyramidal cells and inhibitory interneurons encode different features of input stimuli. 33 

For instance, excitatory neurons respond to sensory evoked stimuli by sparse, unreliable and selective spike 34 

trains (Murray and Keller, 2011; Reyes-Puerta et al., 2015) and have narrower receptive fields(Bruno and 35 

Simons, 2002; Wu et al., 2008) compared to interneurons. This is a result of differences in both connectivity 36 

(for recent reviews, see (Griffen, 2014; Hofer et al., 2011; Isaacson and Scanziani, 2011; Markram et al., 37 

2004; Wu et al., 2011) and intrinsic biophysical properties (Cardin et al., 2007; Nowak et al., 2008). Indeed, 38 

most cortical pyramidal cells have broader subthreshold receptive fields than spiking receptive fields(Tan 39 

et al., 2011), which is the result of a combination of both local inhibition and the spike threshold ('iceberg 40 

effect' (Priebe and Ferster, 2008; Rose and Blakemore, 1974)), suggesting an important role for the spike 41 

threshold in shaping receptive fields. This raises the question: what are the differences in the spike-42 

generating process between cortical interneurons and pyramidal cells, and how does this result in 43 

differences in information encoding? 44 

 45 

We measured the information encoding properties of pyramidal cells and interneurons in L2/3 of the mouse 46 

barrel cortex. We chose a combination of ex-vivo experiments (da Silva Lantyer et al., 2018) and 47 

computational modelling to unravel both the threshold behaviour and the information encoding properties 48 

of excitatory and inhibitory neurons, using a recently developed method to estimate the mutual information 49 

between input and output in an ex-vivo setup (Zeldenrust et al., 2017). In vivo, excitatory neurons are shown 50 

to have a high action potential threshold (Crochet et al., 2011) and high selectivity (Ranjbar-Slamloo and 51 

Arabzadeh, 2019). Here, we investigated the underlying neural mechanisms. We found that excitatory 52 

neurons show strong threshold adaptation, making them fire sparsely and resulting in a strong compression 53 

of information between input and output. Inhibitory neurons on the other hand have a threshold behaviour 54 

that favours fast-spiking, resulting in a higher information rate transferred through higher spike frequencies, 55 

possibly having a gating role in information transfer.  56 

Results 57 

Information transfer in inhibitory and excitatory neurons 58 

Excitatory neurons show strong adaptation 59 

Whole-cell recordings were made from pyramidal cells and interneurons in layer 2/3 (L2/3) of mouse barrel 60 

cortical slices (da Silva Lantyer et al., 2018). Cells were classified as either 'excitatory' or 'inhibitory' based 61 

on their electrophysiological responses to a standard current-step protocol (Fig. 1, see Materials & 62 

Methods).  In response to depolarizing steps, excitatory neurons show strong spike-frequency adaptation, 63 
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limiting their maximum firing rate (Fig 1F and Supplementary Table S1), whereas inhibitory neurons can 64 

fire at much higher rates. To measure the information transfer in the spike-generating process, we used a 65 

recently developed method (Zeldenrust et al., 2017) that uses the output of an artificial neural network 66 

(ANN) to generate the frozen noise current input used in our ex-vivo experiments. The ANN responds to a 67 

randomly appearing and disappearing preferred stimulus or 'hidden state' (Markov process). The mutual 68 

information between the input current and the hidden state depends on three properties of the ANN: the 69 

number of neurons (N), the average firing rate of the neurons (r) and the time constant of the hidden state 70 

(𝛕). Because of the differences in adaptation and maximum firing rate between the excitatory and inhibitory 71 

cells, it was not possible to use the exact same frozen noise input current for the two cell types: 𝛕 had to be 72 

long for the excitatory neurons (neurons firing at a low rate cannot transfer information about a fast-73 

switching stimulus), but this is not the case for the inhibitory neurons. However, the information in the 74 

input could be kept constant (Fig 2). We used the parameters in table 1 in the frozen noise experiments to 75 

generate the input currents shown in Fig. 2.  76 

 77 

Parameter Excitatory cells Inhibitory cells 

Number of artificial neurons N 1000 1000 

Hidden state time constant 𝛕 250 ms 50 ms 

Average firing rate artificial 

neurons 𝜇𝑞 

0.1 Hz 0.5 Hz 

Baseline input current (set so the cell was at -70 mV, 

see Fig 2) 

(set so the cell was at -70 mV, see 

Fig 2) 

Amplitude input current 2100 pA 700 pA 

Analysis window size 100 s 20 s 

Table 1: Parameters of the input in the frozen noise experiments.  78 

 79 

Inhibitory neurons show broadband information transfer; Pyramidal cells transfer less information and at 80 

low frequencies 81 

The information transfer of the spike-generating process of a single neuron can be estimated by calculating 82 

the mutual information between the spike train and the hidden state used for generating the input current 83 

(see Materials & Methods). More specifically, we define the fraction of transferred information (FI) as the 84 

mutual information between the spike train and the hidden state divided by the mutual information (MI) 85 

between the input current and the hidden state:  86 
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 87 

 88 

FI quantifies how much information about the hidden state is transferred from the input current to the spike 89 

train, and thus quantifies which fraction of the information is kept during the spike-generating process. In 90 

Fig 3A we show FI as a function of the firing rate r, for inhibitory (blue) and excitatory (red) neurons, and 91 

compare it to the FI obtained from the optimised 'Bayesian neuron' (BN) model (Deneve, 2008) with the 92 

same parameters (see Materials & Methods) as for the input generated for the excitatory neurons (pink) or 93 

inhibitory neurons (turquoise). Pyramidal cells transfer more information at low firing rates (<~8 Hz) 94 

compared to interneurons. This is due to our choice of slower switching speed of the hidden state for 95 

excitatory neurons: a fast-switching hidden state cannot be properly tracked by neurons firing at a low firing 96 

rate (see also (Zeldenrust et al., 2017)). To compare inhibitory and excitatory neurons, we plotted FI as a 97 

function of the normalized firing rate rn  = r*𝛕 (unitless, Fig 3B) and fitted the measured values up to rn  = 98 

