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1 Abstract13

Cancers are composed of genetically distinct subpopulations of malignant cells. By sequencing DNA from14

cancer tissue samples, we can characterize the somatic mutations specific to each population and build15

clone trees describing the evolutionary ancestry of populations relative to one another. These trees reveal16

critical points in disease development and inform treatment.17

Pairtree is a new method for constructing clone trees using DNA sequencing data from one or more18

bulk samples of an individual cancer. It uses Bayesian inference to compute posterior distributions over19

the evolutionary relationships between every pair of identified subpopulations, then uses these distribu-20

tions in a Markov Chain Monte Carlo algorithm to perform efficient inference of the posterior distribution21

over clone trees. Unlike existing methods, Pairtree can perform clone tree reconstructions using as many22

as 100 samples per cancer that reveal 30 or more cell subpopulations. On simulated data, Pairtree is the23

only method whose performance reliably improves when provided with additional bulk samples from a24

cancer. This suggests a shortcoming of existing methods, as more samples provide more information, and25
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should always make clone tree reconstruction easier. On 14 B-progenitor acute lymphoblastic leukemias26

with up to 90 samples from each cancer, Pairtree was the only method that could reproduce or improve27

upon expert-derived clone tree reconstructions. By scaling to more challenging problems, Pairtree sup-28

ports new biomedical research applications that can improve our understanding of the natural history29

of cancer, as well as better illustrate the interplay between cancer, host, and therapeutic interventions.30

The Pairtree method, along with an interactive visual interface for exploring the clone tree posterior, is31

available at https://github.com/morrislab/pairtree.32

2 Introduction33

Individual cancers exhibit substantial genetic heterogeneity, reflecting an ongoing evolutionary process34

of random somatic mutation and selection [1]. Cancers typically arise from a small number of founder35

mutations that confer a growth advantage [2]. Over time, additional somatic mutations accrue, and their36

frequency and distribution are shaped by evolutionary forces such as selection and genetic drift, resulting37

in the emergence of multiple genetically distinct cell subpopulations [3] (Fig. 1a). A clone tree is the38

evolutionary tree delineating the cell subpopulations in a cancer, the genetic mutations specific to each,39

and the proportions of cells in each sample that arose from each subpopulation (Fig. 1). Within the tree,40

subclones correspond to a cell subpopulation and all its descendants.41

Clone trees built from bulk cancer samples have biologically and clinically important applications.42

Those built from single samples already reveal important genomic events in evolution [3, 4] and provide43

insights into heterogeneity [1]. But as sequencing costs continue to drop, sequencing different regions44

of the same tumour [5], multiple tumours of the same cancer [6], or longitudinal samples from different45

timepoints [7] will become more common. When bulk samples have different mixtures of subpopulations,46

each sample can provide unique information about the single clone tree that characterizes the cancer’s47

evolutionary history. This can include revealing new subpopulations or disentangling single large sub-48

populations into smaller constituents. Clone trees built from multiple samples of the same cancer have49

helped identify factors associated with metastasis [8] and probed how treatment [9–11] or tumour mi-50

croenvironment [12, 13] shape evolution. This, in turn, can inform strategies to counteract treatment51

resistance [14].52

Current subclonal reconstruction methods [15–21] are severely limited in their ability to build clone53

trees based on large multi-sample studies. Most of these methods were designed for single cancer samples54

from which no more than three subclones can be discerned at typical whole-genome sequencing depths55
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[1]. Recent studies with greater sequencing depth and multiple cancer samples have revealed that a single56

cancer can have dozens of resolvable subclones [10]. Here we show that existing clone tree reconstruction57

methods become highly inaccurate on datasets with many subclones or many cancer samples, necessitating58

a new approach.59

Here we introduce Pairtree, a new method that can accurately construct clone trees from up to 10060

samples per cancer, revealing as many as 30 subclones. Pairtree outperforms a representative set of state-61

of-the-art clone tree reconstruction packages on simulated benchmark datasets of variable complexity.62

Pairtree is also the only method tested that can recover or improve on expert reconstructions of clone63

trees for 14 B-progenitor acute lymphoblastic leukemias (B-ALLs) containing up to 90 samples and 2664

subclones per cancer.65

3 Methods and results66

3.1 Pairtree inputs and outputs67

A clone tree represents the evolutionary history of a cancer. Fig. 1 outlines the process of clone tree68

reconstruction. Pairtree takes as input allele frequency data for point mutations detected in one or more69

samples from a single cancer. These data can be derived from whole-genome sequencing (WGS), whole-70

exome sequencing (WES), or targeted sequencing. Each bulk cancer sample is a mixture of genetically71

heterogeneous cells (Fig. 1a). For each mutation, Pairtree uses counts of variant and reference reads in72

each sample to estimate the variant allele frequency (VAF), i.e., the proportion of reads at a mutation’s73

locus that contain the mutation. By correcting a mutation’s VAF for copy-number aberrations (CNAs)74

affecting the locus, Pairtree computes an estimate of the proportion of cells in each sample carrying the75

mutation, termed the mutation’s subclonal frequency [22] (Fig. 1b).76

Pairtree outputs a set of possible clone trees explaining evolutionary relationships between the input77

mutations. Clone tree nodes correspond to cancerous subpopulations, while arrows (i.e., directed edges)78

extend from a subpopulation’s node to the nodes representing its direct descendants (Fig. 1c). We define79

a subpopulation as those cells containing exactly the same subset of the somatic mutations input into80

Pairtree. In each cancer sample, each subpopulation is assigned a population frequency, representing81

what proportion of cells in that sample share the same mutation subset. Many, if not most, of a cancer’s82

mutations will not be provided in the input because of incomplete genome coverage or because the83

mutations are too low in frequency to be detected.84

Each subpopulation and its descendant subpopulations (both direct and indirect) form a subclone85
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(Fig. 1a). Pairtree assigns a tree-constrained subclonal frequency to each subclone in each cancer sample,86

which is equal to the sum of the population frequencies of all the subpopulations contained within the87

subclone (Fig. 1a-b). This relationship follows from the infinite sites assumption (ISA), which states88

that no site is mutated more than once during cancer evolution. The ISA implies that subpopulations89

inherit all the mutations of their parent populations, and that each mutation appears only once in the90

evolutionary history of the cancer. Though violations of the ISA occur [23], it remains broadly valid [24],91

and Pairtree can detect and discard ISA-violating mutations (Section 6.1.3). Pairtree and most other92

clone tree reconstruction methods use the ISA, though some methods allow limited ISA relaxations [25–93

27]. Using the ISA, Pairtree identifies what mutations belong to each subclone based on the estimated94

subclonal frequencies provided by the VAF data (Fig. 1b), then searches for clone trees whose structures95

allow subclonal frequencies that best match these estimates (Fig. 1c). Pairtree’s output consists of a set96

of clone trees, each scored by a likelihood indicating how well the tree-constrained subclonal frequencies97

match the frequency estimates given by the VAF data. Although there is a single true clone tree explaining98

how subpopulations are related, this tree is not observed directly, and the input data often permit multiple99

solutions.100

Grouping mutations into subclones is not necessary—algorithms can instead build clone trees in which101

each mutation is assigned to a unique subclone, yielding a mutation tree. However, because of limited102

resolution in the data’s estimated subclonal frequencies, sets of mutations often have subclonal frequency103

estimates that are too similar to separate the mutations into distinct subclones. As such, the first step in104

clone tree reconstruction is often clustering mutations with similar estimated subclonal frequencies across105

all input samples, and associating subclones with these clusters. Mutation clustering can be performed106

with Pairtree (Section 10.1.1) or by another method [28–30] and input into Pairtree. This step simplifies107

clone tree reconstruction by reducing the number of subclones. Additionally, this approach permits108

more precise estimates of each subclone’s subclonal frequency by combining data from the subclone’s109

mutations (Section 6.2.8), at the risk of grouping together mutations from different subclones. As more110

cancer samples are used, each of which provides separate subclonal frequency estimates for the mutations,111

this caveat becomes less problematic.112
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3.2 Delineating ancestral relationships between pairs of subclones using the113

Pairs Tensor114

Pairtree uses the estimated subclonal frequencies to predict the ancestral relationship between every115

subclone pair. These pairwise relationships then serve as a guide when Pairtree searches for clone trees116

that best fit the VAF data. Under the ISA [31], one of three mutually exclusive ancestral relationships117

exist between a pair of subclones A and B.118

1. A is ancestral to B. Here, the subpopulation associated with A contains A’s mutations but not119

B’s. No cell subpopulation has B’s mutations without also inheriting A’s.120

2. B is ancestral to A. This is as above, with the roles of A and B switched.121

3. Neither A nor B is the ancestor of the other. In this case, they occur on different branches of the122

clone tree. Consequently, no subpopulations have both A’s and B’s mutations.123

Each relationship constrains the frequencies that can be assigned to the two subclones (Section 6.1.3).124

For a given subclone pair, Pairtree combines the CNA-corrected VAF data for each subclone’s mutations125

with a prior probability distribution incorporating these constraints, then uses Bayesian inference to126

compute the probability of each relationship type for the pair (Section 6.1). This yields a data structure127

termed the Pairs Tensor, the elements of which are the marginal posterior probability distributions over128

the three possible ancestral relationships for every subclone pair.129

3.3 Using pairwise ancestry to guide the search for clone trees130

Pairtree uses the Pairs Tensor to define a proposal distribution for a Markov Chain Monte Carlo (MCMC)131

algorithm [32] that samples from the posterior distribution over clone trees (Fig. 2). The algorithm’s132

Metropolis-Hastings scheme generates proposal trees using two discrete distributions derived from the133

Pairs Tensor (Section 6.2.5). The first distribution helps choose an erroneous subclone to move within the134

tree, with each subclone’s selection probability determined by how inconsistent its ancestral relationships135

to other subclones in the current tree are relative to the Pairs Tensor. The second distribution guides136

the choice of new parent for the selected subclone, evaluating potential destinations based on how much137

this inconsistency is reduced. Though other MCMC-based subclonal reconstruction methods also modify138

trees by moving subclones [15, 17, 33], they blindly select both the subclone to move and its destination.139

Pairtree, by contrast, considers the data when making these decisions, with the Pairs Tensor helping the140

method rapidly navigate to high-probability regions of clone-tree space.141
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Pairtree uses a MAP approximation of the clone tree’s marginal likelihood, both for the Metropolis-142

Hastings accept-reject decision and to compute the tree’s posterior probability. Computing a clone143

tree’s likelihood requires a maximum a posteriori (MAP) estimate of the subclonal frequencies, using144

a Bayesian prior to enforce tree constraints. By this prior, the root subclone must have a subclonal145

frequency of 1 in every sample, as it corresponds to the germline and all subclones are descended from146

it. Additionally, the prior requires that every subclone has a frequency greater than or equal to the147

sum of its direct descendants’ subclonal frequencies. Pairtree computes the MAP estimate using a fast148

approximate scheme [34] or a slower exact one (Section 6.3). A clone tree’s likelihood is then defined by149

how well the variant and reference read counts for each mutation match the MAP subclonal frequencies150

under a binomial sequencing noise model.151

3.4 Benchmarking Pairtree performance using novel scoring metrics152

Evaluating Pairtree against other common subclonal reconstruction methods required developing new153

metrics, as previously developed metrics are limited to datasets with single cancer samples [21]. Here,154

we introduce two novel metrics better suited for the multi-sample domain that also permit uncertainty155

about the best-fitting clone tree.156

The first, termed VAF reconstruction loss, uses likelihood to compare the data fit of a tree’s subclonal157

frequencies to a baseline (Section 6.5.2). For simulated data, the baseline frequencies are the ground-truth158

frequencies used to generate the VAF data. For real data with an unknown ground truth, the baseline is159

MAP subclonal frequencies computed for an expert-constructed clone tree. Negative VAF losses indicate160

the evaluated frequencies have better data fit than the baseline.161

The second evaluation metric, termed relationship reconstruction error, compares the structure of162

candidate clone trees to the ground truth (Section 6.5.3) using the evolutionary relationships between163

subclone pairs. To compute it, we construct an empirical Pairs Tensor from the clone tree solutions164

found by a method, then compare it via the Jensen-Shannon divergence (JSD) to a tensor based on the165

ground truth. As multiple clone trees may be consistent with the ground-truth subclonal frequencies,166

we construct the ground-truth Pairs Tensor by enumerating all trees consistent with these frequencies167

[35] and denoting the pairwise relationships between subclones that each expresses. Building this ground168

truth requires knowing the ground-truth subclonal frequencies with no measurement error, so this metric169

is best suited to simulated data.170

For both metrics, we evaluate the quality of a solution set by computing the average over all trees171

reported by a method, weighted by the likelihood the method associates with each solution.172
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3.5 Selecting comparison methods and generating simulated data173

Clone tree reconstruction methods use one of two approaches: exhaustive enumeration or stochastic174

search. To evaluate Pairtree, a stochastic search method, we compared it against three exhaustive175

enumeration methods (PASTRI [20], CITUP [16], and LICHeE [19]) and one stochastic search method176

(PhyloWGS [36]). All methods output multiple candidate clone trees.177

We assessed method performance on 576 simulated datasets with variable read depths and numbers of178

subclones, cancer samples, and mutations. These included trees with 3, 10, 30, or 100 subclones. Three179

subclones are the most that can typically be resolved at WGS read depths of 50x [1]. Ten subclones180

are often discernible from multi-sample datasets [5], while 30 was the approximate maximum we could181

resolve in the high-depth, many-sample B-ALL data evaluated here [10]. We included datasets with 100182

subclones to probe the methods’ limits, anticipating challenges presented by future datasets. The number183

of simulated cancer samples ranged from 1 to 100. We designed the simulation process (Section 6.4.2)184

to generate realistic, diverse, and resolvable clone trees (Section 10.7). We did not include one- or three-185

sample datasets in the 30- and 100-subclone simulations, as resolving so many subclones from so few186

samples would be unrealistic. Methods were allowed up to 24 hours of wall-clock time to produce results.187

Some caveats must be noted. LICHeE does not report subclonal frequencies for its solutions, so we188

used Pairtree to fit MAP frequencies to LICHeE’s trees. Though LICHeE does not produce a likelihood,189

unlike the other methods here, it reports an error score for each tree that we interpreted as a likelihood190

when weighting its solutions. PhyloWGS, unlike other methods, could not use a fixed mutation clustering.191

This led to the method incorrectly merging clusters, causing artificially high VAF loss and relationship192

error. More generally, all methods except Pairtree failed to produce output on some simulated datasets.193

These failures stemmed from methods terminating without producing output, crashing outright, or failing194

to finish within 24 hours (see Section 10.3 for details).195

3.6 Pairtree outperforms existing methods on simulated data196

Fig. 3 summarizes how the methods performed on simulated data, with a method’s scores reflecting its197

performance on only the datasets for which it produced output. Pairtree was the only method that198

produced results for all 576 simulations (Fig. 3a). Nevertheless, Pairtree fared better than comparison199

methods on trees with 30 or fewer subclones, succeeding on all datasets while achieving negative median200

VAF losses (Fig. 3b-c). In fact, Pairtree always produced lower error than other methods for every such201

dataset (Fig. S4). Pairtree also performed better than comparison methods with respect to relationship202
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error. In general, for 30 subclones or fewer, relationship error was almost zero when the number of cancer203

samples exceeded the number of subclones (Fig. S5b). For these cases, only one possible tree occurred204

(S10a), with Pairtree achieving low error by finding that tree or a close approximation thereof (S10b-c).205

When applied to datasets with 100 subclones, Pairtree had higher VAF losses (Fig. 3b) and relationship206

errors (Fig. 3c) than with fewer subclones. Pairtree outperformed other methods for 100-subclone trees207

with respect to VAF loss, except for 16 datasets (15%) where PhyloWGS performed better (Fig. S4).208

CITUP failed on all datasets with ten or more subclones, and on 32% of three-subclone cases (Fig. 3a).209

All failures on three-subclone datasets occurred because CITUP crashed (Section 10.3). On ten-subclone210

datasets, 29% of CITUP runs ran out of time, with the other 71% failing because CITUP crashed. On211

the three-subclone cases where it ran successfully, its VAF loss was poor (Fig. 3b), perhaps because of a212

mismatch between its sequencing error model and the model used for computing VAF loss. Conversely,213

the method exhibited better relationship error than other non-Pairtree methods (Fig. 3c), suggesting its214

tree structures were more accurate.215

PASTRI, which cannot run on datasets with more than 15 subclones [37], failed for 83% of three-216

subclone cases and 96% of ten-subclone cases (Fig. 3). For datasets with three or ten subclones, PASTRI217

produced output on 10%, terminated without producing a result on 84%, and ran out of time on the218

remaining 6% (Section 10.3). When it produced solutions, PASTRI generally performed well, reaching219

negative median VAF losses for three- and ten-subclone datasets, and relatively low relationship errors.220

Occasionally, PASTRI produced high-error solutions, with VAF losses up to 492 bits on the three-subclone221

datasets.222

LICHeE fared better, producing results on all cases with 3, 10, or 30 subclones (Fig. 3). However,223

the method ran out of time for 92% of 100-subclone datasets. After Pairtree, LICHeE was the next-best224

performing method, with low VAF losses and moderate relationship errors on datasets with three or225

ten subclones, beating PhyloWGS on both measures. LICHeE performed less well on 30-subclone cases,226

where it exhibited lower VAF losses than PhyloWGS but higher relationship errors.227

PhyloWGS produced clone trees for all datasets with 30 or fewer subclones (Fig. 3). In these cases,228

PhyloWGS generally had worse VAF losses and relationship errors than Pairtree or LICHeE, except229

for the 30-subclone datasets, where it had better relationship error than LICHeE but worse VAF loss.230

PhyloWGS performed better than other non-Pairtree methods on 100-subclone cases, where it finished231

within 24 hours for 62% of such datasets, but usually had higher VAF losses than Pairtree (Fig. S4).232