1.5 to a saturating function: 99 

 100 

 101 

where a is the saturation value and b is the rate with which this the saturation value a is reached (both 102 

unitless). In Fig. 3E and F the fit values and their 95% confidence intervals are shown. Inhibitory 103 

experimental and BN values saturate around similar values (a = 0.65  (0.64 - 0.66) and a = 0.64  (0.63 - 104 

0.65) respectively), with experiments having a slightly lower rate (b = 5.8  (5.6 - 6.0) and 7.7  (7.3 - 8.0). 105 

Excitatory neurons saturate at lower experimental values (a = 0.51  (0.48 - 0.54)) and slightly lower BN 106 

values (a = 0.58  (0.54 - 0.63), and the saturation rates are also lower (b =  4.5  (4.0 - 4.9) and b = 6.1  (5.0 107 

- 7.2) respectively). This shows that in the case of the excitatory neurons, the experimental spike trains 108 

transmit much less information than the spike trains of the BN, whereas in the inhibitory case the model 109 

and experimental spike trains perform similarly. As a control, we presented the input for the excitatory 110 

neurons also to inhibitory neurons (Fig. 3, green, a = 0.63  (0.52 - 0.75), b = 2.6  (1.6 - 3.7)); these inhibitory 111 

neurons fired at a higher normalized rate (Fig. 3C) and performed better than the excitatory neurons.  112 
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Inhibitory neurons transfer information more efficiently 113 

To compare the efficiency of the pyramidal cells, the interneurons and the BN discussed above, we defined 114 

the (unitless) efficiency E as the fraction of information divided by the normalized firing rate (i.e. the firing 115 

rate relative to the switching speed of the hidden state): 116 

 117 

This efficiency is shown as a function of the firing rate in Fig 4A and of the normalized firing rate in Fig 118 

4B. If the fraction of information FI depends exponentially on the normalized firing rate, such as in Fig. 119 

3B, the efficiency decreases as a function of the (normalized) firing rate (note that for very low firing rates 120 

the mutual information and hence the efficiency cannot be calculated reliably, due to the lack of spikes). In 121 

Fig 4B, the theoretical values for the fitted curves from Fig 3B and their inflection points (squares) are also 122 

shown (lines with circular black-lined markers). These curves have a limit value for a vanishing normalized 123 

firing rate at E=ab/2. With increasing (normalized) firing rate, the efficiency decreases. The inflection 124 

points of the theoretical curves are indicated by black-lined squares. Note that the model BN curves 125 

(turquoise for inhibitory neurons and pink for excitatory neurons) have higher efficiency values than their 126 

experimental counterparts, indicating that the BN model is indeed optimal in the sense that it sets an upper 127 

limit to the efficiency. The inhibitory experimental values are much closer to their BN counterparts than 128 

the excitatory experimental values to their BN counterparts, indicating that the inhibitory neurons are more 129 

efficient. However, when the interneurons respond to the slow-switching input made for the excitatory 130 

neurons (green markers), they perform similarly or even less efficiently than the excitatory neurons (red 131 

markers). Therefore, interneurons are more efficient than excitatory neurons at transferring information 132 

from the fast-switching stimulus, but not from the slow-switching stimulus.  133 

Inhibitory neurons perform well as classifiers 134 

The setup with the hidden state made it possible to show 'receiver-operator curves' (ROCs): we defined a 135 

'hit' as a period during which the hidden state was 1 (up-state), in which at least 1 action potential was fired, 136 

and a 'miss' as an up-state in which no action potentials were fired. Similarly, we defined a 'false alarm' as 137 

a period during which the hidden state was 0 (down-state), in which at least 1 action potential was fired, 138 

and a 'correct reject' as a down state in which no action potentials were fired. We then defined the 'hit 139 

fraction' as the number of hits divided by the total number of up-states, and similarly the false alarm fraction 140 

for the number of false alarms divided by the total number of down-states. In Fig. 5A the results are shown, 141 

for the same five conditions as discussed above. For each experiment, a control experiment was simulated 142 

by generating a Poisson spike train with the same number of spikes as the original experiment. Note that 143 
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this 'control' is below the line hit fraction = false alarm fraction, because the hidden state is more often 0 144 

than 1 (P1  = ⅓). Since the hidden state is longer in the '0' state, the probability that a random spike occurs 145 

when the hidden state equals 0 is higher, hence the probability for a false alarm is higher than the probability 146 

for a hit. 147 

 148 

Interneurons perform very similarly to the BN, as shown in Fig. 5, whereas the pyramidal cells perform 149 

less optimal than their model counterparts. We performed control experiments where  input currents 150 

generated for excitatory neurons were injected into inhibitory neurons, (green triangles in Fig. 4 and 5). 151 

The results suggest that interneurons perform comparably to (on the same curve as) pyramidal cells, but 152 

with a lower discrimination threshold (i.e. with a higher firing rate), which is in agreement with our previous 153 

observation that interneurons responded with a higher firing rate than pyramidal cells. Note that inhibitory 154 

neurons fired slightly less spikes during the up-states (Fig. 5B) and the normalized firing rate in the up-155 

state somewhat lower for the inhibitory neurons (Fig. 5F ). Since the excitatory neurons fire more spikes 156 

during the down states (Fig. 5C and G), this corresponds to a lower efficiency for excitatory neurons (Fig. 157 

4) and a worse performance on the binary classification task (Fig. 5A). Indeed, the number of spikes per 158 

down state (Fig. 5C) and normalized firing rate in the down state (Fig. 5G) differed between inhibitory and 159 

excitatory neurons (Supplementary Tables S2 and S3). Note that most 'incorrect' spikes are actually fired 160 

shortly after a down switch (Fig 5 H-K), so they might be 'correct' spikes that were a few milliseconds too 161 

late.  162 

 163 

Interestingly, for large firing rates the experiments appear to outperform the model. This appears 164 

paradoxical, since the BN is an optimal model for the stimulus. However, the BN is an optimal model given 165 

a certain set of assumptions, one of which is the form of adaptation it uses: the BN increases its firing 166 

threshold each time a spike is fired, so that it only fires when this transfers 'new information' (Deneve, 167 

2008). The neurons we recorded might use other forms of adaptation, that are less efficient (i.e. they use 168 

more spikes to transmit less information, see Figs 3 and 4) , but apparently also less prone to false alarms.  169 

Pyramidal cells show diverse response properties  170 

 171 

The information transfer, efficiency and ROC curves (Figs 3-5) show that inhibitory neurons transfer 172 

information more efficiently. They are close to optimal in transferring information about the hidden state 173 

(i.e. it shows how much information these neurons transfer, but not what features they respond to). In Fig. 174 

6 we show the normalized spike-triggered averages (STAs) for spikes of inhibitory neurons (A and E) and 175 

excitatory neurons (C). The filter was whitened and regularized (see Materials & Methods). Next, the 176 
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projection values of spike-triggering and random currents were calculated (Figs 6B for an example for 1 177 

cell), and the distance between the means of the distributions for random and spike-triggering currents was 178 

calculated for each cell (Figs 6D).  179 

 180 

The average STAs for all inhibitory (Fig 6A, blue) and excitatory (Fig 6C, red) neurons were quite similar, 181 

but the traces for individual neurons (grey lines) were much more variable for excitatory neurons than 182 

inhibitory neurons. This could indicate that the excitatory neurons have a higher variance in their feature 183 

selectivity of incoming current stimuli than inhibitory neurons, but it is also possible that this is an effect 184 

of the lower number of spikes available for excitatory neurons. To control for this possibility, we calculated 185 

the STAs for spike trains of inhibitory neurons, where the number of spikes was reduced to match an 186 

excitatory trial (Fig 6E, brown). For all three groups (inhibitory, excitatory and inhibitory control spike 187 

trains) we calculated the inner product between all calculated STAs. Fig 6F shows the distributions of these 188 

inner products, and it is clear that both inhibitory full and control spike trains are much less variable (inner 189 

product closer to 1) than the excitatory spike trains (two-sample Kolmogorov-Smirnov test E-I p=0, E-C 190 

p<1e-223, I-C p<1e-228). The distribution of all distances between the means is shown in Figs 6D. The 191 

distances between the distributions, measured in standard deviations of the prior (random triggered 192 

currents) distribution, are much higher for excitatory neurons than for inhibitory neurons, indicating that 193 

excitatory neurons are more selective (p-values two-sample t-test: E-I p<1e-28, E-C p<1e-24, I-C p=0.14).  194 

 195 

In conclusion, pyramidal cells fire less and are therefore more selective, but at the same time there is more 196 

variability between excitatory neurons in what input features they respond to. Excitatory neurons transfer 197 

information mainly at low frequencies, whereas interneurons transfer more information in a broadband 198 

spectrum and are more uniform with respect to the input features they respond to. Recently, we have shown 199 

(Huang et al., 2016) that the threshold behaviour of neurons is a crucial factor in their information 200 

processing. Therefore, in the next section the spike threshold behaviour of the excitatory and inhibitory 201 

neurons was investigated.  202 

Threshold dynamics in inhibitory and excitatory neurons 203 

Dynamic threshold of both neuron types 204 

In Fig 7, we show the threshold behaviour of the inhibitory and excitatory neurons. The membrane potential 205 

threshold of each spike was determined based on the method of Fontaine et al. (2014) (see Materials & 206 

Methods). We show the distribution of the membrane potential as a function of the inter-spike interval (ISI, 207 

Fig. 7A and E). For both inhibitory and excitatory neurons, the membrane potential threshold goes up with 208 
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short  ISIs, as expected, and for long ISIs the threshold is low. This effect has a long time scale (at least 209 

several tens of milliseconds), longer than expected based on the relative refractory period alone (typically 210 

less than ten milliseconds). The threshold for excitatory neurons is almost 10 mV higher than for inhibitory 211 

neurons (Fig 7A,E,G,H). Next to the ISI, the threshold also depended on the history of the membrane 212 

potential (Fig 7C,F): we calculated the regression between the action potential threshold and the average 213 

membrane potential in different windows preceding the spike. There is a strong correlation between the 214 

threshold and the membrane potential immediately preceding the spike for both neuron types, which 215 

reduces gradually with time before the spike.  However, for both neuron types some relation between 216 

membrane potential and threshold is still visible several tens of milliseconds before the spike. The current 217 

clamp step protocol (Fig 7 G-J) confirms the overall higher threshold for excitatory neurons (Fig 7G, H) 218 

and strong spike-frequency adaptation (Fig 7 J) for excitatory neurons. The threshold adaptation rate 219 

however, shows significant differences between fast spiking and regular spiking neurons at current injection 220 

intensities ranging from +240 to +320pA, while they do not show significant changes at lower or higher 221 

intensities, possibly due to low firing rates or to reaching a steady state firing rate.  (Fig 7J, table S1).  222 

 223 

So in conclusion, both inhibitory and excitatory neurons show dynamic threshold behaviour, with 224 

interneurons having much lower thresholds, so they can fire at high rates, whereas the dynamic threshold 225 

of excitatory neurons promotes low-frequency firing and adaptation.  226 

Voltage clamp experiments show a narrow sodium channel activation in inhibitory cells   227 

To investigate the activation mechanism of excitatory and inhibitory cells, we performed voltage clamp 228 

experiments on a separate group of cells from the same area. We performed a sawtooth-protocol (Fig 8, A-229 

C), in which the clamped membrane potential of the cells was linearly switched from -70 mV to 70 mV in 230 

100 ms (Fig 8, left column), 50 ms (Fig 8, middle column) or 10 ms (Fig 8, right column). In response to 231 

such a rapidly changing membrane potential, the neuron generated current peaks (Fig. 8, A-C), which were 232 

abolished in control experiments with TTX application (Supplementary Fig S3), suggesting these are 233 

caused by sodium channel activation. We quantified the amplitude (not displayed), half-width (Fig S3, D-234 