Relationship error can also be measured for the Pairs Tensor alone, without requiring trees. The Pairs233

Tensor estimates pairwise relationships accurately (Fig. 3c), requiring only a fraction of the computational234
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resources of the full Pairtree method (Fig. S8). Although the Pairs Tensor does slightly worse than235

Pairtree on trees with 30 or fewer subclones, it has less relationship error than any other method. On236

datasets with 100 subclones, the Pairs Tensor was better able to delineate pairwise relationships between237

subclones than the full Pairtree method (Fig. 3c).238

3.7 Pairtree improves with more cancer samples, but other methods worsen239

After controlling for other variables, all methods except Pairtree performed worse when provided more240

cancer samples. CITUP and PASTRI’s failure rates increased with the number of cancer samples (Fig. 4a).241

Though LICHeE and PhyloWGS produced output for all cases with 30 subclones or fewer, they had higher242

VAF losses with more cancer samples (Fig. 4b). By contrast, Pairtree never failed and had nearly zero243

median VAF loss regardless of the number of simulated cancer samples on datasets with 30 subclones244

or fewer (Fig. 4a-b). Relationship errors decreased for both full Pairtree and the Pairs Tensor with245

more samples (Fig. 4c). LICHeE, conversely, exhibited rapidly increasing error with more samples, while246

PhyloWGS’ performance fluctuated.247

3.8 Pairtree performs better than human experts on complex real clone tree248

reconstructions249

We applied Pairtree, CITUP, LICHeE, PASTRI, and PhyloWGS to genomic data from 14 B-ALL patients250

[10]. Samples were obtained at diagnosis and relapse for each patient. In addition, each sample was251

transplanted into immunodeficient mice, generating multiple patient-derived xenografts (PDXs). The252

patient samples were subjected to WES, while the PDXs were subjected to targeted sequencing based253

on leukemic variants found in the patient WES data. There were 16 to 509 mutations called per patient254

(median 40), clustered into 5 to 26 subclones per patient (median 8). By combining patient and PDX255

samples, we obtained between 13 and 90 tissue samples per cancer (median 42). Across cancers, the256

median read depth was 212 reads.257

To define ground truth for these datasets, we built high-quality clone trees for each dataset manually,258

subjecting them to extensive review and refinement before evaluating them for biological plausibility [10].259

We then fit MAP subclonal frequencies to these trees using Pairtree, yielding the expert-derived baseline.260

As with simulated data, methods that improve on the baseline achieve negative VAF losses.261

CITUP and PASTRI failed on 13 of the 14 cancers, and so we excluded these methods from the262

comparison. Pairtree found trees as good as, or slighter better than, the expert baseline for 12 of 14263
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cancers (Fig. 5), resulting in VAF losses between 0 and -0.05 bits. On two cancers, Pairtree inferred clone264

trees that fit the VAF data substantially better than the expert baseline, resulting in negative losses of265

-0.32 bits and -1.42 bits. LICHeE beat the baseline for one cancer, reaching a negative loss of -0.86 bits;266

(nearly) matched the baseline for four other patients, incurring between 0 and 0.11 bits of loss; and had267

substantially worse VAF losses for the remaining nine patients. PhyloWGS suffered at least 0.35 bits268

of loss on all patients, reaching a median VAF loss of 4.42 bits. As PhyloWGS could not adhere to the269

expert-derived clustering, unlike other methods, it often merged clusters incorrectly, causing high VAF270

loss.271

3.9 Consensus graphs intuitively illustrate uncertainty in clone trees272

Pairtree provides interactive visualizations to help navigate the multiple clone tree solutions that it273

produces for each dataset (Fig. 6). By using the data likelihoods associated with each solution as weights,274

Pairtree produces a weighted consensus graph, in which the nodes represent subclones, and each directed275

edge is assigned a weight equal to the marginal probability that it appears in a clone tree drawn from276

the empirical clone tree distribution produced by Pairtree. Thus, the consensus graph summarizes the277

estimated posterior probability of each parental relationship between subclones. These summaries are278

useful for interpreting Pairtree’s results, as they provide a concise representation of the evolutionary279

relationships supported by the data, alongside the confidence underlying each. By taking the maximum-280

weight spanning tree of this graph, the user can generate a single consensus tree. To demonstrate281

the consensus graph’s utility, we ran Pairtree multiple times on one of the B-ALL cases from Fig. 5,282

using variable numbers of cancer samples (Fig. 6). As we provided more cancer samples, confidence in283

evolutionary relationships increased, until all parents were resolved with near certainty. Providing more284

samples can also correct erroneous inferences—with 30 samples, population 8 appeared to be the likely285

parent of population 15, but with 90 samples, it became clear that population 15’s parent is population286

6.287

4 Discussion288

Pairtree is the first automated method that reliably recovers large, complex clone trees from bulk DNA289

sequencing data. On simulated data, Pairtree recovers nearly perfect clone trees for cancer datasets with290

up to 30 subclones. On 14 B-ALL cancers, with up to 26 subclones and 90 samples per cancer, Pairtree’s291

clone trees are objectively as good as, or better than, those manually constructed by experts. No other292
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tested method was consistently accurate on real or simulated benchmarks containing ten subclones or293

more. Pairtree was also the only method whose clone trees reliably became more accurate when more294

samples were used in the reconstructions. This is surprising—as each cancer sample provides additional295

information about evolutionary relationships between subpopulations, subclonal reconstruction problems296

should become easier with more cancer samples, not more difficult.297

A key factor in Pairtree’s success is its efficient search through the space of clone trees. Beyond ten298

subclones, this tree space quickly becomes too large for exhaustive enumeration (CITUP) or unguided299

stochastic search (PhyloWGS). Even methods that reduce the search space by applying hard constraints300

excluding some parent-child relationships (LICHeE, PASTRI) still fail to recover more complex clone301

trees. Recovering complex trees requires more cancer samples than for simple trees, but when faced with302

many samples, the hard constraints become inaccurate and exclude the correct solution (Section 10.4).303

By contrast, Pairtree’s stochastic tree search is guided by the Pairs Tensor, which provides soft constraints304

defined by a well-motivated probability model. Consequently, Pairtree’s constraints become more precise305

as more cancer samples are provided, without excluding the true clone tree.306

As Pairtree’s performance degrades on the 100-subclone benchmarks, alternative search strategies307

may be necessary for very large clone trees. While Pairtree almost always fails to correctly resolve a308

subclone’s parent (Fig. S10c), it achieves relatively low relationship error (Fig. S10d), suggesting it may309

be capturing the coarse tree structure. If so, Pairtree may fare better using a tiered approach, in which310

it would group together subclones with similar pairwise relations to others, build subtrees for each group311

separately, and then connect the subtrees using the groups’ pairwise relations to compose the full clone312

tree. Given 100 subclones with 10 or more cancer samples, the Pairs Tensor is already better than Pairtree313

itself at capturing the correct evolutionary relationships between subclones (Fig. S5b-c). Future work314

should focus on understanding what conditions (e.g., high read depth or many cancer samples) under315

which the Pairs Tensor converges to a partial clone tree [35] that succinctly summarizes all clone trees316

with non-negligible posterior probability.317

Throughout this work, we have stressed performance metrics that recognize there are often many318

solutions consistent with observed data (Section 10.6). These metrics extend previous ones we developed319

[21] to score multiple candidate solutions from a method against a single ground-truth tree. Our new320

metrics permit the ground truth to be uncertain, with multiple potential truths equally consistent with321

noise-free observations. In general, characterizing uncertainty in clone tree reconstructions is critical.322

Even when methods produce multiple solutions, users typically want a single answer, and so select323

the highest-scoring tree while neglecting other credible candidates that fit their data nearly as well.324
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Consequently, they lose information about which evolutionary relationships between subclones are well-325

defined by the data, and which are uncertain because they have multiple equally likely possibilities. If326

users are to benefit from a method’s ability to produce multiple solutions, the method must provide327

tools for interpreting this uncertainty. Pairtree’s weighted consensus graph characterizes the uncertainty328

present in each evolutionary relationship, depicting all credible possibilities and the confidence underlying329

each (Fig. 6). This allows users to make informed conclusions about their cancer datasets.330

In summary, Pairtree can reconstruct highly accurate trees representing the evolutionary relationships331

among up to 30 subclones based on sequencing data from up to 100 samples from a cancer. By scaling332

to many more subclones and cancer samples than past approaches, and by illustrating the uncertainty333

present in solutions, Pairtree can address questions in many cancer research domains. These include334

understanding the origin and progression of tumours, measuring tumour age and heterogeneity, mapping335

out mechanisms of tumour adaptation to therapy, and understanding the relationship between primaries336

and metastases. In the future, the Pairtree framework can be extended to scale to even more complex337

trees, integrate single-cell sequencing data (Section 10.9), and permit violations of the infinite sites338

assumption (Section 10.8).339

12

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 18, 2021. ; https://doi.org/10.1101/2020.11.06.372219doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.06.372219


5 Figures340

Sample 1 Sample 2

Sample 3

Metastasis

Time
Sample 1

Sample 2

Sample 3

0 1Population
frequency

Sample 1

Sample 2

Sample 3

P
o
p

. 
1

P
o
p

. 
2

P
o
p

. 
3

P
o
p

. 
4

P
o
p

. 
5

P
o
p

. 
6

P
o
p

. 
7

P
o
p

. 
8

01

Subclonal
frequency

a

b

c

Figure 1: Construction of clone trees from multiple cancer samples. a. Schematic illustrates
cancer development under the clonal evolution model. Each colour represents a genetically distinct
subpopulation. Each subpopulation emerges within the mass of its parent. The leftmost point for a
subpopulation denotes the cell that was its most recent common ancestor. Dashed vertical lines indicate
when and where cancer samples were taken. The relative abundance of each subpopulation in a cancer
sample, including any nested descendent subpopulations composing a subclone, is represented by the
height of that subpopulation or subclone along the sample’s dashed line. b. Horizontal bar plot showing
idealized input to clone tree reconstruction algorithms. Bar length indicates the subclonal frequency of
each subpopulation and its descendants (column) in each sequenced sample (row). The clonal evolution
model asserts that a subpopulation’s point mutations are inherited by its descendants. Consequently,
mutation VAFs in DNA sequencing data provide estimates of subclonal frequencies, corresponding to
the proportion of cells that originated from a subclonal population and its descendants. c. Clone tree
representing the ancestry of subpopulations (top). Nodes indicate subpopulations. Arrows extend from
each subpopulation to its direct descendants. Inferred frequencies of each subpopulation in each sample
are based on the clone tree and mutation frequency data (bottom).
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Figure 2: The Pairtree algorithm. a. Pairtree uses VAF data to compute the Pairs Tensor, which
provides the probability of every possible ancestral relationship between subclone pairs (left). An initial
clone tree is built using relationships scored by the Pairs Tensor. b. Pairtree samples trees using Markov
Chain Monte Carlo. The method proposes tree modifications by identifying a subclone whose ancestral
relationships in the current tree are assigned low probability by the Pairs Tensor (top), then ascertaining
where that subclone can be moved within the tree to increase its ancestral relationship probabilities
(bottom right). Proposed trees are then accepted or rejected based on their marginal likelihoods that
reflect how well they fit the VAF data (bottom left). c. Sampled clone trees are returned along with
posterior probability estimates proportional to the marginal likelihood of each tree. VAF, variant allele
frequency.
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Figure 3: Benchmark performance on 576 simulated datasets. Simulations are grouped by number
of subclones (rows). a. Bar plots show each method’s success rate in the group. Successes are reconstruc-
tion problems for which the method produced at least one tree in 24 hours (wall-clock time) and did not
crash. b. Boxplots show distributions of VAF reconstruction losses for a method on a problem group.
Scores reflect only datasets where a method ran successfully. VAF reconstruction loss is the decrease in
average, per-mutation log likelihood of VAF data using subclonal frequencies assigned by the method,
when compared to the true frequencies used to generate the data. Negative loss indicates better VAF
reconstructions than true trees, while high loss indicates inaccurate tree structures. Mid-lines in box plots
indicate medians. Plots are truncated at four bits. Fig. S1 shows untruncated distributions. c. Boxplots
show distributions of relationship reconstruction error in each group for each method’s successful runs.
Relationship reconstruction error is measured as the average Jensen-Shannon divergence per subclone
pair between the true distributions over pairwise relations, and empirical distributions computed from
the trees output by a method. Errors can range between zero bits (perfect match) and one bit (complete
mismatch), and are truncated at 0.7 bits. Fig. S2 shows untruncated distributions.
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Figure 4: Performance on simulated datasets as a function of number of subclones and cancer
samples. a. Method success rate. For CITUP and PASTRI, success rate depended on the number of
subclones and/or cancer samples in datasets. Pairtree, LICHeE, and PhyloWGS succeeded on all datasets
depicted. b. Median VAF reconstruction loss as a function of number of samples. For LICHeE and
PhyloWGS, VAF loss increases with more cancer samples. c. Median relationship reconstruction error
as a function of number of samples. LICHeE’s error generally increased with more cancer samples, while
other methods showed the opposite effect. Error bars represent the first and third quartiles in (b-c).
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Figure 5: VAF reconstruction loss for 14 B-ALL patient datasets. The number of cancer samples
for each dataset ranged from 13 to 90. Mid-lines in box plots indicate medians. CITUP and PASTRI
each failed on 13 of 14 datasets and so are not shown. VAF reconstruction losses are reported as a
negative log likelihood normalized to the number of mutations and cancer samples, relative to the MAP
subclonal frequencies for expert-derived trees. Lower loss indicates better performance, while negative
loss corresponds to performance better than human experts. Fig. S3 shows untruncated distributions.
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Figure 6: Consensus graph visualization of posterior tree distributions. These consensus graph
visualizations are based on one of the 14 B-ALL cancers analyzed with Pairtree, for which 90 cancer
samples were available. Consensus graphs are shown for variable numbers of samples, ranging from a
single sample to all 90. All edges with less than 5% posterior certainty are hidden. The minimum
spanning tree certainty indicates, if the graph is fully connected such that every subclone has at least
one possible parent, how confident the least-certain single parent is.
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6 Methods341

6.1 Computing pairwise relations342

6.1.1 Establishing a probabilistic likelihood for pairwise relations343

Let A and B represent two distinct mutations. We denote their observed read counts, encompassing both344

variant and reference reads, as xA and xB . Assuming both mutations obey the ISA, the pair (A,B) must345

fall in one of four pairwise relationships, denoted by MAB .346

1. MAB = coincident , meaning A and B are co-occurring. That is, A and B occur in precisely the347

same cell subpopulations, such that A is never present without B and vice versa. This reflects that348

A and B occurred proximal to each other in evolutionary time, such that we cannot distinguish an349

intermediate subpopulation that occurred between them.350

2. MAB = ancestor , meaning A is ancestral to B. That is, A occurred in a population ancestral to351

B, such that some cells possess A without B, but no cell has B without A. This reflects that A352

preceded B.353

3. MAB = descendent , meaning B is ancestral to A. This mirrors relationship 2, reflecting B preceded354

A.355

4. MAB = branched , meaning A and B occurred on different branches of the clone tree, such that they356

never occur in the same set of cells. This relationship confers no information about the respective357

timing of A and B.358

To the four possible relationships above, we add a fifth, termed the garbage relation and denoted359

by MAB = garbage. This represents mutation pairs with conflicting evidence for different relationships360

amongst the four already defined, providing a baseline against which the other four relationships can be361

compared. This catch-all category assumes that there is no consistent evolutionary relationship denoted362

by the subclonal frequencies of the two mutations across cancer samples, so it may represent ISA violations363

arising from the four-gamete test [38]. The garbage relation can also represent unreported CNAs that364

skew the relationship between VAF and subclonal frequency.365

The likelihood of the pair’s relationship is written as p(xA, xB |MAB). First, we note that every cancer366

sample s can be considered independently of others, allowing us to factor the likelihood.367
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p(xA, xB |MAB) =
∏
s

p(xAs, xBs|MAB)

To compute the pairwise relationship likelihood for one cancer sample s, we integrate over the possible368

subclonal frequencies associated with the subclones that gave rise to mutations A and B, representing the369

proportions of cells in the cancer sample carrying the mutations. We indicate these subclonal frequencies370

as φAs and φBs.371

p(xAs, xBs|MAB) =

∫∫
dφAsdφBsp(xAs|xBs,MAB , φAs, φBs)p(xBs|MAB , φAs, φBs)p(φAs, φBs|MAB)

As each mutation’s likelihood is a function solely of its subclonal frequency, and is independent of372

both the other mutation and the pairwise relationship, we can simplify the integral.373

p(xAs, xBs|MAB) =

∫∫
dφAsdφBsp(xAs|φAs)p(xBs|φBs)p(φAs, φBs|MAB) (1)

6.1.2 Defining a binomial observation model for read count data374

We can now begin providing concrete definitions for each factor in the integral given in Eq. (1). For375

mutation j ∈ {A,B} from cancer sample s, whose observed read count data are represented by xjs, we376

define p(xjs|φjs) using the following notation:377

• φjs: subclonal frequency of subclone where j originated378

• Vjs: number of genomic reads of the j locus where the variant allele was observed379

• Rjs: number of genomic reads of the j locus where the reference allele was observed380

• ωjs: probability of observing the variant allele in a subclone containing j. Equivalently, this can be381

thought of as the probability of observing the variant allele in a cell bearing the j mutation. Thus,382

in a diploid cell, ωjs = 1
2 .383

Observe that ωjs can be used to indicate changes in ploidy. For instance, a variant lying on either384

of the sex chromosomes in human males would have ωjs = 1, since males possess only one copy of the385

X and Y chromosomes, so no wildtype allele would be present. Alternatively, ωjs can indicate clonal386
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copy number changes, such that all cancer samples in a sample bore the same CNA. If, for instance, the387

founding cancerous subclone bearing a mutation underwent a duplication of the wildtype allele, then,388

once the mutation arose in a descendent subclone, every cell within that subclone would contribute two389

wildtype alleles and one variant allele. Thus, in this instance, we would have ωjs = 1
3 . While this390

representation requires that the CNA be clonal, any SNVs affected by the CNA can be subclonal, and391

can in fact belong to different subclones.392

Though this scheme can represent clonal CNAs, it cannot do so for subclonal CNAs. Fundamentally,393

the tree-building algorithm requires converting the observed VAFjs =
Vjs

Vjs+Rjs
values into estimates of394

subclonal frequencies φ̂js =
VAFjs

ωjs
≈ φjs. If a subclonal CNA overlapping the mutation j occurs, different395

subclones will contribute different numbers of alleles to the cancer sample, implying this relationship is396

no longer valid. While the model could be extended to place subclonal CNA events on the clone tree397

and estimate how they change φ̂js, the Pan-Cancer Analysis of Whole Genomes projects [39] reported398

frequent disagreement on allele-specific copy numbers among subclonal CNA-calling algorithms [1], and399

thus they discarded variants in regions affected by subclonal CNAs before constructing clone trees.400

Using this notation, let the likelihood of observing Vjs variant reads for mutation j in sample s, given401

a subclonal frequency φjs, be defined by the binomial. We have Vjs + Rjs observations of j’s genomic402

locus, and probability ωjsφjs of observing a variant read, representing the proportion of alleles in the403

sample carrying the variant.404

p(xjs|φjs) = Binom(Vjs|Vjs +Rjs, ωjsφjs)

6.1.3 Defining constraints on subclonal frequencies imposed by pairwise relationships405

To be fully realized, the likelihood Eq. (1) now requires only p(φAs, φBs|MAB) to be defined. We use406

this factor to represent whether φAs and φBs are consistent with the relationship MAB . For the ances-407

tor, descendent, and branched relationships, the subclonal frequencies φAs and φBs dictate whether a408

relationship is possible.409
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p(φAs, φBs|MAB = ancestor) =


C iff 1 ≥ φAs ≥ φBs ≥ 0

0 otherwise

p(φAs, φBs|MAB = descendent) =


C iff 0 ≤ φAs ≤ φBs ≤ 1

0 otherwise

p(φAs, φBs|MAB = branched) =


C iff φAs ≥ 0 ∧ φBs ≥ 0 ∧ φAs + φBs ≤ 1

0 otherwise

The subclonal frequencies φAs and φBs may each take values on the [0, 1] interval. Thus, p(φAs, φBs|MAB)410

for MAB ∈ {ancestor , descendent , branched} are each non-zero only inside a right triangle lying within411

the unit square on the Cartesian plane with corners at (φAs, φBs) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. The412

location of the triangle within the unit square differs for each of the three MAB relationships, but all413

have an area of 1
2 . Consequently, to ensure

∫∫
dφAsdφBsp(φAs, φBs|MAB) = 1, we set C = 1

1
2

= 2. Thus,414

p(φAs, φBs|MAB) = C = 2 when φAs and φBs are consistent with MAB , and zero otherwise.415

We must still define the remaining two relationships MAB ∈ {coincident , garbage}. The garbage rela-416

tionship permits all combinations of φAs and φBs lying within the unit square, such that p(φAs, φBs|MAB =417

garbage) = 1. Consequently, unlike the previous three relationships, the garbage relationship imposes no418

constraints on φAs and φBs relative to each other.419

p(φAs, φBs|MAB = garbage) =


1 iff {φAs, φBs} ⊂ {x|0 ≤ x ≤ 1}

0 otherwise

The garbage relationship serves to establish a baseline against which evidence for the non-garbage420

relationships can be evaluated. Observe that, in Eq. (1), p(xAs|φAs)p(xBs|φBs) is integrated over the421

unit square when MAB = garbage. Conversely, when MAB ∈ {ancestor , descendent , branched}, we inte-422

grate p(xAs|φAs)p(xBs|φBs) over a triangle covering half the square. Consequently, p(xAS , xBs|MAB =423

garbage) ≤ 1
2p(xAS , xBs|MAB ∈ {ancestor , descendent , branched}). This arises because p(φAs, φBs|MAB) =424

2 for subclonal frequencies consistent withMAB ∈ {ancestor , descendent , branched}, while p(φAs, φBs|MAB) =425

1 for subclonal frequencies consistent with MAB = garbage. When the read counts for the mutations A426

and B clearly permit one of the three non-garbage relationships, most of the probability mass of the two427
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associated binomials will reside within the simplex permitted by the relationship, and so the evidence for428

the non-garbage relationship will be nearly double that of the evidence for garbage. Conversely, when429

the read counts push most of the binomial mass outside the permitted simplex, the non-garbage evidence430

will be substantially lower than the baseline provided by garbage.431

By considering accumulated evidence across many cancer samples, the garbage model’s utility becomes432

clear. If, across many cancer samples for a mutation pair, the evidence for one non-garbage relationship433

is consistently favoured over others, then that relationship will emerge as the most likely when the434

evidence is considered collectively across samples. However, if different cancer samples favour different435

relationship types, the steady accumulation of the baseline garbage evidence could, in concert, be more436

than the evidence for any of the other three relations, meaning garbage would be declared as the most437

likely relationship for the mutation pair. Mutations that make up many pairs with high garbage evidence438

are best excluded from clone tree construction, as such mutations likely suffered from uncalled CNAs,439

violations of the ISA, or highly erroneous read count data.440

The only undefined relationship remaining is MAB = coincident . As the coincident relationship441

dictates that two mutations arose from the same subclone, and so share the same subclonal frequency,442

the corresponding constraint is defined thusly:443

p(φAs, φBs|MAB = coincident) =


1 iff 0 ≤ φAs = φBs ≤ 1

0 otherwise

6.1.4 Efficiently computing evidence for ancestral, descendent, and branched pairwise re-444

lationships445

We now consider how to compute the pairwise likelihood given in Eq. (1) forMAB ∈ {ancestor , descendent , branched}.446

p(xAs, xBs|MAB) =

∫∫
dφAsdφBsp(xAs|φAs)p(xBs|φBs)p(φAs, φBs|MAB)

Observe that we can rearrange the integral to move the factor corresponding to the mutation A447

observations outside the inner integral.448
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p(xAs, xBs|MAB) =

∫
dφAsp(xAs|φAs)

∫
dφBsp(xBs|φBs)p(φAs, φBs|MAB)

Now, because p(φAs, φBs|MAB) is piecewise-constant when MAB ∈ {ancestor , descendent , branched},449

we can, for these relationships, impose this factor’s effect by changing the integration limits. Let450

L(φAs,MAB) and U(φAs,MAB)) represent functions whose outputs are the lower and upper integra-451

tion limits, respectively, for the inner integral whose differential is dφBs, as a function of φAs and the452

relationship MAB . These functions are defined thusly:453

(L(φAs,MAB), U(φAs,MAB)) =


(0, φAs) if MAB = ancestral

(φAs, 1) if MAB = descendent

(0, 1− φAs) if MAB = branched

By writing the inner integral using these integration limits, and limiting the outer integral to the [0, 1]454

interval permitted for φAs, the factor p(φAs, φBs|MAB) can be replaced by 2, as it is constant over the455

interval of integration.456

p(xAs, xBs|MAB) =

∫ 1

0

dφAs2p(xAs|φAs)
∫ U(φAs,MAB)

L(φAs,MAB)

dφBsp(xBs|φBs)

To render the inner integral more computationally convenient, rather than integrate over φBs, we457

would prefer to integrate over qBs ≡ ωBsφBs. Thus, we will integrate by substitution, using dqBs

dφBs
= ωBs.458

∫
dφBsp(xBs|φBs) =

∫
dφBsBinom(VBs|VBs +RBs, ωBsφBs)

=
1

ωBs

∫
dqBsBinom(VBs|VBs +RBs, qBs) (2)

Observe that the inner integral is now simply integrating the binomial PMF over its parameter qBs.459

To compute this integral, we rely on the following equivalence between this integral and the incomplete460

beta function β:461

24

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 18, 2021. ; https://doi.org/10.1101/2020.11.06.372219doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.06.372219


∫ b

0

dpBinom(k|N, p) =

∫ b

0

dp

(
N

k

)
pk(1− p)N−k

=

(
N

k

)∫ b

0

dppk(1− p)N−k

=

(
N

k

)
β(b|k + 1, N − k + 1)

Now we can compute the integral over an arbitrary limit by the fundamental theorem of calculus.462

∫ b

a

dpBinom(k|N, p) =

(
N

k

)[
β(b|k + 1, N − k + 1)− β(a|k + 1, N − k + 1)

]
(3)

Finally, we combine the above results, allowing us to compute the pairwise relationship likelihood463

when MAB ∈ {ancestor , descendent , branched} as a one-dimensional integral.464

p(xAs, xBs|MAB) =
2

ωBs

(
VBs +RBs

VBs

)∫ 1

0

dφAsBinom(VAs|VAs +RAs, ωAsφAs)

[
β(ωBsU(φAs,MAB)|VBs + 1, RBs + 1)

− β(ωBsL(φAs,MAB)|VBs + 1, RBs + 1)

]
(4)

To compute this numerically, we use the one-dimensional quadrature algorithm from scipy.integrate.quad.465

6.1.5 Efficiently computing evidence for garbage and coincident pairwise relationships466

We now examine how to compute the pairwise relationship likelihood for MAB = garbage using the467

general likelihood given in Eq. (1). First, observe that we are integrating over φAs ∈ [0, 1] and φBs ∈ [0, 1],468

meaning there is no constraint placed on φBs by φAs. By removing the dependence of φBs on φAs, the469

likelihood can be broken into the product of two one-dimensional integrals, each taken over the interval470

[0, 1]. Then, by drawing on results Eq. (2) and Eq. (3), we can compute an analytic solution to each471

integral.472
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p(xAs, xBs|MAB = garbage) =

∫∫
dφAsdφBsp(xAs|φAs)p(xBs|φBs)p(φAs, φBs|MAB)

=

[ ∫ 1

0

dφAsp(xAs|φAs)
][ ∫ 1

0

dφBsp(xBs|φBs)
]

=
1

ωAsωBs
β(ωAs|VAs + 1, RAs + 1)β(ωBs|VBs + 1, RBs + 1) (5)

Finally, we compute the likelihood for MAB = coincident . As our coincident constraint requires473

φAs = φBs, we are integrating along the diagonal line φAs = φBs that cuts through the unit square474

formed by φAs ∈ [0, 1] and φBs ∈ [0, 1]. This can be evaluated as a line integral along the curve475

r(φ) ≡ 〈φ, φ〉 for φ ∈ [0, 1], with the Euclidean norm ‖r′(φ)‖ =
√

2.476

p(xAs, xBs|MAB = coincident) =

∫∫
dφAsdφBsp(xAs|φAs)p(xBs|φBs)p(φAs, φBs|MAB)

=

∫ 1

0

dφp(xAs|φ)p(xBs|φ)‖r′(φ)‖

=
√

2

∫ 1

0

dφBinom(VAs|VAs +RAs, ωAsφ)Binom(VBs|VBs +RBs, ωBsφ)

(6)

As with the ancestral, descendent, and branched relationships, we use the one-dimensional quadrature477

algorithm from scipy.integrate.quad to compute this.478

6.1.6 Computing the posterior probability for pairwise relationships479

In Eq. (4), Eq. (5), and Eq. (6), we established how to compute the evidence for each of the five possible480

relations between mutation pairs, which takes the general form p(xA, xB |MAB).. By combining these481

evidences with a prior probability p(MAB) over relationships for mutation pair (A,B), we can compute482

the posterior probability p(MAB |xA, xB) of each relationship.483

p(MAB |xA, xB) =
p(xA, xB |MAB)p(MAB)∑
M ′ p(xA, xB |M ′)p(M ′)

(7)

As we discuss in Section 6.2.8, we assume that, when Pairtree is run, mutations have already been484

clustered into subpopulations and “garbage” mutations have already been discarded. Consequently, we485
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are computing pairwise relations between groups of mutations comprising subclones, and so we assign486

zero prior mass to the coincident and garbage relationships, ensuring these relationships also have zero487

posterior mass. The other three relationships are assigned the same prior probability, as we have no488

reason to believe one is more likely than the others.489

p(MAB) =


1
3 if MAB ∈ {ancestor , descendent , branched}

0 if MAB ∈ {coincident , garbage}

6.2 Performing tree search490

6.2.1 Representing cancer evolutionary histories with trees491

Most clone tree reconstruction algorithms group mutations into subclones, with mutations that share492

the same subclonal frequency across cancer samples placed together. While thousands of mutations493

are typically observed using whole-genome sequencing, the mutations can typically be grouped into a494

much smaller number of subclones, simplifying the cancer’s evolutionary history. This grouping is valid495

because, as a cell population expands within a cancer, the frequencies of all mutations shared by cells in496

that population will increase in lockstep. Although Pairtree does not explicitly require that mutations497

be grouped into subclones, it can take these groupings as input. In this case, it replaces each mutation498

group with a single mutation, termed a super-variant, that represents the subclone.499

When provided with K mutation clusters as input, each consisting of one or more mutations, Pairtree500

will produce a distribution over trees with K + 1 nodes. Node 0 corresponds to the non-cancerous cell501

lineage that gave rise to the cancer, while node k ∈ {1, 2, ...,K} corresponds to the subclone associated502

with mutation cluster k. Node 0 always serves as the tree root, representing that the patient’s cancer503

developed from non-cancerous cells, and thus has no assigned mutations and a subclonal frequency of504

φ0s = 1 in every cancer sample s.505

An edge from node A to node B indicates that subclone B evolved from subclone A, acquiring the506

mutations associated with cluster B while also inheriting all mutations present in A and A’s ancestral507

nodes. The children of node 0 are termed the clonal cancer populations. Typically, there is only one508

clonal cancer population, but the algorithm allows multiple such populations when the data imply them.509

Multiple clonal cancer populations indicate that multiple cancers developed independently in the patient,510

such that they shared no common cancerous ancestor.511

An edge from node A to node B means that, at the resolution permitted by the data, we cannot discern512
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any intermediate cell subpopulations that occurred between these two evolutionary points. Nevertheless,513

such subpopulations may well have existed in the cancer.514

6.2.2 Tree likelihood515

To describe the tree likelihood, we develop the following notation:516

• K: number of cancerous subpopulations (and mutation clusters), with individual populations in-517

dexed as k ∈ {1, 2, ...,K}518

• S: number of cancer samples, with individual samples indexed as s ∈ {1, 2, ..., S}519

• Mk: set of mutations associated with subclone k. Note this is distinct from the MAB notation used520

in Section 6.1 to denote the pairwise relationship between mutations.521

• Vms: observed variant read count for mutation m in cancer sample s522

• Rms: observed reference read count for mutation m in cancer sample s523

• ωms: probability of observing a variant read at mutation m’s locus within a subclone possessing m,524

in cancer sample s525

• φks: subclonal frequency of subclone k in cancer sample s526

• Φ: set of φks values for all K and S527

The data x consists of the set of all Vms, Rms, and ωms mutation values, as well as theMk clustering of528

those mutations into subclones. Given the tree t, consisting of a tree structure and associated subclonal529

frequencies Φ = {φks}, Pairtree uses the likelihood p(x|t,Φ) to score the tree. We describe how to530

compute the subclonal frequencies in Section 6.3. Below we use xks to represent all data in sample s for531

the mutations associated with subclone k, while xms refers to the data for an individual mutation m.532

p(x|t,Φ) =
∏

k∈{1,2,...,K}

∏
s∈{1,2,...,S}

p(xks|t,Φ)

=
∏

k∈{1,2,...,K}

∏
m∈Mk

∏
s∈{1,2,...,S}

p(xms|φks) (8)

=
∏

k∈{1,2,...,K}

∏
m∈Mk

∏
s∈{1,2,...,S}

Binom(Vms|Vms +Rms, ωmsφks)
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The likelihood Eq. (8) demonstrates that tree structure is not explicitly considered in the tree like-533

lihood. Instead, we assess tree likelihood by how well the observed mutation data are fit by the tree-534

constrained subclonal frequencies accompanying the tree. Typically, we obtain a tree’s subclonal frequen-535

cies by making a maximum a posteriori (MAP) estimate, as described in Section 6.3.536

Though Eq. (8) is ultimately the likelihood used by Pairtree for tree search, examining another537

perspective can help us understand what this likelihood represents. If we wished to directly assess the538

quality of a tree structure independent of its subclonal frequencies, thereby obtaining the likelihood539

p(x|t) rather than p(x|t,Φ), we would integrate over the range of tree-constrained subclonal frequencies540

permitted by the tree structure.541

p(x|t) =
∏

k∈{1,2,...,K}

∏
s∈{1,2,...,S}

p(xks|t)

=
∏

k∈{1,2,...,K}

∏
m∈Mk

∏
s∈{1,2,...,S}

p(xms|t)

=
∏

k∈{1,2,...,K}

∏
m∈Mk

∏
s∈{1,2,...,S}

∫
dΦp(xms,Φ|t)

=
∏

k∈{1,2,...,K}

∏
m∈Mk

∏
s∈{1,2,...,S}

∫
dΦp(xms|φks)p(Φ|t) (9)

≈
∏

k∈{1,2,...,K}

∏
m∈Mk

∏
s∈{1,2,...,S}

p(xms|φks) (10)

In Eq. (9), the factor p(Φ|t) is an indicator function representing whether the set of subclonal fre-542

quencies Φ obeys the constraints imposed by the tree structure t:543

1. All subclonal frequencies exist within the unit interval, such that φks ∈ [0, 1] for all k and s.544

2. The non-cancerous node 0 is an ancestor of all subpopulations, such that φks = 1 for all k and s.545

3. Let C(k) represent the children of population k in the tree. The subclonal frequency for k must be546

at least as great as the sum of its childrens’ frequencies, such that φks ≥
∑
c∈C(k) φcs.547