F), peak onset and offset duration (Fig 8, G-I and J-L respectively), adaptation of the amplitude of the 1st 235 

peak over consecutive voltage ramps (Fig 8, M-O) of the first of these peaks. The only significant, consistent 236 

and relevant difference we observed with this protocol between the inhibitory and excitatory neurons was 237 

in the half width of the first peak, which was strongly reduced in inhibitory neurons (Fig 8, D-F). By 238 

separating the half-width in onset and offset the difference remains in both measures, but interestingly the 239 

regular spiking neurons seem to be split into two different groups. Moreover, in this cell type the amplitude 240 

of the first peak was reduced in amplitude over consecutive sawtooths (Fig 8, M-O).   241 
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Discussion 242 

Postsynaptic information processing requires decoding information from presynaptic action potentials. In 243 

an accompanying (Huang et al., 2020) paper we have shown that excitatory and inhibitory neurons decode 244 

spike-timing and firing rate information differentially. In particular, we found that when a ‘Rate+Poisson’ 245 

encoding paradigm was used, the spike trains of inhibitory neurons contain more stimulus information than 246 

the spike trains of excitatory neurons. However, whether the two neuronal classes encode information 247 

differently is not known. In this paper we have addressed this question by quantifying the internal 248 

information loss between input current and output spike train in ex-vivo current clamp experiments. We 249 

used a stimulus that is comparable to the ‘Rate+Poisson’ coding scheme: the input current was generated 250 

by an Artificial Neural Net (ANN), where each cell fires Poisson spike trains of which the firing rate is 251 

modulated by the absence or presence of the stimulus (Zeldenrust et al., 2017). As predicted in (Huang et 252 

al., 2020), we found that excitatory neurons transfer information at limited rates whereas inhibitory neurons 253 

transfer more information and at much higher rates. So excitatory cells show a stronger compression and 254 

are therefore more selective. Moreover, they show a strong variability in their response properties over the 255 

population. Interneurons on the other hand, show a near-optimal response, transferring much information 256 

about the input at relatively high rates. They are more uniform in the features they respond to and are more 257 

efficient at transferring information. These differences in information transfer between inhibitory and 258 

excitatory neurons are accompanied by a different threshold behaviour: excitatory cells show strong 259 

threshold adaptation, keeping their firing rates low, whereas interneurons have a lower threshold and can 260 

fire and transfer information at much higher rates.  261 

 262 

The observed differences between inhibitory and excitatory neurons in threshold behaviour and information 263 

transfer can be partially explained by differences in the sodium activation profile. We observed a clear 264 

difference in activation peak width between inhibitory and excitatory neurons, but not in the activation 265 

voltage. Moreover, the amplitude of these peaks adapted strongly for excitatory, but not for inhibitory 266 

neurons. This suggests that the main differences in threshold behaviour between inhibitory and excitatory 267 

neurons might not so much be explained by the initial sodium activation, but by what happens right after 268 

it: sodium inactivation and the activation of repolarizing currents. The high threshold we observed in 269 

interneurons could be the result of an interplay between the sodium current and a fast potassium current 270 

that promotes the de-inactivation of the sodium channels. For instance, Kv3 potassium channels only occur 271 

in fast-spiking cells (Erisir et al., 1999; Grissmer et al., 1994; Rowan et al., 2016, 2014; Rudy and McBain, 272 

2001), suggesting a link between threshold facilitation and these potassium channels). Other candidates 273 

include sodium- and/or calcium-activated potassium channels (Sanchez-Vives et al., 2000), that have been 274 

shown to cause spike-frequency adaptation and after-hyperpolarizations. However, the exact interplay 275 
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between the spike history, the synaptic input and the spike threshold is complex, depending next to the 276 

intrinsic channel properties on for instance the axon initial segment location  (for a review, see (Kole and 277 

Stuart, 2012)).  278 

 279 

Neurons in the sensory cortices process information coming from the periphery by giving complex, non-280 

linear spike responses to incoming stimuli (Koch and Segev, 2000). These responses are shaped by each 281 

neuron's place in the network (i.e. the connectivity of the network, (Harris and Mrsic-Flogel, 2013; Hofer 282 

et al., 2011; Ko et al., 2013, 2011; Okun et al., 2015)) and by its biophysical properties (i.e. which ion 283 

channels are expressed in its membrane). Cortical networks consist of excitatory pyramidal cells and 284 

inhibitory interneurons, two groups that differ from one another both in their connectivity (for recent 285 

reviews, see (Hofer et al., 2011; Markram et al., 2004) ) and their intrinsic biophysical properties (for a 286 

recent review, see (Griffen, 2014)). The differences between the two groups of cells result in different 287 

responses to sensory stimuli (Murray and Keller, 2011), but to what extent these differences can be 288 

attributed to the differences in network structure or to the differences in single neuron properties remains 289 

an open question. For instance, the recent results of (Reyes-Puerta et al., 2015), who found using 290 

simultaneous recordings in rat barrel cortex that the spike trains of interneurons contained more stimulus-291 

related information than those of pyramidal cells, could be the result of intrinsic neuronal properties, 292 

network connectivity differences between inhibitory and excitatory neurons, differences in adaptation, and 293 

so on. We show here that at least part of the observed differences between the response properties of 294 

inhibitory and excitatory neurons in layer 2/3 of the mouse barrel cortex can be explained by intrinsic 295 

neuronal properties, next to network properties.  296 

 297 

Neurons in the cortex react to prolonged or repeated stimuli with a spike response that decreases in 298 

frequency over time, an effect called spike-frequency adaptation (Gutkin and Zeldenrust, 2014). This 299 

adaptation can be the result of a hyperpolarization of the membrane potential (for instance due to the 300 

activation of an outward current (Sanchez-Vives et al., 2000), an increase in threshold (Azouz and Gray, 301 

2000), or both. It has been repeatedly shown that such adaptation is an essential part of the functioning of 302 

cortical neurons, and any model of cortical firing should include such adaptation (Brette and Gerstner, 2005; 303 

Fontaine et al., 2014; Gerstner and Naud, 2009; Jolivet et al., 2004; Rauch et al., 2003; Rossant et al., 2011). 304 