To obtain Eq. (9), we assume that only a narrow range of subclonal frequencies are permitted by548

the tree structure, and so we can use the MAP subclonal frequencies to approximate the integral and549

obtain Eq. (10), which is the likelihood function that Pairtree uses, as per Eq. (8). Consequently, we550

use Pairtree’s likelihood p(x|t,Φ) of the tree t and subclonal frequencies Φ as an approximation of the551

marginal likelihood of the tree p(x|t).552
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As an aside, note that a set of subclonal frequencies Φ obeying the three constraints enumerated553

above may be consistent with multiple tree structures—i.e., we may have p(Φ|t) 6= 0 for a fixed Φ and554

different tree structures t. This shows how ambiguity may exist: a tree’s subclonal frequencies may555

permit multiple possible tree structures, all of which would be assigned the same likelihood. Each cancer556

sample’s subclonal frequencies typically impose additional constraints on possible tree structures, reducing557

this ambiguity.558

6.2.3 Using Metropolis-Hastings to search for trees559

Pairtree uses the Metropolis-Hastings algorithm [32], a Markov Chain Monte Carlo method, to search for560

trees that best fit the observed read count data x. For notational convenience, our references to a tree561

t should be understood to implicitly include a set of subclonal frequencies Φ that have been computed562

for t, such that the likelihood denoted p(x|t) actually represents the likelihood p(x|t,Φ) described in563

Section 6.2.2.564

According to the Metropolis-Hastings algorithm, to obtain samples from the posterior distribution565

over trees p(t|x), we must modify an existing tree t to create a new proposal tree t′. The t′ tree is566

accepted or rejected as a valid sample from the posterior according to how its likelihood p(x|t′) compares567

to the existing tree’s p(x|t), as well as the probabilities p(t → t′) of transitioning from the t tree to the568

t′ tree, and p(t′ → t) of returning from t′ to t. By Metropolis-Hastings, we assume that, given enough569

samples generated in this manner, we are eventually obtaining samples from the posterior distribution570

over trees p(t|x) = p(x|t)p(t)
p(x) = p(x|t)p(t)∑

t′ p(x|t′)p(t′)
. To establish our tree prior p(t), we denote the number of571

possible tree topologies for K subclones as T (K), which is a large but finite number that is exponential572

as a function of K [20]. Thus, we define our tree prior as a uniform distribution p(t) ≡ 1
T (K) , as we have573

no reason to prefer one tree structure to another a priori. Consequently, in computing the posterior ratio574

p(t′|x)
p(t|x) required for Metropolis-Hastings, all factors except the likelihoods p(x|t) and p(x|t′) cancel.575

Pairtree can run multiple MCMC chains in parallel, with each starting from a different initialization576

(Section 6.2.7). By default, Pairtree runs a total of C chains, with C set to the number of CPU cores577

present on the system by default, and P = C executing in parallel. Both P and C can be customized578

by the user. From each chain, S = 3000 samples are drawn by default. The first B ∈ [0, 1] proportion579

of trees are assumed to be early attempts by the sampling procedure to migrate toward high-probability580

regions of tree space, and so are discarded as burn-in samples because they are assumed to poorly reflect581

the true posterior. By default, we set B = 1
3 . To reduce correlation between successive samples, Pairtree582

supports thinning, by which only a fraction T ∈ [0, 1] of non-burn-in samples are retained. By default,583
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Pairtree does not thin samples, so T = 1. Pairtree uses T to calculate a parameter N = round( 1
T ), such584

that the algorithm records every Nth sample. Thus, the actual number of trees recorded from a chain is585

L = 1 +
⌊
S−1
N

⌋
. Only after thinning the chain are the burn-in samples discarded, resulting in round(BL)586

trees being returned as posterior samples from the chain. The C, P , S, B, and T parameters can all be587

changed by the user.588

Once all chains finish sampling, Pairtree combines their results to provide an estimate of the posterior589

tree distribution. Given the uniform tree prior p(t), the posterior tree probability simplifies to p(t|x) =590

p(x|t)∑
t′ p(x|t′)

. If the same tree t appears multiple times in this multiset—as it will, for instance, if proposal591

trees are rejected in Metropolis-Hastings and the last accepted tree is sampled again—each instance will592

appear as a separate term in the sum over t′, reflecting that each is a distinct sample from the posterior593

estimate.594

6.2.4 Modifying trees via tree proposals595

To generate a new proposal tree t′ from an existing tree t, Pairtree relies on tree updates similar to those596

established in [15, 33]. The algorithm modifies t by moving an entire sub-tree under a new parent, or597

by swapping the position of two nodes. Specifically, Pairtree generates a pair (A,B), where B denotes598

a tree node to be moved, and A represents its destination. This pair is subject to the constraints599

{A,B} ⊂ {0, 1, ...,K}, such that A 6= B, A is not the current parent of B, and B is not the root node 0.600

Two possible cases result. If A is a descendant of B, then the positions of A and B are swapped, without601

modifying any other tree nodes. This implies that the previous descendants of B (excluding A itself)602

become the descendants of A, while the previous descendants of A become the (only) descendants of B.603

Otherwise, A is not a descendant of B (i.e., A is an ancestor of B, or A is on a different tree branch),604

and so the sub-tree with B at its head is moved so that A becomes its parent. Observe that both moves605

can be reversed, which is a necessary condition for the Markov chain to satisfy detailed balance. In the606

first case, if A was descendent of B in t, then the pair (B,A) applied to the tree t′ will restore t. In the607

second case, if A was not descendent of B in t, and B’s parent in t was node P , then the pair (P,B)608

applied to tree t′ will restore t.609

Pairtree provides two means of choosing the pair (A,B). The first mode uses the pairs tensor to610

inform tree proposals (Section 6.2.5). The second mode proposes tree updates blindly without reference611

to the data (Section 6.2.6), and is helpful for escaping pathologies associated with the first mode. Pairtree612

randomly selects between these modes for each update (Section 6.2.6).613
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6.2.5 Using the pairs tensor to generate tree proposals614

One of Pairtree’s key contributions is to recognize that the pairs tensor provides an effective guide for615

tree search, conferring insight into what portions of an existing tree suffer from the most error, and how616

those portions should be modified to reduce error. To create the proposal (A,B) for modifying the tree617

t, as described in Section 6.2.3, Pairtree generates discrete probability distributions W (A,B) and W (B),618

corresponding to distributions over 0, 1, ...,K that are used to sample A and B, respectively. The choice of619

B depends only on the current tree state t, and so we denote the corresponding probability distribution620

as W (B). The choice of A, conversely, depends both on the current tree state t and whatever choice621

we made for B, and so we denote the corresponding probability distribution as W (A,B). Every W (A,B)
622

and W (B) depends solely on the tree state, such that the Markov chain used for Metropolis-Hastings is623

time-invariant.624

The algorithm generates the probability distribution W (B) such that the most probability mass is625

placed on elements corresponding to tree nodes with the highest pairwise error. First, observe that a626

tree induces a pairwise relationship between every pair of mutations—i.e., a tree places every muta-627

tion pair in a coincident, ancestral, descendent, or branched relationship. In Section 6.1, we described628

how to use mutation read counts to compute a probability distribution over these four relationships for629

every pair. For a given mutation B, we can thus compute the joint probability of the pairwise rela-630

tionships between B and every other mutation induced by the tree t to determine how well-placed B631

is within the tree. Consider the mutation pair (k,B). If p(MkB |xk, xB) represents the probability of632

the pair taking pairwise relation MkB , then the probability of the pair taking one of the three other633

possible relationships is p(¬MkB |xk, xB) = 1 − p(MkB |xk, xB), which we can think of as the pairwise634

relationship error. Then, the joint pairwise relationship error for all K − 1 pairs that include B is635

E(B) ≡ p(¬M1B ,¬M2B , ...,¬MKB |x1, x2, ..., xB , ..., xK) =
∏
k 6=B 1− p(MkB |xk, xB).636

We compute the probability distribution W (B), whose elements represent the probability of selecting637

the node B to be moved within the tree, in accordance with the pairwise relationship error E(B).638

To accomplish this, we treat logE(B) as the logarithms of elements in an unnormalized probability639

distribution. To normalize the tuple (E(1), E(2), ..., E(K)) to create a probability distribution, we use the640

scaled softmax function ssmax(x) ≡ softmax(Sx), where the S scalar is chosen such that max(ssmax(x))
min(ssmax(x)) ≤641

R ≡ 100. Specifically, the S scalar is set to 1 if max(softmax(x))
min(softmax(x)) ≤ R, or otherwise to whatever value greater642

than 1 is necessary to make max(softmax(Sx))
min(softmax(Sx)) = R. The scaled softmax can be understood as a “softer643

softmax,” ensuring no element in W (B) ≡ ssmax((logE(1), logE(2), ..., logE(K))) has more than 100644

32

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 18, 2021. ; https://doi.org/10.1101/2020.11.06.372219doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.06.372219


times the probability mass of any other. In practice, this results in every tree node having a non-trivial645

probability of being selected for modification.646

With the probability distribution W (B) established, we sample B ∼W (B). We now need to establish647

how to compute the probability distributionW (A,B), whose elements represent the probability of selecting648

the destination A for the node B. Critically, pairwise relations provide a computationally efficient means649

of evaluating hypothetical trees that modify B’s position—we can, in fact, test every possible proposal650

for A ∈ {0, 1, ...,K}− {B,PB}, where PB denotes the current parent of B. With the choice of B already651

made, let DB(A) ≡
∏

(j,k) p(Mjk|xj , xk) represent the joint probability of choosing A as the destination652

for B. By this formulation, (j, k) ranges over all
(
K
2

)
pairs within the set {1, 2, ...,K}, and DB(A)653

represents the joint probability of all pairwise relations induced by the tree t(A,B), which results from654

making the modification to tree t denoted by (A,B). Similar to W (B), we apply the scaled softmax to655

the logDB(A) elements to create W (A,B), with W (A,B) ≡ ssmax((logDB(1), logDB(2), ..., logDB(K))).656

We then sample A ∼W (A,B).657

We now have a concrete realization of the (A,B) pair that we can apply to tree t, yielding a modified658

tree t′. By using the pairwise relations as a guide, we selected a node (or subtree) B to modify, whose659

selection probability was dictated by the pairwise errors induced by its position in the tree. Then, we660

selected a destination A, which we swapped with the node B if A was already a descendant of B, or661

otherwise made the parent of the B subtree. In choosing B, we considered only the joint pairwise error662

of the K − 1 pairs including B; however, in choosing A, we considered the pairwise probabilities of all663 (
K
2

)
pairs that would result from the modified tree. Considering all pairs is necessary because moving the664

whole subtree rooted by B changed the position of all B’s descendants, potentially affecting many pairs665

that did not include A or B.666

Thus, we selected a modification (A,B) to t that should, on average, yield a t′ tree with less error in667

pairwise relations. Ultimately, however, the question of whether to accept t′ as a posterior tree sample668

is decided by the Metropolis-Hastings decision rule that requires computing new subclonal frequencies669

Φ′ for t′, then considering the likelihood of the previous tree p(x|t,Φ) relative to the new likelihood670

p(x|t′,Φ′). Intuitively, once B is chosen, considering the change in pairwise relations induced by every671

possible choice of A captures substantial information about the quality of the tree that would be created672

by the (A,B) modification, while incurring only a modest computational cost. To fully evaluate the673

new tree t′, we must, however, use the full likelihood, which captures more subtle information about674

higher-order relations beyond pairwise. Though this is a more reliable indicator of the new tree’s quality,675

it requires the computationally expensive step of computing Φ′, which is why Pairtree does not do this676
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when evaluating potential tree modification proposals.677

6.2.6 Escaping local maxima in tree space by allowing uniformly sampled tree proposals678

Sampling the (A,B) tree modifications solely using the pairs tensor sometimes results in Pairtree becoming679

stuck in local maxima that exist in the tree space whose likelihood is defined with respect to the pairs680

tensor, but that have low likelihood in the tree space defined by the tree likelihood. Consequently, the681

tree-proposal algorithm may repeatedly propose tree modifications that improve consistency with pairwise682

relationships while worsening the overall tree, leading to many successive proposals being rejected. That683

is, some tree nodes may have high pairwise error, such that they are often sampled as the B subtree to684

modify. These nodes may in addition have destinations A within the tree that substantially reduce this685

pairwise error, resulting in the (A,B) modification being sampled with high probability. When the tree686

t′ induced by this modification is evaluated using the tree likelihood p(x|t′,Φ′), however, it may have687

poor likelihood, resulting in the modified tree being rejected by Metropolis-Hastings. This pathology688

occurs because t′ may appear to be a good candidate when only pairwise relations are considered, but689

when higher-degree relationships, such as those between mutation triplets, are captured in the subclonal690

frequency-based likelihood p(x|t′,Φ′), the tree is revealed to be poor.691

Were the tree proposals (A,B) generated solely using the pairwise relations, Pairtree would repeatedly692

propose the same modification only to have it rejected, resulting in the algorithm becoming stuck at a693

sub-optimal point in tree space. To overcome this, we added two decision points in the tree generation694

process that permit uniformly sampled modifications. Firstly, when sampling the node B to move within695

the tree, Pairtree will use the pairwise relation-informed choice only γ = 70% of the time. In the other696

1 − γ = 30% of cases, Pairtree will sample B from the discrete uniform distribution over {1, 2, ...,K}.697

Secondly, in ζ = 70% of cases, Pairtree will sample the destination node A from the discrete uniform698

distribution over {0, 1, ...,K} − {B,PB}, where PB denotes the current parent of B. Both decisions699

are made independently and at random when generating the tree proposal, such that a proposal using700

pairwise relations for both A and B is generated for only γζ = 49% of tree modifications. Conversely,701

(1 − γ)(1 − ζ) = 9% of tree modifications are generated without considering the pairwise relations in702

any capacity. Both γ and ζ can be modified at runtime by the user. Their default values were chosen703

to ensure that approximately half of tree modification proposals are fully informed by pairwise relations,704

while the remaining half ignore the pairwise relations for at least part of the proposal generation, allowing705

the algorithm to explore regions of tree space that might otherwise be rendered difficult to reach.706
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6.2.7 Tree initialization707

To sample trees via Metropolis-Hastings, the MCMC chain must be initialized with a tree structure.708

Similar to the tree-sampling process, which can generate proposals using the pairs tensor (described in709

Section 6.2.5) or without it (Section 6.2.6), the initialization algorithm can use the pairs tensor to infer710

reasonable relationships between subclones, or can ignore the pairs tensor and thereby avoid potential711

biases that would inhibit tree search.712

We first describe tree initialization using the pairs tensor. In this mode, Pairtree constructs the tree713

in a top-down fashion, selecting subclones to add to the tree with a sampling probability based on which714

appear to have the most ancestral relationships relative to subclones not yet added. Once the algorithm715

determines which subclone to add, it considers all possible parents from amongst the nodes already716

added, sampling a choice based on which induces the least pairwise relation error for all subclones. This717

algorithm uses the scaled softmax described in Section 6.2.5.718

1 function init_tree_from_pairs_tensor {719

2 # Only the root node exists in the tree initially.720

3 let added = {0}721

4 # Track which nodes we’ve added.722

5 let unadded = {1, 2, ..., K}723

6 # List of edges in tree. This starts as the empty set.724

7 # Each element consists of pair ‘(a, b)’,725

8 # representing edge from ‘a’ to ‘b’.726

9 let tree = {}727

10728

11 while length(unadded) > 0:729

12 # Set ‘c_weights ’ elements according to joint probability730

13 # that ‘c’ is ancestral to other unadded nodes.731

14 let c_weights =
∑

k∈unadded∧k 6=c log p(Mck = ancestral |xc, xk)732

15 let c_normed = ssmax(c_weights)733

16 # ‘c_normed ’ is now a categorical probability distribution , so sample from it.734

17 let c_choice = sample(c_normed)735

18736

19 # Now we have the node to place in the tree.737

20 # We must sample a parent for it from the nodes already738

21 # placed in the tree. ‘p_weights ’ is a dictionary.739

22 let p_weights = {}740

23 for p in added:741

24 let candidate_tree = tree ∪ {(p, c)}742
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25 # Let (a, b) range over ever pair of elements743

26 # generated from the set ‘added ∪ c’.744

27 # We only consider every pair once -- i.e., only (a, b) and not (b, a).745

28 # We also do not consider the pairs (a, a).746

29 # Mab is the relation this pair takes in ‘candidate_tree ’.747

30 p_weights[p] =
∑

a,b log p(Mab|xa, xb)748

31749

32 let p_normed = ssmax(p_weights)750

33 let p_choice = sample(p_normed)751

34 tree.add((p_choice , c_choice))752

35 unadded.remove(c_choice)753

36 added.add(c_choice)754

37 return tree755

38 }756

Listing 1: Tree initialization algorithm using pairs tensor.

In the second mode, Pairtree initializes a tree without reference to the pairwise relations, by placing757

every subclone as an immediate child of the root. This initialization is unbiased insofar as it imposes no758

ancestral or descendent relationships amongst subclones, assuming instead that the Metropolis-Hastings759

update scheme can rapidly alter this initial tree to produce a reasonable solution.760

When initializing an MCMC chain, Pairtree selects between the two initialization modes at random,761

with probability ι = 70% of selecting the pairwise-relation-based mode, and 1 − ι = 30% probability of762

the unbiased mode. The ι parameter can be specified by the user, with the default value chosen under763

the assumption that Pairtree will typically be used in multi-chain mode, such that different chains will764

benefit from different initializations that allow the algorithm to more fully explore tree space.765

6.2.8 Reducing Pairtree’s computational burden using supervariants766

Pairtree assumes that mutations have been clustered into subpopulations, with “garbage” variants dis-767

carded, before the tree-construction algorithm begins. As a result, all mutations within a subpopulation768

are rendered coincident relative to one another. Mutations within a subclone also share the same evolu-769

tionary relationships to all mutations outside the subclone. Thus, to reduce the computational burden770

imposed by the method, rather than working with individual mutations, we can instead represent each771

subpopulation with a single supervariant, then compute pairwise relations between these rather than772

their constituent mutations.773

Conceptually, relative to the individual mutations that compose it, a supervariant should provide a774

36

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 18, 2021. ; https://doi.org/10.1101/2020.11.06.372219doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.06.372219


more precise estimate of the subclonal frequency of its corresponding subclone. Specifically, a mutationm775

in a cancer sample s has Vms variant reads and Rms reference reads, yielding total reads Tms ≡ Vms+Rms776

and a VAF ≡ Vms

Tms
. Given a probability of observing the variant allele ωms, we conclude that ωmsTms777

reads originated from the variant allele, and so we can estimate the corresponding subclone’s subclonal778

frequency by φ̂ms ≡ Vms

ωmsTms
. Each mutation’s φ̂ms should thus serve as a noisy estimate of its subclone’s779

true φms.780

Let xms represent the data associated with mutationm in sample s, such that xms ≡ {Vms, Rms, ωms}.781

Under a binomial observation model (Section 6.2.2), given subclonal frequency φks for the subclone k782

harboring mutation m in sample s, we have the mutation likelihood p(xms|φks) ≡ Binom(Vms|Vms +783

Rms, ωmsφks). Let Mk be the set of mutations associated with subclone k. Then, from all j ∈ Mk, we784

get the following joint likelihood for cancer sample s:785

p(Mk|φks) =
∏
j∈Mk

p(xjs|φks)

=
∏
j∈Mk

Binom(Vjs|Vjs +Rjs, ωjsφks)

Assuming ωjs takes the same value ωks for all j ∈Mk, the joint likelihood takes the following form:786

p(Mk|φks) =
∏
j∈Mk

(
Vjs +Rjs

Vjs

)
(ωjsφks)

Vjs(1− ωjsφks)Rjs

=
[ ∏
j∈Mk

(
Vjs +Rjs

Vjs

)]
(ωjsφks)

∑
j Vjs(1− ωjsφks)

∑
j Rjs (11)

We want the likelihood for the supervariant k representing the variants in Mk to take the same func-787

tional form. Thus, we set Vks ≡
∑
j∈Mk

Vjs and Rks ≡
∑
j∈Mk

Rjs, yielding the following supervariant788

likelihood.789

p(xks|φks) =

(
Vks +Rks

Vks

)
(ωksφks)

Vks(1− ωksφks)Rks

=

(∑
j Vjs +Rjs∑

j Vjs

)
(ωksφks)

∑
j Vjs(1− ωksφks)

∑
j Rjs (12)

Observe that Eq. (12) takes the same functional form as Eq. (11), such that they differ only by a790
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constant of proportionality C that does not depend on φks.791

C =
p(Mk|φks)
p(xks|φks)

=

∏
j∈Mk

(
Vjs+Rjs

Vjs

)
(∑

j Vjs+Rjs∑
j Vjs

)
∴ p(xks|φks) ∝ p(Mk|φks) =

∏
j∈Mk

p(xjs|φks) (13)

Consequently, the supervariant’s likelihood accurately reflects the joint likelihood of the subclone’s792

constituent variants, while reducing the algorithm’s computational burden. In practice, the constant793

factor C by which the two differ does not matter, as the Metropolis-Hastings scheme (Section 6.2.3) that794

uses the likelihood (Section 6.2.2) requires only the ratio of two likelihoods to navigate tree space, such795

that C cancels.796

Of course, Eq. (13) holds only when ωks = ωjs for all j ∈ Mk. Most often, we are given diploid797

variants with ωjs = 1
2 , and so we fix ωks = 1

2 for all supervariants. Thus, supervariants are assured to798

accurately represent their constituent variants when those variants are from diploid genomic regions. For799

non-diploid variants with ωjs 6= 1
2 , we must rescale the provided data xjs to use a fixed ωks = 1

2 , allowing800

us to use an approximation of the correct likelihood. To achieve this, we establish the following:801

x̂js = {V̂js, R̂js, ω̂js}

Tjs = Vjs +Rjs

T̂js = 2ωjsTjs

V̂js = min(Vjs, T̂js)

R̂js = T̂js − V̂js

ω̂js =
1

2

This representation ensures the corrected variant read count V̂js cannot exceed the corrected total802

read count T̂js, which could otherwise occur because of binomial sampling noise inherent to the genomic803

sequencing process, or an erroneous ωjs value that does not correctly reflect a copy number change. Note804

that both T̂js and V̂js can take non-integer values. If the original ωjs = 1
2 , then the corrected read counts805
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are unchanged from their original values. From this point, for all mutations j ∈ Mk associated with806

subclone k, we compute corrected supervariant read counts V̂ks and R̂ks:807

x̂ks = {V̂ks, R̂ks, ω̂ks}

V̂ks = round(
∑
j

V̂js)

T̂ks = round(
∑
j

T̂js)

R̂ks = T̂ks − V̂ks

ω̂ks =
1

2

Based on Eq. (13), if the mutations j ∈ Mk all had ωjs = 1
2 , the φks value we obtain in maximiz-808

ing the supervariant likelihood p(x̂ks|φks) is also optimal for the full joint likelihood over the individual809

mutations p(Mk|φks) =
∏
j∈Mk

p(xjs|φks), since the two likelihoods differ only by a constant of propor-810

tionality. If some mutations j had ωjs 6= 1
2 , the supervariant likelihood p(x̂ks|φks) approximates the full811

joint likelihood, and so the obtained φks value is only approximately optimal for the latter. To overcome812

this, Pairtree’s implementation of the rprop optimization algorithm could be easily modified to optimize813

φks with respect to the individual variants j, each with its own ωjs, rather than the combined supervari-814

ant representation that requires a single ωks. Equivalently, rprop could use multiple supervariants per815

subclone, with a single supervariant representing all constituent mutations possessing the same ωjs. The816

projection algorithm, however, necessitates using a single supervariant, which in turn requires a single817

ωks. Though the adjusted supervariant read counts yield only an approximation of the likelihood for non-818

diploid mutations, this is not a critical flaw, as projection is already computing a Gaussian approximation819

of the likelihood, rather than the exact binomial likelihood used by rprop.820

6.3 Fitting subclonal frequencies to trees821

Pairtree provides two algorithms for computing subclonal frequencies for a tree structure. Both attempt822

to maximize the data likelihood (Section 6.2.2), fitting the observed read count data as well as possible823

while fulfilling all constraints imposed by the tree structure. The first algorithm, named rprop, is based824

on gradient descent (Section 6.3.2), and directly maximizes the tree’s binomial likelihood. The second825

algorithm, named projection, uses techniques from convex optimization to compute subclonal frequencies826
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maximizing the likelihood of a Gaussian approximation to the binomial [34]. While rprop typically827

produces higher-likelihood subclonal frequencies than projection, particularly for subclones where the828

Gaussian approximation to the binomial is poor, the projection algorithm runs substantially faster with829

many subclones (e.g., for 30 subclones or more). By default, Pairtree uses the projection algorithm, but830

the user can select rprop at runtime.831

6.3.1 Converting between subclonal frequencies and subpopulation frequencies832

To permit a more convenient representation, both rprop and projection work with subpopulation fre-833

quencies H = {ηks}, rather than the subclonal frequencies Φ = {φks}, where k and s are indices over834

subclones and cancer samples, respectively. Given a tree structure t, we can readily convert from one835

representation to the other. Let D(k) represent the set of descendants of subclone k in tree structure t,836

and C(k) represent the set of direct children of subclone k. Then, in cancer sample s, we have837

φks = ηks +
∑

j∈D(k)

ηjs .

Equivalently, we obtain838

ηks = φks −
∑

j∈C(k)

φjs .

.839

From the subclonal frequency constraints described in Section 6.2.2, we see that, because the root840

node takes φ0s = 1, we must have the constraint841

K∑
j=0

ηjs = 1

across all K subclones, and that each individual ηjs ∈ [0, 1]. As each cancer sample s is independent842

from every other, both rprop and projection optimize the set {ηks} separately for each fixed s.843
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6.3.2 Fitting subclonal frequencies using rprop844

The rprop algorithm is a simpler version of RMSprop [40, 41], intended for use with full data batches845

rather than mini-batches. To perform unconstrained optimization on the parameters Hs = {ηks} for a846

fixed cancer sample s, the algorithm first reparameterizes to Hs = softmax({ψks}), so that we need not847

enforce constraints on {ψks} but can ensure Hs ⊂ [0, 1] and
∑
k ηks = 1.848

On each iteration, given a tree structure t and existing subclonal frequencies Φ, rprop converts Φ to849

population frequencies H, then computes the derivatives850

∂p(x|t,Φ)

∂ψks
=
∂p(x|t,Φ)

∂ηjs

∂ηjs
∂ψks

for all subclone combinations j and k, using the tree likelihood (Section 6.2.2). The algorithm then851

uses the sign of the gradient to update the ψks values, ignoring the gradient’s magnitude. For each852

value of k, rprop maintains a step-size parameter λk, which is limited to lie within the interval [10−6, 50],853

preventing excessively small or large step sizes. The algorithm also maintains a step-size multiplier Mki854

for subclone k on iteration i, with Mki = 1.2 if sign(∂p(x|t,Φ)
∂ψks

) agrees with the sign from the previous855

iteration i− 1, and Mki = 1
2 otherwise. Using these values, rprop performs the gradient update856

λk := Mkiλk

λk := min(λk, 50)

λk := max(λk, 10−6)

ψks := ψks + λksign(
∂p(x|t,Φ)

∂ψks
)

The rprop algorithm continues this process until none of the ∂p(x|t,Φ)
∂ψks

values exceed 10−5 in a particular857

iteration, or until I = 10000 iterations elapse, with I being customizable by the user.858

To initialize the Hs = {ηks} values, we generate initial values η̂ks with the following algorithm. C(k)859

represents the set of direct children of k in the tree.860
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φ̂ks :=
Vks

ωks(Vks +Rks
)

φ̂ks := min(1, φ̂ks)

φ̂ks := max(0, φ̂ks)

η̂ks := φ̂ks −
∑

j∈C(k)

φ̂ks

η̂ks := min(1, η̂ks)

η̂ks := max(0, η̂ks)

Observe that the constraint η̂ks ∈ [0, 1] is satisfied. To ensure
∑
j η̂js = 1, we finally set η̂ks := η̂ks∑

j η̂js
.861

This initialization reflects that, if the provided tree structure t is consistent with the data and there is862

minimal noise in the data, the φ̂ks = Vks

ωks(Vks+Rks
) subclonal frequencies should be close to the maximum863

likelihood estimate for Φ in p(x|t,Φ).864

6.3.3 Fitting subclonal frequencies using projection865

The projection algorithm draws on the approach provided in [34]. The authors describe a method to effi-866

ciently enumerate mutation trees, in which individual nodes correspond to genomic mutations. To make867

this enumeration feasible, they developed an algorithm to rapidly compute tree-constrained subclonal868

frequencies. Using our supervariant representation, we can apply their approach to computing subclonal869

frequencies for clone trees by representing our binomial likelihood with a Gaussian approximation. First,870

we review the authors’ notation and map it to the equivalent notation in Pairtree.871

• : q: number of mutations, equivalent to our number of subclones K872

• : p: number of cancer samples, equivalent to our S873

• : F ∈ Rq×p: equivalent to our subclonal frequencies Φ, with Fvs equivalent to our φks874

• : U ∈ {0, 1}q×q: ancestry matrix created from tree structure t, such that Uj,k = 1 iff subclone j is875

an ancestor of subclone k or j = k876

• : M ∈ Rq×p: equivalent to our population frequencies H = {ηks}, with Mvs equivalent to our ηks877
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With U representing the set of all ancestral matrices consistent with the perfect phylogeny problem878

(Section 10.8), the authors solve the optimization problem minU∈U C(U), such that879

C(U) = min
M,F∈Rq×p

‖F̂ − F‖ subject to F = UM,M ≥ 0,Mᵀ1 = 1 .

Here, ‖ · ‖ is the Frobenius norm, and F̂ ∈ Rq×p is the noisy estimate of the subclonal frequencies880

obtained from the data. Observe there is a one-to-one correspondence between U and t, as changing881

the structure of t will necessarily change ancestral relations described in U , and vice versa. Thus, the882

authors attempt to find the optimal ancestry matrix U , corresponding to an optimal tree t, that allows883

tree-constrained subclonal frequencies F best matching the noisy subclonal frequencies F̂ observed in884

the data. Ultimately, the authors solve this problem through enumeration. While this scales better than885

previous enumerative approaches because of the authors’ efficient computation of the optimal M for a886

given ancestry matrix U , the approach is still rendered infeasible for the large trees that Pairtree works887

with using a search-based method.888

Useful for Pairtree is the authors’ extremely efficient means of projecting the observed frequencies F̂889

on to the space of valid perfect-phylogeny models using Moreau’s decomposition for proximal operators890

and a tree reduction scheme [34]. We utilize this to quickly compute subclonal frequencies Φ for a given891

tree t that corresponds to an ancestry matrix U . To allow us to use a Gaussian estimate of our binomial892

likelihood, the authors developed an extended version of their algorithm [42], in which they additionally893

take as input a scaling matrix D ∈ Rq×p with all Dks > 0. Using the element-wise multiplication operator894

�, the modified algorithm computes895

C′(U) = min
M,F∈Rq×p

‖D � F̂ −D � F‖ subject to F = UM,M ≥ 0,Mᵀ1 = 1 . (14)

We will refer to the algorithm as the “projection optimization algorithm,” and to Eq. (14) as the896

“projection objective.” We now show how to use the projection objective to compute the MAP for a897

Gaussian approximation of our original binomial likelihood. First, observe that our goal is to maximize898

the binomial likelihood defined in Section 6.2.2 by finding optimal subclonal frequencies Φ for a given899

tree t. Thus, we wish to find900
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max
Φs={φks}

p(xs|t,Φs) = max
Φs

p(V1s, V2s, ...|t, T1s, T2s, ω1s, ω2s,Φ) subject to p(Φs|t) 6= 0 . (15)

Here, t represents the provided tree structure, while Φs refers to a set of scalar φks values that901

obey the tree constraints described in Section 6.2.2, with p(Φs|t) 6= 0 indicating that the set obeys the902

constraints. The s index represents the cancer sample, with each sample optimized independently. Our903

data xs consists of, for subclone k, a count of variant reads Vks and reference reads Rks, yielding total904

reads Tks = Vks+Rks. We define this as a binomial likelihood, in which we are optimizing the φks values.905

p(V1s, V2s, ...|t, T1s, T2s, ω1s, ω2s,Φ) =
∏
k

p(Vks|Tks, ωks, φks) (16)

To approximate this using the Gaussian, we perform the following operations.906

∏
k

p(Vks|Tks, ωks, φks) =
∏
k

Binom(Vks|Tks, ωksφks) (17)

≈
∏
k

N(Vks|Tksωksφks, Tksωksφks(1− ωksφks)) (18)

∝
∏
k

N(
Vks

ωksTks
≈ φ̂ks|φks,

φks
ωksTks

(1− ωksφks)) (19)

≈
∏
k

N(φks|φ̂ks,
φ̂ks

ωksTks
(1− ωksφ̂ks)) (20)

We relied on the following operations to achieve the above:907

• Eq. (17) defined Eq. (16) with respect to the binomial distribution.908

• Eq. (18) approximated Eq. (17) with the Gaussian distribution. We represent the Gaussian PDF909

for a random variable x drawn from a Gaussian with mean µ and variance σ2 as N(x|µ, σ2).910

• Eq. (19) divided the Gaussian random variable by the scalar ωksTks, yielding another Gaussian911

proportional to the preceding. The new Gaussian random variable is Vks

ωksTks
≈ φ̂ks, our MAP of the912

subclonal frequency φks for Binom(Vks|Tks, ωksφks). As φks ∈ [0, 1], we set φ̂ks ≡ min(1, Vks

ωksTks
).913

• To achieve a distribution over the unknown φks, Eq. (20) swaps the Gaussian’s random variable914

φ̂ks and mean φks, yielding the same Gaussian PDF. Additionally, it approximates the variance of915
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the Gaussian in Eq. (19) by replacing φks with its MAP in the variance definition.916

Let the variance of each Gaussian be represented with σ2
ks = max(10−4, φ̂ks

ωksTks
(1 − ωksφ̂ks)). We917

set a minimum variance of 10−4 to prevent our φks estimates from being too precise to permit effective918

optimization. To transform Eq. (20) into the form required by the projection objective Eq. (14), observe919

∏
k

N(φks|φ̂ks, σ2
ks) ∝ exp−

∑
k

(φks − φ̂ks)2

σ2
ks

. (21)

Thus, maximizing Eq. (21) is equivalent to optimizing the objective920

min
Φs

exp
∑
k

(φks − φ̂ks)2

σ2
ks

. (22)

As both expx and
√
x are monotonic functions, this is equivalent in turn to921

min
Φs

√√√√∑
k

(φks − φ̂ks)2

σ2
ks

. (23)

To complete the transformation of Eq. (23) to the projection objective Eq. (14), we establish the922

following notation.923

Ds = [D1s, D2s, ..., DKs] = [
1

σ1s
,

1

σ2s
, ...,

1

σKs
]

Fs = [φ1s, φ2s, ..., φKs]

F̂s = [φ̂1s, φ̂2s, ..., φ̂Ks]

U = ancestry matrix corresponding to tree t

Now, Eq. (23) can be rewritten using the Frobenius norm:924
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min
Φs

√√√√∑
k

(φks − φ̂ks)2

σ2
ks

= min
Ms,Fs

‖Ds � (Fs − F̂s)‖

= min
Ms,Fs

‖Ds � (UMs)−Ds � F̂s‖ ,

Thus, we can now call the projection optimization algorithm to compute Fs and Ms, which are925

K-length vectors representing tree-constrained subclonal frequencies and subpopulation frequencies, re-926

spectively. Both obey the constraints inherent to the tree t that are expressed through the ancestry927

matrix U . The Fs values are the MAP under the Gaussian approximation Eq. (20) of binomial likelihood928

Eq. (17), ultimately achieving a near-optimal solution to the original optimization objective Eq. (15).929

6.4 Creating simulated data930

6.4.1 Parameters for simulating data931

We first define parameters characterizing the different simulated cancers.932

• K: number of subpopulations933

• S: number of cancer samples934

• M : number of variants935

• T : number of total reads per variant936

We created simulated datasets with the following parameter combinations.937

Parameter Values

K 3, 10, 30, 100

S 1, 3, 10, 30, 100

Mutations per cluster 10, 20, 100

T 50, 200, 1000

Table 1: Simulated data parameters. All combinations of these parameter values were used to generate
simulated data, excepting cases when K ∈ {30, 100} and S ∈ {1, 3}. This provided 144 parameter
combinations, with four datasets generated from each, yielding 576 simulated datasets.