However, the functional implications of different forms of adaptation are still largely unknown. Here, we 305 

associated the functional implications of threshold adaptation with the information processing capability of 306 

inhibitory interneurons and excitatory pyramidal cells, which show very different forms of threshold 307 

behaviour. 308 

 309 
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Measuring the information transfer of neurons in an ex-vivo setup traditionally uses variations on one of 310 

two methods: 1) the 'direct method' (de Ruyter van Steveninck et al., 1997; Strong et al., 1998), in which a 311 

frozen-noise stimulus is repeated many times to estimate the signal-to-noise ratio, or 2) using long frozen 312 

noise stimuli to fit a reverse correlation model and estimate the mutual information between input and 313 

output from how well this model can predict the input (Bialek et al., 1991; de Ruyter van Steveninck and 314 

Bialek, 1988; Rieke et al., 1997). However, both these methods need long recordings (~1 hour) for a single 315 

estimate of the mutual information between the input current and the output spike train. Such long recording 316 

times are often not feasible for ex-vivo experiments, especially if different conditions need to be compared. 317 

Therefore, we used a recently developed method to measure the information transfer between input current 318 

and output spike train in ex-vivo experiments that can estimate the mutual information in recordings of tens 319 

to hundreds of seconds (Zeldenrust et al., 2017). In this method, the input current used in a current-clamp 320 

setup is the simulated output of an artificial neural network (ANN) that responds to a randomly appearing 321 

and disappearing preferred stimulus or 'hidden state' (Markov process). The information in the input can be 322 

explicitly controlled by varying the number of spikes of the ANN (the number of neurons and their firing 323 

rates) and the switching speed of the hidden state. In this method, all data can be used for the estimation of 324 

the mutual information, and trial repetition or model fitting is not necessary, making the required length of 325 

the recording much shorter. One assumption of the information method is that the output spike trains 326 

generated by the clamped neurons are (approximately) Poissonian. In Supplementary Fig. S5 it can be seen 327 

that there are slightly more spike doublets than expected from a Poisson process, but that there is otherwise 328 

no clear structure in the spike trains. 329 

 330 

At the local network level, full stimulus information is preserved at the presynaptic level and in small groups 331 

of neurons (Huang et al., 2020). However, that does not mean that the full information is transferred to the 332 

next processing level. The fact that excitatory neurons, the neurons that connect not only locally but also 333 

across layers and areas, are more selective, as well as more variable in what stimulus features they represent, 334 

suggest that the network performs both a form of information compression and transformation. Moreover, 335 

(Huang et al., 2016) showed that an adaptive threshold model neuron is more informative for high temporal 336 

precision and low noise than a fixed threshold model neuron, suggesting that especially noisy stimuli with 337 

low temporal precision are suppressed.  So the relation between threshold adaptation and information 338 

processing is very strong. The functional reason for this, remains an open topic. One theory suggests that 339 

such fast inhibition is needed for predictive coding (Boerlin et al., 2013; Denève and Machens, 2016; 340 

Hawkins and Ahmad, 2017; Zeldenrust et al., 2019). In addition to this, we suggest that the observed 341 

compression of excitatory neurons and the broadband information transfer of inhibitory neurons serve a 342 

common goal: sparse coding (Földiák, 1990; Foldiak and Endres, 2008; Olshausen and Field, 1996). In 343 
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vivo, the activity of neurons in barrel cortex is shown to be extremely sparse, with very narrow receptive 344 

fields (Ranjbar-Slamloo and Arabzadeh, 2019), possibly due to a large distance between the resting 345 

membrane potential and neural threshold in excitatory neurons (Crochet et al., 2011). Here, we show two 346 

underlying neural mechanisms that collaborate towards this sparse coding: strong threshold adaptation that 347 

compresses information in excitatory neurons and high activity levels in inhibitory neurons with little or no 348 

compression. Together, these mechanisms effectively 'gate' the message to the next processing layer, 349 

resulting in a specific and sparse code. 350 

 351 

Materials & Methods 352 

Experiments 353 

All current clamp data can be found in this repository: https://doi.org/10.34973/4f3k-1s63. The voltage 354 

clamp data are part of the dataset of da Silva Lantyer et al. (2018). 355 

Ethics statement. 356 

Animals used were Pval-cre and SSt-cre mice from 9 to 45 weeks kept with unlimited access to water and 357 

food, housed in a 12 hour light/dark cycle. All experimental procedures were performed according to Dutch 358 

law and approved by the Ethical Committee for Animal Experimentation of Radboud University (RU DEC). 359 

Each mouse was perfused with iced and oxygenated (95%O2/5%CO2) Slicing Medium (composition in 360 

mM: 108 ChCl, 3 KCl, 26 NaHCO3, 1.25 NaH2PO4.H2O, 25 Glucose.H2O, 1 CaCl2.2H2O, 6 MgSO4.7H2O, 361 

3 Na-Pyruvaat) under anaesthesia with 1,5ml Isoflurane inhaled for 2 minutes. 362 

Slice electrophysiology 363 

The brain was covered in 2% agarose and submerged in Slicing Medium after which it was sliced in 364 

300 μM thickness using a VF-300 compresstome (Precisionary Instruments LLC) and then incubated for 365 

30 min in 37°C artificial cerebrospinal fluid (ACSF, composition in mM: 1200 NaCL, 35 KCL, 13 366 

MgSO4.7H2O, 25 CaCl2.2H2O, 100 Glucose.H2O, 12.5 NaH2PO4.H2O, 250 NaHCO3), oxygenated  367 

(95%O2/5%CO2). The heating of the ACSF solution was then stopped and 30m were allowed for the ACSF 368 

bath to reach room temperature. Slices were then kept in this bath until use. 369 

Slices were placed into the recording chamber under the microscope (Eclipse FN1, Nikon) and 370 

perfused continuously at a rate of 1 ml/min with the oxygenated ACSF at room temperature. Patch pipettes 371 

for whole-cell recordings were pulled from borosilicate glass capillaries, 1.0 mm outer diameter, 0.5mm 372 
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inner diameter, on a pipette-puller (Sutter Instrument Co. Model P-2000), until an impedance of 8±2 MΩ 373 

for the tip was obtained. Pipettes were filled with a solution containing (in mM) 115 CsMeSO3, 20 CsCl, 374 