Observe there are 4×5×3×3 = 180 parameter combinations. WhenK ∈ {30, 100}, we did not simulate938

datasets with S ∈ {1, 3} samples, as trees with so many subpopulations and so few cancer samples are939
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unrealistic—to resolve a large number of distinct mutation clusters, a large number of cancer samples is940

typically needed. Simulated datasets with K ≥ 30 and S < 10 would thus correspond to complex trees941

with few cancer samples, posing a highly underconstrained computational problem that would not reflect942

how methods perform on realistic datasets. Thus, as there are 2× 2× 3× 3 = 36 parameter sets yielding943

under-constrained simulations, we used the remaining 180 − 36 = 144 sets to generate simulations. For944

each valid parameter set, we generated four distinct datasets, yielding 144× 4 = 576 simulated datasets.945

Above, rather than setting the number of mutations per dataset M directly, we instead specified the946

average number of mutations per cluster. This reflects that, because each subclone is distinguished by947

one or more unique mutations, trees with more subclones should have more mutations. Consequently,948

the number of mutations generated per dataset was M = K(mutations per cluster). Nevertheless, as949

described in Section 6.4.2, mutations are assigned to subclones in a non-uniform probabilistic fashion,950

such that the number of mutations in each subclone is only rarely equal to the parameter value for number951

of mutations per cluster used when generating the data.952

6.4.2 Algorithm to generate simulated data953

We generated simulated data using the following algorithm. Python code implementing this algorithm is954

available at https://github.com/morrislab/pearsim.955

1. Generate the tree structure. For each subclone k, with k ∈ {1, 2, . . . ,K − 1}, sample a parent956

P(k). We extended the previous subpopulation (i.e., P(k) = k − 1) with probability µ = 0.75, and957

otherwise sample P(k) from the discrete Uniform(0, k− 1) distribution. This extension probability958

created “linear chains” of successive subpopulations, with each member of the chain taking only a959

single child, interrupted sporadically by the creation of new tree branches. As the normal tree root,960

denoted as node 0, exists at the outset, node 1 will always take it as a parent. Note that this scheme961

allows for the creation of “polyprimary” trees, in which the root 0 takes multiple clonal cancerous962

children. Such polyprimary cases are created for approximately 1− µ = 0.25 of datasets.963

2. Generate the subpopulation frequencies ηks for each subpopulation k in each cancer sample s,964

with s ∈ 1, 2, . . . , S. These values were sampled separately for each s, with [η0s, η1s, . . . , ηKs] ∼965

Dirichlet(α, . . . , α) = Dirichlet(0.1, . . . , 0.1). We use the symmetric Dirichlet distribution with a966

single α parameter because we have no reason to desire that any population frequency tend to be967

greater or less than others a priori. The choice of α has important implications for the structure of968

the simulated data (Section 10.7). As the η vector is drawn from the Dirichlet, we have
∑K
k=0 ηks = 1969
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for each sample s.970

3. Compute the subclonal frequencies φks for each subclone k in each cancer sample s using the tree971

structure and ηks values. Let D(k) represent the set of k’s descendants in the tree. Then, we have972

φks = ηks +
∑

d∈D(k)

ηds .

4. Assign the M variants to subclones. To ensure every subclones has at least one variant, set the973

subclones of the first K SNVs to 1, 2, . . . ,K. To assign the remaining M − K SNVs, sample974

subclone weights from the K-dimensional Dirichlet(1, 1, . . . , 1), then sample assignments from the975

K-dimensional categorical distribution using these weights.976

5. Sample read counts for the variants. Let A(m) ∈ {1, 2, . . . ,K} represent the subclone to which977

variant m was assigned. Let ωms = 1
2 represent the probability of observing a variant read when978

sampling reads from the variant’s locus, for all subpopulations contained within m’s subclone,979

reflecting a diploid variant not subject to any CNAs. Then, for each cancer sample s, given the980

fixed total read count T used for all variants in a dataset, we sample the number of variant reads981

Vms ∼ Binomial(T, ωmsφA(m),s).982

6.5 Evaluation metrics for method comparisons983

6.5.1 Intuitive explanation of metrics984

We developed two metrics for evaluating clone-tree reconstruction algorithms that are suitable for use with985

multiple cancer samples. The first, termed VAF reconstruction loss (henceforth “VAF loss”), measures986

how well a tree’s subclonal frequencies match the allele frequency for each mutation implied by its CNA-987

corrected VAF. Each tree structure permits a range of subclonal frequencies, with the best subclonal988

frequencies matching the data as well as possible while also satisfying the tree constraints. Thus, the989

VAF loss evaluates a tree by determining how closely its subclonal frequencies match the observed data.990

VAF loss is reported in bits per mutation per cancer sample, representing the number of bits required991

to describe the data using the tree, normalized to the number of mutations and cancer samples. Lower992

values reflect better trees. As LICHeE could not compute subclonal frequencies itself, producing only993

tree structures, we used Pairtree to compute the MAP subclonal frequencies for its trees.994

All evaluated methods report multiple solutions for each dataset, scored by a method-specific likelihood995

or error measure. To determine a single VAF loss for each method on each dataset, we used the method-996
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specific solution scores to compute the expectation over VAF loss (equivalent to the weighted-mean VAF997

loss). VAF loss is always reported relative to a baseline. For simulated data, the baseline is the VAF998

loss achieved using the true subclonal frequencies that generated the data. For real data, the baseline is999

expert-constructed, manually-built trees that were subjected to extensive refinement, with Pairtree used1000

to compute the MAP subclonal frequencies. Thus, VAF loss indicates the average extra number of bits1001

necessary to describe the data using a method’s solutions rather than the baseline solution. Methods can1002

find solutions that fit the data better than the baseline, yielding a negative VAF loss.1003

The second evaluation metric we developed, termed relationship reconstruction error (henceforth “re-1004

lationship error”), recognizes that a clone tree defines pairwise relations between its constituent mutations,1005

placing every pair in one of the four relationships discussed earlier. Using the set of trees reported by1006

a method for a given dataset, we computed the empirical categorical distributions over pairwise mu-1007

tation relations, with each tree’s relationships weighted by the likelihood or error measure reported by1008

the method. We then compared these distributions to the distributions imposed by all tree structures1009

permitted by the true subclonal frequencies, computing the Jensen-Shannon divergence (JSD) between1010

distributions for each pair. This yields a relationship error ranging between 0 bits and 1 bit. Using these,1011

we report the joint JSD across all mutation pairs to summarize the quality of the solution set, normalized1012

to the number of pairs. Thus, the relationship error for a given dataset ranges between 0 bits and 1 bit,1013

with smaller values indicating that a method better recovered the full set of trees consistent with the1014

data. We did not apply this metric to real data, whose true subclonal frequencies, and thus true possible1015

tree structures, are unavailable.1016

6.5.2 VAF reconstruction loss1017

The VAF reconstruction loss represents how closely the subclonal frequencies associated with a method’s1018

clone tree solution set match the simulated data’s VAFs (Section 3.4). The constraints imposed by good1019

solution trees should permit subclonal frequencies that closely match the data. In Section 6.2.2, we1020

described the tree likelihood Eq. (8), which we also use to define the VAF reconstruction loss.1021

Assume the method provides a distribution over different clone trees t, with the posterior probability1022

of t represented as p(t), such that
∑
t p(t) = 1. The loss is defined for each tree t over the mutation read1023

count data x, with mutations m and cancer samples s. We use φms to indicate the subclonal frequency1024

in t for sample s associated with the subpopulation containing mutation m. For mutation m in sample1025

s, we define the likelihood1026
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p(xms) =
∑
t

p(xms|t)p(t)

=
∑
t

p(xms|φms)p(t)

=
∑
t

p(t)Binom(Vms|Vms +Rms, ωmsφms)

To compute the VAF reconstruction loss εΦ, we calculate the mean negative log-likelihood across all1027

M mutations and S cancer samples, with1028

εΦ = − 1

MS

M∑
m=1

S∑
s=1

log2

∑
t

p(xms|φms)p(t) . (24)

As p(xms|φms) ≤ 1 and p(t) ≤ 1, given that both are discrete distributions, we have εΦ ≥ 0. We1029

report VAF reconstruction loss relative to a baseline, though this is not necessary—the absolute metric1030

is still useful for quantifying the error in the tree-constrained subclonal frequencies that are part of a1031

solution set. Nevertheless, by reporting error relative to a baseline, we can more easily see how well a1032

method is faring, given that some datasets will necessarily yield higher absolute VAF losses than others.1033

For simulated data, we use as the baseline the true subclonal frequencies that generated the data. For1034

real data, we use as the baseline the subclonal frequencies computed by Pairtree (Section 6.3) for our1035

expert-derived trees. In both cases, we use Eq. (24) to compute the baseline VAF loss ε̃Φ, with the1036

distribution over trees p(t) consisting of a single tree, for which p(t) = 1. This yields the relative VAF1037

loss1038

ε̂Φ = εΦ − ε̃Φ .

These are the values reported in this study for VAF loss. The relative VAF loss ε̂Φ can be negative,1039

indicating that a method has found a better solution than the baseline. On simulated data, for instance,1040

this can occur if there is only one tree consistent with the simulated subclonal frequencies, and the clone-1041

tree-reconstruction method finds only that tree, to which it then fits the MAP subclonal frequencies.1042

These will necessarily fit the observed data better than the true frequencies, yielding a negative relative1043

VAF loss.1044
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6.5.3 Relationship reconstruction error1045

In determining relationship reconstruction error (Section 3.4), we wish to compare the distribution over1046

pairwise mutation relationships imposed by a method’s set of candidate solutions relative to the simulated1047

truth. Though there was a single true tree structure used to generate the observed data, we cannot simply1048

compare the candidate solutions to the relations imposed by this true tree—the observed VAF data are1049

noisy reflections of the true subclonal frequencies accompanying the true tree structure, and while the1050

true tree will be consistent with the noise-free frequencies (i.e., it will not violate the constraints they1051

impose), there may also be other consistent tree structures. Thus, our baseline must be not the single1052

set of relationships imposed by the true tree, but the distribution over relationships implied by all tree1053

structures consistent with the true subclonal frequencies. Determining this baseline requires that we1054

enumerate all such trees (Section 6.5.4). We can then measure the quality of a set of proposed solution1055

trees by the extent to which the distribution over pairwise relations they imply recapitulates the baseline.1056

To excel according to this metric, methods must be able to recover the full set of trees permitted by the1057

observed VAF data, rather than only a single consistent tree. Moreover, methods must be able to deal1058

with noise inherent to the VAF observations, such that the methods find trees that make small violations1059

of tree constraints if we take the VAFs as exact observations of the subclonal frequencies.1060

Suppose a dataset consists of M mutations. Every clone tree built for this dataset by a method1061

places each mutation pair (A,B) unambiguously into one of the four pairwise relationships. We use1062

MAB to delineate the pairwise model for the mutation pair induced by a given clone tree. (Provided the1063

method uses a fixed mutation clustering provided as input, the coincident relations are determined by the1064

clustering, and so are fixed before the method is run.) Assume the method provides a distribution over1065

different clone trees t, with the posterior probability of t represented as p(t), such that
∑
t p(t) = 1. In1066

this case, we can compute the posterior probability of the MAB relation as p(MAB) =
∑
t p(MAB |t)p(t),1067

where1068

p(MAB |t) =


1 iff (A,B) are in the MAB relation in t

0 otherwise
.

Using the set of true trees (Section 6.5.4), we will define p(M̃AB) as the distribution over different1069

relations for all N trees consistent with the true subclonal frequencies. For the true tree set, we will1070

establish a uniform prior p(t) = 1
N , since no true tree should be privileged over another. For the mutation1071
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pair (A,B), we can now compute the Jensen-Shannon divergence (JSD) between a clone-tree-construction1072

method’s p(MAB) and the true p(M̃AB), which we denote as JSD(MAB ‖ M̃AB). We use the base-two1073

logarithm in computing JSD, yielding a measurement in bits.1074

Given M mutations in a dataset, there are
(
M
2

)
= M(M+1)

2 mutation pairs (A,B). We thus define the1075

relationship reconstruction error εR for a solution set as the mean JSD between pairs, such that1076

εR =
2

M(M + 1)

∑
(A,B)

JSD(MAB ‖ M̃AB) .

Using the mean allows us to compare εR values for datasets with different numbers of mutations, so1077

that we can understand which result sets have more or less error. As an aside, though it may be tempting1078

to view εR as the joint JSD for all mutation pairs, normalized to the number of mutation pairs, this1079

perspective is wrong. The JSD can be defined with respect to the Kullback-Leibler (KL) divergence.1080

Under our definition of p(MAB |t), every pair is independently distributed, such that the KL divergence1081

of the joint distribution over all pairs is equal to the sum of KL divergences of individual pairs. This1082

property is not, however, true for the JSD, and so our sum over pairs does not equal the JSD of the joint1083

distributions.1084

Note that relationship error is similar to the probabilistic ancestor-descendant matrix (ADM) metric1085

developed in [21], where it is referred to as metric 3B. To represent the ground truth, given M mutations1086

and a single true tree t̃, metric 3B constructs four matrices of sizeM×M , which can be represented by the1087

M×M×4 tensor denoted by T . Let Tijk be the binary indicator corresponding to whether mutations i and1088

j fall into pairwise relationship k ∈ {ancestor, descendant, branched, coincident} (Section 6.1). Similarly,1089

a candidate solution set can be represented with anM×M×4 tensor denoted by R, with Rijk indicating1090

the probability that mutations i and j fall into relationship k. Both T and R are thus akin to the pairs1091

tensor computed by Pairtree. To compute the similarity between T and R, the 3B metric concatenates1092

the column vectors of each tensor’s constituent M ×M matrices, forming vectors of length 4M2 that we1093

denote with
−→
T and

−→
R . The metric 3B is then computed as the Pearson correlation between

−→
T and

−→
R ,1094

equivalent to the mean-centered cosine similarity between these vectors.1095

Relationship error differs from metric 3B in two ways [21]. Though both operate on information1096

about similarity in pairwise relations between a ground truth and candidate solution set, they compute1097

distance differently. Relationship error uses the mean JSD between all pairs, and so ranges between 01098

and 1, while metric 3B uses Pearson correlation, and so ranges between -1 and 1. More importantly,1099
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relationship error’s truth is defined with respect to all trees, and thus pairwise relationships, consistent1100

with the true subclonal frequencies. Metric 3B, conversely, defines truth with respect to the single tree1101

structure used to generate the data. Relationship error thus better reflects a method’s performance, as1102

it recognizes the fundamental ambiguity in tree structure.1103

6.5.4 Enumerating trees quickly1104

To enumerate all trees consistent with the true subclonal frequencies for a simulated dataset, henceforth1105

termed “consistent trees,” we first construct a directed graph tau. Given K subclones and S cancer1106

samples, tau consists of a graph of K + 1 nodes, with the ith node corresponding to the ith subclone,1107

and the implicit node 0 that has no incoming edges. We place an edge from node i to node j in tau,1108

such that tauij = 1, if node i is a potential parent of subclone j in a tree consistent with the subclonal1109

frequencies Φ = {φks}. The tau graph represents edges that will be present in at least one consistent1110

tree. Thus, the spanning trees of tau compose a superset of the consistent trees—i.e., all consistent trees1111

exist as a spanning tree of tau, but not all spanning trees of tau must be consistent trees.1112

By definition, φ0s = 1 for all cancer samples s. Without loss of generality, assume φis ≥ φ(i+1)s for1113

i ∈ {1, 2, . . . ,K − 1} for all cancer samples s, as the subclones can be sorted to fulfill this requirement1114

without affecting the problem structure. We then construct τ as follows.1115

1 function make_tau(Φ) {1116

2 let τ = {0} # Dimensions: (K + 1)× S1117

3 for i ∈ (0, 1, . . . ,K − 1):1118

4 for j ∈ (i+ 1, . . . ,K):1119

5 let τij = 1 iff φis ≥ φjs∀s1120

6 return τ1121

7 }1122

Listing 2: Algorithm to create graph adjacency matrix τ .