10 HEPES, 2.5 MgCl2, 4 Na2ATP, 0.4 NaGTP, 10 Na-phosphocreatine, 0.6 EGTA, 5 QX-314 (Sigma).  375 

The whole cell access was obtained after reaching the GOhm seal and breaking the membrane. Upon 376 

entering the cell and the whole-cell mode, the membrane potential was kept fixed at -70mV, outside 377 

stimulation. 378 

Input current generation 379 

Data acquisition was performed with HEKA EPC9 amplifier controlled via HEKA’s PatchMaster 380 

software (version 2.90x.2), subsequent analysis with MatLab (Mathworks, v.2016b). 381 

 382 

The current clamp (CC) steps protocol was performed in every cell, and used to distinguish between cell 383 

type, according to the Firing Rate and spike shape. The protocol consisted in clamping the neuron at a 384 

baseline current Ibaseline, corresponding to the one required to keep its membrane at -70mV, and providing a 385 

500ms long stimulus of fixed current value I = Ibaseline + (40pA * step number), for a total of 10 steps, 386 

reaching a maximum current injected of Ibaseline + 400pA. Between each current injection step, a 5.5s 387 

recovery window was allowed.  388 

 389 

To be able to use the method to measure the information transfer (Zeldenrust et al., 2017), the input current 390 

used in the current-clamp experiments is generated as the output of an artificial neural network (ANN) that 391 

responds to a randomly appearing and disappearing preferred stimulus or 'hidden state' (Markov process) 392 

x: a binary variable that can take the values of 1 (preferred stimulus present, ‘on-state’) and 0 (preferred 393 

stimulus absent, ‘off-state’). The Markov process has rates ron and roff. This corresponds to a switching time 394 

constant 𝜏 =
1

𝑟𝑜𝑛+𝑟𝑜𝑓𝑓
 . A time constant 𝛕 of 50 or 250 ms was used for inhibitory/fast spiking or 395 

excitatory/regular spiking neurons respectively, as excitatory neurons did not show a high enough firing 396 

rate to allow for faster time constants. The ANN consists of N=1000 neurons that fire Poisson spike trains, 397 

whose firing rates are modulated by the stimulus so that each neuron fires with rate 𝑞𝑜𝑛
𝑖  when x = 1, and 398 

𝑞𝑜𝑓𝑓
𝑖 when x = 0. These rates are drawn from a Gaussian distribution with mean 𝜇𝑞 (see Table 1) and 399 

standard deviation 𝜎𝑞 = √
1

8
𝜇𝑞 . Each spike was convolved with an exponential kernel with unitary surface 400 

and a decay time of 5ms and the spike trains from different presynaptic neurons contribute to the output 401 

with weight 𝑤𝑖 = 𝑙𝑜𝑔 
𝑞𝑜𝑛

𝑖

𝑞𝑜𝑓𝑓
𝑖 . 402 
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Analysis 403 

Cell classification 404 

Cells were classified using the following procedure. Before the frozen noise injection, for each cell, the 405 

response to a current-clamp step (CC-step) protocol was recorded. From these recordings, the maximum 406 

firing rate, the average spike-halfwidth and the average after hyperpolarization (AHP) amplitude were 407 

extracted (Fig 1). On-site, the cells were classified by the experimenter based on the firing rate and the 408 

spike width. Based on this initial classification the cell received the frozen noise with either 𝛕 = 250 ms 409 

(excitatory neurons) or 𝛕 = 50 ms (inhibitory neurons). 410 

Offline, the initial classification was verified using an agglomerative clustering protocol (MATLAB 411 

‘clusterdata’) to cluster the data into 2 groups (separated following Ward’s method(Ward, 1963)), according 412 

to the maximum firing rate and the average spike-half width (normalized to zero mean and unit standard 413 

deviation) reached during the CC-Step protocol (Fig 1E). Only for a single cell, the initial classification and 414 

the post-hoc classification were in disagreement (Fig 1E, pink star). We decided to keep this cell in the 415 

original (inhibitory) group due to its position between the two clusters. 416 

Calculation of mutual information 417 

The mutual information between the hidden state and the input (MII) or a spike train (MIspike train) can be 418 

estimated with the help of this hidden state x. The method is explained in detail in (Zeldenrust et al., 2017) 419 

and follows derivations from (Denève, 2008; Lochmann and Denève, 2008).  420 

 421 

The log-odds ratio 𝐿 that the hidden state is 1, given the history of the input until now 𝐼(𝑡)can be estimated 422 

using  423 

 424 

Where 𝜃 = ∑ 𝑞𝑜𝑛
𝑖 − 𝑞𝑜𝑓𝑓

𝑖𝑁
𝑖=1  is the constant offset of the input, which is chosen to equal 0 here. Using the  425 

log-odds ratio, we can estimate the conditional entropy 426 

 427 
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Because the hidden state follows a memoryless Markov process, its entropy at every moment in time can 428 

be calculated by 429 

 430 

Where 𝑝1 =
𝑟𝑜𝑛

𝑟𝑜𝑛+𝑟𝑜𝑓𝑓
is the prior probability that the hidden state equals 1. With the canonical 𝑀𝐼 =  𝐻𝑥𝑥 −431 

𝐻𝑥𝑦the mutual information between the input and the hidden state can now be estimated. Similarly, the 432 

mutual information between a spike train and the hidden state can be estimated by integrating equation (4) 433 

where the input I is now replaced by 434 

 435 

where 𝜌(𝑡)is the spike train of the neuron, and its weight 𝑤is given by 436 

 437 

and𝜃is calculated similarly based on the observed 𝑞𝑜𝑛 and 𝑞𝑜𝑓𝑓.  438 

Bayesian neuron 439 

The `Bayesian neuron’ (Denève, 2008) is a spiking neuron model that optimally integrates evidence about 440 

the hidden state from the ANN described above. It is optimal given an efficient coding or redundancy 441 

reduction assumption: it only generates new spikes if that spikes transfers new information about the hidden 442 

state, that cannot be inferred from the past spikes in the spike train. In practice, the neuron performs a leaky 443 

integration of the input, in order to calculate the log-odds ratio L for the hidden state being 1: 444 

 445 

where ron and roff are the switching speeds of the hidden state, and 𝜃 = ∑𝑁
𝑖=1 𝑞𝑜𝑛

𝑖 − 𝑞𝑜𝑓𝑓
𝑖 is the constant 446 

offset of the input, which is chosen to be equal to 0 in this paper. The neuron compares this log-odds ratio 447 

from the input with the log-odds ratio of its own spiketrain, G: 448 

 449 

which is updated each time a spike is fired: 450 
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 451 

where 𝜂is the only free parameter that describes the distance between the threshold and the reset of the 452 

Bayesian neuron. Note that this neuron model has a form of threshold adaptation: if it did not spike for a 453 

long time, G decays to its prior value 𝐺𝑝𝑟𝑖𝑜𝑟 = 𝑙𝑛
𝑟𝑜𝑛

𝑟𝑜𝑓𝑓
. With each spike, G is increased by 𝜂, and more input 454 

(larger L) is needed to fire a spike.  455 

Threshold detection 456 

The membrane potential threshold of each spike was determined based on the method of (Fontaine et al., 457 

2014): in a window of 1 to 0.25 before each spike maximum, the earliest time in the window at which either 458 

the first derivative exceeded 18 mV/ms (i.e. exceeded a value of 0.9 mV for a sampling rate of 20000 Hz) 459 

or the second derivative exceeded 140 mV/ms2 (i.e. exceeded a value of 0.35 mV for a sampling rate of 460 

20000 Hz) was designated as the threshold-time, and the threshold value was determined as the 461 

corresponding membrane potential.  462 

ROC curves 463 

We defined a 'hit' as a period during which the hidden state was 1, in which at least 1 action potential was 464 

fired, and a 'miss' as a period during which the hidden state was 1, in which no action potentials were fired. 465 

Similarly, we defined a 'false alarm' as a period during which the hidden state was 0, in which at least 1 466 

action potential was fired, and a 'correct reject' as a period during which the hidden state was 0, in which 467 

no action potentials were fired. So each period in which the hidden state was 1, was either defined as a 'hit' 468 

or a 'miss', and each period in which the hidden state was 0, was either defined as a 'false alarm' or a 'correct 469 

reject'. The total number of hits was divided by the total number of periods during which the hidden state 470 

was 1, which resulted in the fraction of hits 0 ≤ fh ≤ 1 and similarly for the misses, false alarms and correct 471 

rejects. We calculated the fractions of hits, misses, false alarms and correct rejects for each spike train, as 472 

well as for a corresponding Poisson spike train of the same length and with the same number of spikes. 473 

Note that for these Poisson spike trains, the hit fraction is actually below the hit fraction = false alarm 474 

fraction line, due to the nature of the hidden state: because the hidden state is more often 0 than 1, a random 475 

spike will have a higher chance of being timed during a period where the hidden state equals 0. Therefore, 476 

the false alarm fraction will be higher than the hit fraction for Poisson spike trains.  477 
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Spike-triggered average 478 

The whitened and regularized spike-triggered average (STA) was calculated as 479 

 480 

where 𝑋is a stimulus-lag matrix, where each row is the stimulus vector with a different lag (see 481 

(Chichilnisky, 2001; Paninski, 2003; Sharpee et al., 2004; Simoncelli et al., 2004)), 𝑋𝑇𝑋is the correlation 482 

matrix and 𝐼is the identity matrix. Parameter 𝜆is the regularization parameter set to 10 and 𝜇𝑋𝑇𝑋is the mean 483 

of the diagonal of the correlation matrix. Finally, s denotes the spike train. The resulting STA was 484 

normalized with the L2 norm. For each neuron, the inner product of all spike-triggering stimuli was 485 

calculated, as well as the same number of random-triggered stimuli. With the random-triggered stimuli, the 486 

prior distribution of the input could be calculated, and compared to the distribution of spike-triggering 487 

stimuli (the posterior distribution). The difference in mean between the prior and posterior was calculated 488 

for each neuron, and the distribution of means over all neurons is shown in Fig 6.  489 

 490 
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Figures 633 

 

 

 

 

Fig 1. Cell classification. A, B)  We selected neurons to record from the mouse somatosensory cortex 

(barrel cortex), in L2/3. Visually, the shape and size of soma were a good indicator of the cell type: 

smaller and roundish shapes would point towards fast spiking neurons, while slightly larger and triangular 

shapes would point to regular spiking (pyramidal) neurons. C) Example responses of an excitatory cell 

to a constant injected current. D) Example responses of an inhibitory cell to a constant injected current. 

E) Cell classification using agglomerative clustering based on the maximum firing frequency and spike 

width. Cells were classified as inhibitory (blue) when they had a small spike half-width combined with a 

high maximum firing rate, and as excitatory (red) with a large spike half-width and low maximum firing 

rate. There was one cell (pink star) in between the clusters, where the agglomerative clustering and the 

initial classification disagreed. This cell was classified as an inhibitory neuron (see Materials & Methods). 