1 function enum_trees(Φ, τ , traversal ∈ {DFS , BFS}) {1123

2 # Each partial is a triplet.1124

3 # Element 1: index j ∈ {1, 2, . . . ,K} of node for which we must1125

4 # next resolve parent , with 1 ≤ j′ < j fully resolved and j′′ > j not yet resolved1126

5 # Element 2: graph τ ′ whose edges are a subset of those in τ ,1127

6 # with in-degree of nodes 1 ≤ i < j equal to 1.1128

7 # Element 3: sum of subclonal frequencies for each node’s children , for the portions1129

8 # of the graph that have been fully resolved. This data structure allows us to1130

9 # quickly determine whether a prospective parent choice violates tree constraints.1131

53

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 18, 2021. ; https://doi.org/10.1101/2020.11.06.372219doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.06.372219


10 let partials = [(1, copy(τ ), zeroes(K + 1, S))]1132

11 let trees = []1133

121134

13 while len(partials) > 0:1135

14 if traversal == DFS:1136

15 # For depth -first search , remove last element1137

16 j, τ ′, childsum = trees.pop(-1)1138

17 else:1139

18 # For breadth -first search , remove first element1140

19 j, τ ′, childsum = trees.pop (0)1141

201142

21 if j == K + 1:1143

22 # We have resolved a single parent for nodes iin{1, 2, . . . ,K},1144

23 # so the tree is fully resolved.1145

24 trees.append(τ ′)1146

25 continue1147

26 parents = {i|i ∈ {0, 1, . . . ,K} ∧ τij = 1}1148

27 for i in parents:1149

28 # It’s possible to leave this loop with all possible parents having been1150

29 # deemed invalid because of a previous parent choice made in this1151

30 # partial tree. In that case , the partial tree is effectively discarded.1152

31 if ∃s s.t. childsum[i, s] + φjs > φis:1153

32 # We violate tree constraints in cancer sample s,1154

33 # so reject this as a potential solution.1155

34 continue1156

35 new_csum = copy(childsum)1157

36 new_csum[i, s] += φjs ∀s1158

37 τ̃ = copy(τ ′)1159

38 # We don’t violate tree constraints , so for this partial tree ,1160

39 # resolve j’s parent as node i.1161

40 τ̃cj = 0 ∀c ∈ {0, 1, . . . ,K} − {i}1162

41 partials.append ((i+ 1, τ̃ , new_csum))1163

42 return trees1164

43 }1165

Listing 3: Algorithm to enumerate trees based on τ graph.

By implementing this algorithm in Python and exploiting Numba, we can enumerate trees for all1166

576 simulated datasets quickly.Improving runtime through parallelization would be trivial, given that the1167

algorithm need make only a single pass through each τ ′ graph, without having to backtrack “up” the1168
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graph to alter edges corresponding to fully resolved parents. Though the algorithm offers the choice of1169

DFS or BFS when exploring the τ graph, DFS is generally superior. As the tree enumeration algorithm1170

proceeds down the τ graph, DFS allows it to quickly determine whether a parental choice made upstream1171

of the nodes being considered was invalid, making it impossible for a downstream node to find any parent.1172

DFS will quickly find this parent-less downstream node and so discard the partial tree. BFS, conversely,1173

will keep the invalid partial tree in memory as it futilely resolves parents of other nodes before locating1174

the parent-less node, while also storing in memory other variants of the invalid partial tree that retain1175

the erroneous parental choice. The memory demands of the BFS algorithm variant can thus be much1176

higher than DFS, while conferring no benefit.1177

Additionally, we could alter the make_tau algorithm to remove edges that are clearly invalid before1178

beginning enumeration. Suppose in τ we have a node j whose only possible parent is i, and that there1179

exists another node k who is also a possible child of i, implying φis ≥ φjs and φis ≥ φks for all cancer1180

samples s. Furthermore, suppose φis − φjs < φks for at least one s. This implies that, by exploiting the1181

knowledge that i must be the parent of j, we can eliminate i as being a possible parent of k. Moreover,1182

by eliminating the i-to-k edge from τ , we may have determined with certainty the parent of k. Supposing1183

this is true, we label k’s parent as i′, and can eliminate any edges from i′ to other possible children k′1184

that would now violate the tree constraints. In this manner, we can propagate constraints through τ at1185

the algorithm’s outset to eliminate edges from consideration. We have not implemented this optimization1186

here, as tree enumeration was already sufficiently fast for our purposes.1187
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10 Supplementary information1205

10.1 Clustering mutations into subclones1206

10.1.1 Clustering overview1207

Pairtree takes as input a clustering of mutations into subclones. Pairtree provides two mutation clustering1208

algorithms for grouping mutations into subclones. Mutation clusters may also be generated by other1209

methods. Alternatively, Pairtree may be run on the mutations directly without first clustering them into1210

subclones, yielding a mutation tree instead of a clone tree. A mutation tree is equivalent to a clone tree1211

in which each clone bears only a single distinct mutation, such that every tree node corresponds to a1212

unique mutation.1213

Both of Pairtree’s mutation-clustering algorithms use a Dirichlet process mixture model (DPMM)1214

and perform inference via Gibbs sampling. The algorithms differ in how they define their probabilistic1215

clustering models. Let Π = {π1, π2, ..., πM} represent a clustering ofM mutations into K clusters, with πi1216

indicating the assignment to a cluster of mutation i, such that πi ∈ {1, 2, ...,K}. Each cluster corresponds1217

to a genetically distinct subclone. By virtue of using a DPMM, K is not fixed, but instead inferred from1218

the data.1219

Let x represent the mutation read count data. From these, we will define the posterior distribution1220

over clusterings1221
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p(Π|x) =
p(x|Π)p(Π)

p(x)
. (25)

Each clustering model defines its own likelihood p(x|Π), but uses the same clustering prior p(Π). The

clustering prior draws on the DPMM concentration hyperparameter α, representing the cost of placing a

mutation in a new cluster relative to adding it to an existing cluster. For K clusters over M mutations,

with nk mutations in cluster k, we define

p(Π) =
αK
∏K
k=1(nk − 1)!

α(α+ 1) . . . (α+M − 1)
. (26)

Both clustering models use Gibbs sampling, such that each clustering iteration resamples the cluster1222

assignment of each mutation individually, conditioned upon the assignments of all other mutations. Thus,1223

we wish to compute p(πi|Π̃i, x̃i), where πi indicates the cluster assignment of mutation i, Π is the cluster1224

assignments of all mutations including i, and Π̃i represents the cluster assignments of all mutations1225

excluding i, such that Π̃i = Π− {πi} = {π1, π2, . . . , πi−1, πi+1, . . . , πM}.1226

By representing the data associated with all mutations except i with x̃i, we get1227

p(πi|Π̃i, x) =
p(Π|x)

p(Π̃i|x)

=
p(Π|x)

p(Π̃i|x̃i)

=

p(x|Π)p(Π)
p(x)

p(x̃i|Π̃i)p(Π̃i)
p(x̃i)

∝ p(x|Π)p(Π)

p(x̃i|Π̃i)p(Π̃i)
. (27)

In Eq. (27), we use Eq. (26) to establish1228

p(Π)

p(Π̃i)
=


nk

α+M−1 if πi = k and cluster k already exists with nk members

α
α+M−1 if πi = k and cluster k is a new cluster

. (28)

To complete Eq. (27), we need only define p(x|Π)

p(x̃i|Π̃i)
. We leave this definition to the clustering models1229
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described in Section 10.1.2 and Section 10.1.3. Once this factor is defined, we can compute p(πi|Π̃i, x)1230

because we have in Eq. (27) a quantity proportional to it.1231

p(πi = k|Π̃i, x) =

p(x|Π̃i,πi=k)p(Π̃i,πi=k)

p(x̃i|Π̃i)p(Π̃i)∑K
k′=1

p(x|Π̃i,πi=k′)p(Π̃i,πi=k′)

p(x̃i|Π̃i)p(Π̃i)

. (29)

We use this definition to perform Gibbs sampling, as described in Section 10.1.4.1232

10.1.2 Clustering mutations using subclonal frequencies1233

For each mutation i in each cancer sample s, we have a variant read count Vis, reference read count Ris,1234

total read count Tis = Vis +Ris, and probability of observing the variant allele ωis. To cluster mutations1235

using subclonal frequencies, we first define for each mutation m in each cancer sample s an adjusted total1236

read count T ′ms = max(ωmsTms, Vms). Thus, T ′ms represents the (potentially fractional) number of reads1237

originating from the variant allele across all cells, regardless of whether the reads include mutation m on1238

that allele. The complete data likelihood is then defined using the following notation:1239

• S: number of cancer samples1240

• K: number of clusters1241

• M : number of mutations1242

• φks: subclonal frequency of cluster k in sample s1243

• Ck ⊆ {1, 2, ...,M}: set of mutations assigned to cluster k, with Ci ∩ Cj = ∅ for all i and j1244

This yields the complete data likelihood

p(x|Π) =
S∏
s=1

K∏
k=1

∫ 1

0

dφks
∏
m∈Ck

p(xms|φks) ,

with p(xms|φks) = Binom(Vms|T ′ms, φks). Strictly speaking, as T ′ms may take a fractional value, it

may not be a valid parameter choice for the binomial. Nevertheless, for computational convenience, we

compute the integral over the binomial using the beta function, which allows for continuous T ′ms values.

Consequently, we have

p(x|Π) =
S∏
s=1

K∏
k=1

[ ∏
m∈Ck

(
T ′ms
Vms

)]
β(1 +

∑
m∈Ck

Vms, 1 +
∑
m∈Ck

T ′ms − Vms) . (30)
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By Eq. (29), we need only define p(x|Π)

p(x̃i|Π̃i)
to complete the definitions required for Gibbs sampling.1245

This follows easily from Eq. (30), yielding1246

p(x|Π)

p(x̃i|Π̃i)
=

S∏
s=1

(
T ′is
Vis

)
β(1 + Vis +

∑
m∈Ck

Vms, 1 + (T ′is − Vis) +
∑
m∈Ck

T ′ms − Vms)
β(1 +

∑
m∈Ck

Vms, 1 +
∑
m∈Ck

T ′ms − Vms)
. (31)

This allows us to proceed with Gibbs sampling, as described in Section 10.1.4.1247

10.1.3 Clustering mutations using pairwise relations1248

As an alternative to clustering with subclonal frequencies, we can cluster mutations using the pairwise1249

relations described in Section 6.1. To do so, we compute the posterior distributions over pairwise relations1250

for every pair of individual variants A and B, rather than the supervariants defined from an established1251

clustering that are used for tree search. Computing the pairwise posterior distributions over relationships1252

MAB necessitates that we first redefine the pairwise prior described in Section 6.1.6 to permit non-zero1253

mass on the coincident relationship. For this, we allow the user to set a constant P representing the1254

prior probability that mutations A and B are coincident, with P = 1
4S for S cancer samples by default,1255

yielding1256

p(MAB) =


P if MAB = coincident

1
3 (1− P ) if MAB ∈ {ancestor , descendent , branched}

0 if MAB = garbage

.

We define p(Mab 6= coincident |x) = 1 − p(Mab = coincident |x). After computing these pairwise1257

relation posteriors for every mutation pair (a, b) ∈ {1, 2, . . . ,M}×{1, 2, . . . ,M} with a > b, we can define1258

the clustering data likelihood as1259

p(x|Π) =
∏
(a,b)

1πa=πb
p(Mab = coincident |x) + 1πa 6=πb

p(Mab 6= coincident |x) . (32)

As we consider every pair (a, b) without also including the pair (b, a), there are
(
M
2

)
factors in the
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product for M mutations. This notation relies on the indicator function

1c =


1 if c is true

0 otherwise
.

From this, we can define p(x|Π)

p(x̃i|Π̃i)
, completing the definitions required for Gibbs sampling.1260

p(x|Π)

p(x̃i|Π̃i)
=

S∏
s=1

[ ∏
a∈{1,2,...,i−1,i+1,...,M}

1πi=πa
p(Mia = coincident |x) + 1πi 6=πa

p(Mia 6= coincident|x)

]
.

(33)

Thus, p(x|Π)

p(x̃i|Π̃i)
is a product over the S cancer samples and M − 1 pairs that include mutation i. This1261

allows us to proceed with Gibbs sampling, as described in Section 10.1.4.1262

10.1.4 Performing Gibbs sampling1263

Pairtree clusters mutations using Gibbs sampling, drawing on the probabilistic framework given in1264

Eq. (29), and the subclonal frequency likelihood Eq. (31) or pairwise relationship likelihood Eq. (33).1265

The primary advantage of the subclonal frequency model is that, unlike the pairwise model, it does not1266

require the time-intensive computation of the pairs tensor before clustering can begin. The pairwise1267

model, conversely, can be easily applied to data types other than bulk sequencing that can be represented1268

within the pairwise relation framework, such as single-cell sequencing.1269

By default, the algorithm runs a total of C chains, with C set to the number of CPU cores present1270

on the system by default, and P = C executing in parallel. Both P and C can be customized by the1271

user. Each chain takes 1000 samples by default, which can also be changed by the user. Unlike the1272

tree search algorithm, the clustering algorithm makes no attempt to discard burn-in samples from each1273

chain. As tree search relies on a single clustering common to all trees, we select the clustering result1274

with the highest posterior probability as the algorithm’s output. Nevertheless, the user could easily1275

adapt the implementation to represent different possible clusterings alongside their posterior probabilities,1276

conferring insight into multiple possible solutions.1277

The subclonal frequency and pairwise relationship clustering models use different clustering initializa-1278

tions, purely as an implementation artifact. The subclonal frequency models simply assigns all variants1279

to a single cluster. Conversely, the pairwise relationship model places each variant in a separate cluster.1280
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Alternative, the pairwise model also permits the user to specify an initial clustering to use for initializa-1281

tion. In this case, user-specified clusters can be merged, but will never be split, such that the user can1282

force multiple variants to always remain in the same cluster.1283

Two hyperparameters affect clustering results. The first, α, is used in Eq. (26), with higher values1284

corresponding to an increased number of clusters. Let α̂ be the value provided by the user as input to the1285

algorithm. Given a dataset with S cancer samples, The α value used in Eq. (26) is computed from this1286

as α = 10Sα̂, with α̂ = −2 by default. Representing α on a logarithmic scale via α̂ makes representing1287

especially large or small values of α more convenient for the user, while scaling it with S ensures that the1288

algorithm’s preference for placing data points in new clusters is unaffected by the magnitude of posterior1289

weight contributed by data likelihood factors—i.e., each cancer sample-specific likelihood is effectively1290

weighted by its own 10α̂ prior factor in computing the posterior. Finally, to prevent numerical issues, we1291

force α ∈ [exp(−600), exp(600)].1292

The second clustering hyperparameter is P , the prior probability of two mutations being coincident1293

(Section 10.1.3). Similar to how the α parameter is specified, the algorithm ensures that the number of1294

cancer samples S does not affect the algorithm’s preference for starting new clusters by taking as input1295

P̂ , with P = P̂S . By default, we take P̂ = 1
4 , such that we enforce a uniform distribution over the four1296

possible pairwise relations for each cancer sample.1297

10.2 Running comparison methods1298

All methods were run on systems with dual Intel Xeon 6148 CPUs, with 40 CPU cores and 192 GB of1299

RAM. Methods were allowed up to 24 hours of compute time per dataset, and were terminated if they1300

exceeded this threshold.1301

We used CITUP v0.1.2 from https://anaconda.org/dranew/citup, corresponding to the most re-1302

cent revision at https://bitbucket.org/dranew/citup/. CITUP offers both a quadratic integer pro-1303

gramming (QIP) mode and a faster iterative approximation to it. We used the QIP mode because it alone1304

was able to take a fixed clustering as input. The iterative approximation insists on clustering mutations1305

itself, which would have unfairly disadvantaged CITUP relative to other methods, as it would not have1306

known which mutations belonged to which clusters. Regardless, we tried running CITUP’s iterative mode1307

with the same supervariant-based approach we used for PhyloWGS (described below), but this did not1308

improve CITUP’s failure rate.1309

We used LICHeE version 26c2a701 from https://github.com/viq854/lichee. LICHeE could not1310

compute subclonal frequencies, so we invoked Pairtree to perform this task using the tree structures1311
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LICHeE produced. LICHeE can optionally cluster mutations itself, but we gave it the correct mutation1312

clustering as input.1313

We used PASTRI version 1d2fb83c from https://github.com/raphael-group/PASTRI, which is1314

limited to running on datasets with 15 or fewer subclones. PASTRI was given the correct mutation1315

clusters as input.1316

We used PhyloWGS version 2205be16 from https://github.com/morrislab/phylowgs. PhyloWGS1317

did not offer a means of taking a fixed clustering as input, unlike the other four methods examined, and1318

so was disadvantaged in the method comparisons. We provided as much clustering information to Phy-1319

loWGS as possible by using supervariants (Section 6.2.8), preventing the method from splitting clusters1320

such that mutations from the same cluster would be assigned to different subpopulations. Nevertheless,1321

PhyloWGS could still merge clusters such that multiple clusters’ variants would be assigned to the same1322

subpopulation.1323

10.3 Examining method failures1324

CITUP produced results for 137 of the three-subclone datasets (76%), failing on the remainder. CITUP1325

also failed on all datasets with 10, 30, or 100 subclones. For 3- and 10-subclone failures, 137 exited1326

with the error failed to optimize LP: Infeasible, while 34 failed with failed to optimize LP:1327

Unknown. Another 52 of the 10-subclone runs failed to finish in 24 hours. All 216 datasets with 30 or 1001328

subclones failed with the error create_trees failed to complete.1329

LICHeE succeeded on 477 cases. its 99 failures all occurred on 100-subclone datasets, where the1330

method failed to finish in 24 hours.1331

PASTRI only supports 15 or fewer subclones, and so failed on all 216 datasets with 30 or 100 subclones.1332

For 37 datasets with 3 or 10 subclones, PASTRI succeeded in sampling at least one tree with subclonal1333

frequencies. On 22 datasets, all of which had 10 subclones, PASTRI failed to finish within 24 hours.1334

PASTRI terminated without sampling any trees for 220 datasets, comprising a mixture of 3- and 10-1335

subclone cases. Additionally, on 81 datasets, PASTRI sampled one or more trees, but failed at later steps1336

of its pipeline, without writing usable output. These 81 cases included four types of failure.1337

• PASTRI failed the assertion assert(round(slack[j],10) >= 0) in gabow_myers.py for one ten-1338

subclone case.1339

• PASTRI failed with a ValueError: too many values to unpack exception for other cases.1340
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• In some cases, the trees had fewer nodes than expected, despite being given the correct number of1341

subclones as input.1342

• Some cases included invalid blank lines for some of their subclonal frequencies, evidently stemming1343

from an error when frequencies of exactly 1 were output as blanks.1344

PhyloWGS succeeded on 535 datasets. Amongst these, it finished all 1000 burn-in and 2500 posterior1345

samples within 24 hours for 463. For another 72 cases, comprising a mixture of 30- and 100-subclone1346

datasets, it finished the burn-in samples and at least one posterior sample, without finishing all 25001347

posterior samples. These 72 cases were counted as successes, but assigned wall-clock times and CPU1348

times of 24 hours (Section 10.5.2). The remaining 41 runs failed to complete their burn-in portion within1349