F) Maximum firing frequency distribution for incremental current injection amplitudes for inhibitory 

(blue) and excitatory (red) neurons. G) Same as F), but for the latency of the first spike. H) After-

hyperpolarization distribution. I) Spike half-width distribution. For threshold behaviour in the current-

clamp step-and-hold protocol, see Supplementary Fig. S1.  
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Fig 2. Input. A) Average (over the trial) input current and B) membrane potential for all trials. Green 

data points/lines denote the control experiments where the inhibitory neurons received the input current 

that was otherwise given to the excitatory neurons. C) Mutual information between the hidden state and 

the input current, for all trials. Note that because frozen noise was used, every frozen noise trial was 

actually the same. Therefore, there are not many different realizations and hence not many different MI 

values. D) Example injected frozen noise current for an excitatory neuron. The grey shaded area 

corresponds to times when the hidden state was 1. E) Example injected frozen noise current for an 

inhibitory neuron. F) Example resulting membrane potential of an excitatory neuron. G) Example 

resulting membrane potential of an inhibitory neuron.  
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Fig 3: Inhibitory neurons transfer more information. A) Fraction of information kept during the spike 

generating process (FI, see eq. (1)) as a function of the firing rate, for inhibitory neurons (blue) and 

excitatory neurons (red). In green, the control experiments where the inhibitory neurons received the 

input current that was normally given to the excitatory neurons. In turquoise and pink, the simulations 

with the Bayesian Neuron  Materials & Methods, see table 1 for parameter values and Supplementary 

Fig. S2 for simulation values).  B) Fraction of information kept during the spike generating process (FI), 

as a function of the firing rate normalized by the switching speed of the hidden state (see table 1). The 

solid lines denote fits of the data up to a normalized firing frequency of rn  =1.5 (eq. (2)). Colors/markers 

the same as in A. C) and D) Normalized firing frequency and FI distribution of the spike trains in all 

conditions. E) Zoom of B).  F) and G)  Fit values and their 95% confidence intervals (error bars) for 

parameter a (F) and b (G).  Data from 144 excitatory neurons (220 trials), 72 inhibitory neurons (78 trials) 

and 9 control inhibitory neurons (11 trials).  
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Fig. 4 Inhibitory neurons transfer information more efficiently. A) Efficiency E (eq. (3)) as a function 

of the firing rate, for inhibitory neurons (blue) and excitatory neurons (red). In green, the control 

experiments where the inhibitory neurons received the input current that was normally given to the 

excitatory neurons. B) Same as in A), but now as a function of the normalized firing rate. The lines with 

white squares denote the fitted curves from Fig 3B and their inflection points (large squares). The fitted 

values for the theoretical `Bayesian neuron' (see Materials & Methods) are shown in pink and turquoise 

(parameter values: see table 1, simulation values: see Fig S1). C) Cumulative distribution of the efficiency 

E. Data from 144 excitatory neurons (220 trials), 72 inhibitory neurons (78 trials) and 9 control inhibitory 

neurons (11 trials). See also Supplementary Fig. S2 for data of simulations of the Bayesian Neuron.  

 643 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.11.06.371658doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.06.371658
http://creativecommons.org/licenses/by-nc/4.0/


 

 

 

Fig. 5 Binary classification. A) Receiver Operator Curve (ROC), where the hit rate was defined as the 

fraction of up-states, in which at least 1 action potential was fired. Similarly, the false alarm rate was 

defined as the fraction of down-states, in which at least 1 action potential was fired. In black the results 

for Poisson spike trains with firing rates matched to those of the experimental/simulation conditions are 

shown. B) Distribution of the number of spikes per period where the hidden state was 1 (up state), for 

inhibitory neurons (blue) and excitatory neurons (red). C) Same as B), but for periods where the hidden 

state was 0 (down state). D) Firing rate r distribution in the up-state. E) Firing rate r distribution in the 

down-state.. F) Normalized firing rate rn distribution in the up-state G) Normalized firing rate rn 

distribution in the down-state. H) Delay (in ms) of each correct spike since the state switches from down 

to up. I) Delay (in ms) of each incorrect spike since the state switches from up to down. J) Normalized 

delay (delay/τ, unitless) of each correct spike since the state switch from down to up. K) Normalized 

delay of each incorrect spike since the state switch from up to down. Results of hypotheses test for A-F 

are in Supplementary Table S2 and S3. Data from 144 excitatory neurons (220 trials), 72 inhibitory 

neurons (78 trials) and 9 control inhibitory neurons (11 trials). 
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Fig 6. Linear filtering properties. A) Whitened and regularized (see Materials & Methods) spike-

triggered average (STA) for inhibitory neurons. The STAs for individual neurons are shown as thin grey 

lines, and the average over neurons is shown as a thick coloured line. B) Example of a prior (random 

triggered, black line) and posterior (spike-triggered, blue line) distribution of stimulus projection values 

for a single  inhibitory neuron. C) Same as A), but for excitatory neurons. D) Distribution of the 

differences between the means (see arrow in B) between the prior and posterior distribution over all 

neurons.-E) Same as A), but for the reduced spike trains of the inhibitory neurons. F) Distribution of the 

inner products between the STAs for the three groups (note that because the STAs are normalized by the 

L2-norm, the maximal value of the inner product is limited to 1). Data from 144 excitatory neurons (220 

trials) and 72 inhibitory neurons (78 trials). 
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Fig. 7 Dynamic threshold A-C) Inhibitory neurons. D-F) Excitatory Neurons. A) Distribution of 

membrane potential threshold values (see Materials & Methods) for each inter-spike interval (ISI); 

normalized per ISI. B) Average spike shape (shaded region denotes standard deviation). Vertical lines 

denote the windows in C. C) Heatmap and regression for the relation between the threshold and the 

average membrane potential in the given window. D-F) Same as in A-C, but for excitatory neurons. This 

is all in the Frozen Noize protocol, for threshold behaviour in the current-clamp step-and-hold protocol, 

see Supplementary Fig. S1.  
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Fig. 8 Voltage clamp sawtooth Sawtooth voltage clamp experiments, where the clamped membrane 

potential was shifted linearly from -70 mV to +70 mV in 100 ms (left column), 50 ms (middle column) 

and 10 ms (right column). A-C: Example traces. D-F: Halfwidth of the first peak. G-I: Onset Time 

calculated by measuring the time between initiation and the maximum amplitude of the first peak. For G 

and H we reported the p-value for completeness, but a Kolomogorov-Smirnov test results in a relevant 

non-gaussianity of the distributions. J-L: Offset Time calculated by measuring the time between 

maximum amplitude and conclusion of the peak. M-O:Adaptation of the amplitude of the first peak for 

each sawtooth, compared between consecutive sawtooths (for statistical comparison, see Supplementary 

Table S4). All statistics displayed are computed with 2-sample t-test. Supplementary Fig. S4 shows the 

amplitude, initiation voltage and latency of the first peak. 
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