24 hours, and so were counted as failures. All such cases had 100 subclones.1350

10.4 Why existing algorithms failed1351

Given that the algorithms we compared against often failed to produce results on our simulated datasets,1352

considering possible reasons for this poor performance is a worthwhile exercise. When building trees1353

with few subpopulations, exhaustive enumeration algorithms are attractive, as they promise to find the1354

single best tree by considering all possibilities. As our simulations demonstrated, however, enumeration1355

algorithms cannot cope with more than ten subpopulations, as the number of possible trees becomes1356

too great, even when constraints are employed to reduce possible tree configurations. Stochastic search1357

algorithms are a superior approach when faced with numerous subpopulations, provided they can locate1358

high-likelihood regions of tree space and limit their search to those areas. When this space is searched1359

blindly, however, it remains difficult to navigate, given the massive number of possible clone trees formed1360

from having many subpopulations.1361

We hypothesize that CITUP attempted to enumerate all trees with a given number of subpopula-1362

tions, but faced too many trees to make this approach feasible when provided with more than three1363

subpopulations. Thus, CITUP is limited to datasets with only a small number of subclones.1364

PASTRI attempted to overcome the difficulties of enumeration by first sampling subclonal frequencies,1365

then enumerating only trees consistent with those frequencies. Because mutation VAFs are independent1366

from the tree when conditioned upon the subclonal frequencies, PASTRI can treat its approximate pos-1367

terior over subclonal frequencies as a proposal distribution for importance sampling, where the target is1368

the posterior distribution over subclonal frequencies permitted by the true tree. The PASTRI implemen-1369

tation is nevertheless limited to 15 subpopulations [37]. Even with ten subpopulations or fewer, because1370
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PASTRI samples frequencies without considering tree structure, the frequencies are often inconsistent1371

with any tree when the algorithm is given many cancer samples, as the frequencies collectively impose1372

constraints that rule out all possible trees. A weakness of this approach becomes apparent in real cancer1373

datasets, where new subpopulations often emerge when they acquire driver mutations that confer a strong1374

selective advantage, leading to them displacing their parents such that the subclonal frequency of the1375

child is only slightly greater than that of the parent. Indeed, this situation often occurs in the leukemias1376

considered here. As PASTRI samples subclonal frequencies before enumerating consistent trees, the fre-1377

quencies sampled for children in this situation will often by chance be slightly higher than their parent,1378

rendering the correct tree structure impossible to recover.1379

LICHeE fared better than CITUP and PASTRI, as it first constructed a directed acyclic graph (DAG)1380

containing possible trees permitted by the noisy subclonal frequency estimates provided by the VAFs, then1381

only considered spanning trees of this graph [19]. However, this approach could not scale to most 100-1382

subpopulation trees, presumably because the corresponding DAGs have too many spanning trees. Even1383

in settings with 30 or fewer subclones, LICHeE exhibited considerably higher error than Pairtree both1384

with respect to subclonal frequencies and pairwise relations, despite us computing subclonal frequencies1385

for LICHeE’s tree structures using the same algorithm as Pairtree. This suggests that the DAGs did1386

not include as spanning trees good tree candidates, or that the error scoring function LICHeE used1387

to indicate tree quality did not properly reflect tree quality. Some of LICHeE’s shortcomings may have1388

arisen because it takes as input only VAFs, rather than mutation read counts. Consequently, LICHeE has1389

no knowledge of how precisely the VAFs should reflect underlying subclonal frequencies, unlike methods1390

such as Pairtree that use a binomial observation model.1391

When PhyloWGS fared poorly, its performance could often be attributed to its inability to use a fixed1392

clustering, unlike the other methods. Because we gave PhyloWGS supervariants rather than individual1393

mutations in an attempt to mitigate this discrepancy, even though PhyloWGS could not split clusters into1394

multiple subclones, the algorithm could effectively merge distinct subclones into single entities, causing1395

considerable pairwise relationship error.1396

Given that non-Pairtree methods may have been particularly prone to failing on the most challenging1397

simulations, summary statistics reported for these methods may be unfairly biased in their favour, as1398

they would only reflect performance on less-challenging datasets. Nevertheless, when we compare Pairtree1399

to each method on only the subset of datasets for which the comparison method succeeded (Fig. S4),1400

we see that Pairtree almost always produces better VAF losses, with the only exception being several1401

100-subpopulation datasets where PhyloWGS beat Pairtree.1402
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In general, stochastic search algorithms are a superior approach relative to exhaustive enumeration1403

methods when faced with numerous subpopulations, since they avoid the exponential growth in number1404

of trees as a function of number of subclones [20]. For stochastic search algorithms to work well, they1405

must locate high-likelihood regions of tree space and limit their search to those areas. However, as data1406

become richer, tree space is rendered more complex, such that existing search algorithms struggle to1407

navigate through it. This was apparent with PhyloWGS, which consistently exhibited higher error for1408

many-cancer-sample simulations than few-cancer-samples ones. By constructing the pairs tensor and1409

using this as a guide to tree search, Pairtree is better able to cope with many cancer samples and the1410

constraints they impose.1411

10.5 Comparing the computational costs of methods1412

10.5.1 Criteria for measuring computational costs1413

Pairtree and the four methods we compared to it differed substantially in the computational costs they1414

imposed, as well as their ability to conduct computations in parallel using multiple CPU cores, using1415

either multiple processes or multiple threads. Pairtree, CITUP, and PhyloWGS had the ability to conduct1416

computations in parallel, while LICHeE and PASTRI did not. We used this ability only for Pairtree,1417

however. For CITUP, using the method’s multiple-process mode did not improve its failure rate. Though1418

PhyloWGS allows running multiple MCMC chains in parallel, doing so was not helpful for this study—1419

PhyloWGS’ failures stemmed from an inability to sample enough trees to form a posterior estimate in1420

24 hours from a single chain, and so increasing the number of chains only amplified the computational1421

burden without improving the failure rate.1422

We measured runtime on each simulated dataset for each method both with respect to CPU time1423

and wall-clock time. CPU time indicates the number of CPU seconds consumed by a method’s primary1424

process and any subprocesses or threads it spawned, in either user or kernel mode. Wall-clock time1425

measures the elapsed time a method took. Runs that exited with an error without producing a result,1426

or that failed to finish in 24 hours of wall-clock time, are excluded from the results. Thus, the maximum1427

wall-clock time observed for any method is 86,400 seconds. Considering both CPU time and wall-clock1428

time is worthwhile—CPU time reflects the total computational burden imposed by a method, while wall-1429

clock time indicates how long a method will take to finish in a multi-CPU environment. We conducted1430

all experiments on compute nodes using dual Intel Xeon Gold 6148 CPUs, such that 40 CPU cores were1431

available to each method. On systems with only one CPU, we expect that wall-clock time will generally1432
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be slightly more than CPU time, as that single CPU must also be used for the operating system and1433

other concurrent tasks. In our experiments, however, non-Pairtree methods that used only a single CPU1434

core for a run typically achieved wall times that were less than CPU times, given that system or library1435

calls they made (e.g., to numerical routines in the Python library NumPy) could be parallelized.1436

10.5.2 Examining method runtime1437

In cases with 3, 10, or 30 subclones, we see similar patterns of CPU time consumed for Pairtree, LICHeE,1438

and PhyloWGS (Fig. S6). These three methods succeeded on all simulations with 30 or fewer subclones,1439

simplifying comparisons. Across datasets with 3, 10, or 30 subclones, LICHeE was fastest, realizing1440

median CPU times of 0.46 seconds, 1.6 seconds, and 2,722 seconds, respectively. This characterization1441

is unfair to other methods, however, as LICHeE did not compute subclonal frequencies for the tree1442

structures it produced. To overcome this deficiency, we invoked Pairtree to compute subclonal frequencies1443

for LICHeE’s results, but did not include the time this step took in LICHeE’s CPU time or wall-clock1444

time measurements. Pairtree was slower than LICHeE, taking median times of 993 seconds, 1506 seconds,1445

and 4391 seconds in settings with 3, 10, or 30 subclones, respectively. PhyloWGS was faster than Pairtree1446

for 3-subclone cases, needing only a median CPU time of 509 seconds, but slower in 10- and 30-subclone1447

cases, taking median times of 1,781 and 35,472 seconds. When we compare each method’s CPU time1448

to Pairtree’s on only the subset of datasets for which each method succeeded, these observations are1449

reinforced, with LICHeE usually being faster than Pairtree excepted for outliers corresponding to 100-1450

subclone cases, and PhyloWGS usually being slower than Pairtree (Fig. S8). As CITUP could not produce1451

results for datasets with more than three subclones, and PASTRI failed on most three- and ten-subclone1452

cases, we do not consider their performance in depth, except to note that CITUP and PASTRI are1453

generally fast when they can produce results for three-subclone cases, while PASTRI is slower than all1454

other methods on the 4% of 10-subclone datasets where it ran successfully (Fig. S6).1455

When examining wall-clock times, however, we see that Pairtree fares better because of its use of1456

multiple CPU cores. In few-subclone cases, Pairtree is still slower than LICHeE, with Pairtree taking1457

median wall times of 55 seconds and 69 seconds in the 3- and 10-subclone settings, respectively, while1458

LICHeE took 0.326 and 0.93 seconds, respectively (Fig. S7). Conversely, Pairtree is faster than LICHeE1459

in settings with more subclones. For 30-subclone datasets, Pairtree takes a median 148 seconds, while1460

LICHeE takes 2,685 seconds. PhyloWGS was considerably slower with respect to wall-clock time than1461

LICHeE and Pairtree across all three settings. When runtime on individual datasets is examined, Pairtree1462

demonstrates a comparable or superior wall-clock time relative to PhyloWGS and LICHeE (Fig. S9).1463
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Datasets with 100 subclones warrant separate consideration. Pairtree took a median 23,827 seconds1464

of CPU time on 100-subclone cases (Fig. S6), but only a median 675 seconds of wall-clock time (Fig. S7).1465

LICHeE produced results for only 8% of these datasets, where it took a median 74,790 seconds of CPU1466

time. PhyloWGS yielded output for 62% of such datasets, taking median times of 86,400 seconds for1467

both CPU time and wall-clock time. The method’s median times being equal to 24 hours reflects how1468

we handled incomplete runs. According to the (default) parameter settings used for these experiments,1469

PhyloWGS discards the first 1000 samples from its MCMC chain as burn-in samples not reflective of1470

the true posterior, then takes an additional 2500 posterior samples. If the method finished the 10001471

burn-in samples within the 24-hour wall-clock period permitted, but completed fewer than the 25001472

posterior samples, we used whatever partial set of posterior samples the algorithm produced to evaluate1473

its accuracy, while recording its runtime as 24 hours. The median times being 24 hours indicate that1474

most successful 100-subclone runs fell into this category. Conversely, the 68% of 100-subclone cases where1475

we recorded no output correspond to instances where PhyloWGS could not finish its initial 1000 burn-in1476

samples.1477

10.5.3 Evaluating the performance costs of Pairtree’s two stages1478

The two primary steps composing the Pairtree algorithm are computing pairwise relations between sub-1479

clones and searching for trees. Tree search includes computing MAP subclonal frequencies for each tree1480

structure. The amount of computation needed to build the pairs tensor is fixed, as a distribution over1481

relations for every pair must be computed regardless of how many CPU cores are available. As relations1482

for each subclone pair are independent of all other subclones, the pairwise computations are embarrass-1483

ingly parallel, such that they can be trivially computed in parallel for all pairs. Thus, though the total1484

computational burden represented by CPU time is constant, the wall-clock time can be greatly reduced1485

by using more CPU cores, with N cores reducing the time needed for this stage nearly by a factor of1486

N . By comparison, tree search requires that each MCMC chain acquire samples serially, such that any1487

one chain cannot be parallelized. Multiple chains, however, can execute in parallel, increasing CPU time1488

consumed in proportion to the number of chains, but with little effect on wall-clock time.1489

In the Pairtree experiments illustrated throughout this paper, we used all available 40 CPU cores on1490

our compute nodes to calculate pairwise relations in parallel, and to run 40 parallel MCMC chains for tree1491

search. Doing so greatly inflated CPU time relative to wall-clock time, but likely was not necessary to1492

realize good results. Results of nearly equal quality could perhaps have been obtained from Pairtree using1493

fewer chains—while any one chain may become mired in pathological regions of tree space corresponding1494

67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 18, 2021. ; https://doi.org/10.1101/2020.11.06.372219doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.06.372219


to a local optimum, such that multiple chains initialized from different positions can yield better samples,1495

we likely did not need all 40 chains to realize this benefit. Nevertheless, even if all 40 chains were necessary1496

to produce results of this quality, running those chains serially on a single CPU would have been feasible.1497

In this case, the wall-clock time would have been approximately equal to the CPU time. Amongst the1498

576 simulations, Pairtree’s longest run was on a 100-subclone, 100-cancer-sample dataset that took 1,1101499

seconds of wall-clock time (Fig. S7) and 36,606 seconds of CPU time (Fig. S6). Running all 40 chains1500

serially on a single CPU would thus have resulted in a wall-clock time of slightly over 10 hours.1501

We can understand the relative computational costs of Pairtree’s two primary steps by comparing the1502

runtimes of the full Pairtree algorithm to the portion that computes the pairwise relations, denoted as1503

pairs tensor. By subtracting the pairs tensor runtime from that of full Pairtree, we reveal the cost of1504

tree search alone. Comparisons are most informative for the 100-subclone, 100-cancer-sample datasets,1505

where the runtimes are longest and differences are thus clearest. For instance, the single most costly1506

Pairtree run took 1,110 seconds of wall-clock time and 36,606 seconds of CPU time, as above (Figs. S61507

and S7). Computing the pairs tensor alone took 81 seconds of wall-clock time and 2,666 seconds of1508

CPU time. Whether we consider CPU times or wall-clock times, we see 7% of Pairtree’s time went to1509

computing pairwise relations, while 93% went to tree search. If the number of CPU cores dedicated to1510

this run were cut tenfold to four CPUs rather than 40, we would expect the wall-clock cost of computing1511

pairwise relations to increase proportionally to 810 seconds, while the CPU time would remain constant.1512

Conversely, the wall-clock cost of tree search could be kept constant at 1,110 seconds by reducing the1513

number of MCMC chains to four, at a potential cost in result quality. In this instance, we would expect1514

Pairtree to take 810 + 1, 110 = 1, 920 seconds, with tree search consuming 58% of the total. Thus, the1515

relative burdens of computing the pairs tensor and performing tree search depend both on the number1516

of CPU cores used in parallel, and on the number of MCMC chains from which the user elects to sample1517

trees.1518

10.6 Multiple trees are often consistent with observed data, which Pairtree1519

can accurately characterize1520

When building trees, algorithms draw on the subclonal frequencies of constituent subclones across cancer1521

samples and relationships between these frequencies to determine possible tree structures. Thus, to assess1522

method performance on simulated data, we can enumerate all tree structures consistent with the true1523

subclonal frequencies used to generate the data, yielding a distribution over trees. This distribution will1524
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include the true tree used to generate the data, as well as any other tree structures that are also consistent1525

with the subclonal frequencies. A perfect method would be able to recover this distribution exactly,1526

despite being given only noisy estimates of the true subclonal frequencies via the observed mutation1527

frequencies. To evaluate a method, we can then determine the extent to which its tree distribution1528

matches the true distribution of all trees consistent with the true subclonal frequencies.1529

Amongst our 576 simulated datasets, if only one cancer sample is provided, there are usually multiple1530

trees consistent with the data (Fig. S10a), regardless of how many subclones are in the tree. This reaches1531

an extreme in our ten-subclone, single-sample simulations. This illustrates the importance of understand-1532

ing uncertainty in these reconstructions, rather than simply producing a single answer (Section 3.9)—the1533

perfect method should represent all of these trees as being equally consistent with the data, such that the1534

user should have no reason to prefer any one structure over the others. Drawing on more cancer samples1535

reduces this uncertainty, with most ten-sample datasets possessing only a single possible tree across the1536

three-, ten-, and 30-subclone settings (Fig. S10a). With 100 subclones, ten samples still permits little1537

uncertainty, with the number of possible trees rarely exceeding ten. Note, however, that in this simulated1538

setting, multiple samples are likely to be more powerful than they would be for real cancers. Here, each1539

sample had its subclonal frequencies generated independently from other samples, increasing the chance1540

that the sample induces tree structure constraints because its frequencies are different from all other1541

samples. In reality, samples are likely to have correlated frequencies, given that they may be taken from1542

similar spatial or temporal sites in the cancer that have similar population proportions.1543

By computing the entropy of tree distributions, we can characterize how many high-confidence trees1544

exist in the distribution. Effectively, the entropy is a posterior-weighted count of the number of trees,1545

with the weights in the true tree distribution being uniform because all solutions are equally consistent1546

with the data. To determine how many high-confidence solutions was Pairtree was finding relative to1547

the number of possible solutions, we compared Pairtree’s tree entropy for each simulated dataset to the1548

entropy of the true tree distribution (Fig. S10b). Pairtree’s entropy generally tracked the true entropy1549

well, suggesting that Pairtree’s uncertainty was usually consistent with the uncertainty in the true tree1550

distribution. Notably, in settings where the number of cancer samples was higher than the number1551

of subclones, there was only ever one true tree (Fig. S10a), while Pairtree’s tree distribution entropy1552

exceeded the true distribution’s entropy by more than 5.9× 10−6 bits with only one exception across 1811553

simulations (Fig. S10b). These results demonstrate that, when the data is sufficiently high-resolution as1554

to permit only a single solution, Pairtree finds only a single solution.1555

Though examining tree distribution entropies reveals the number of high-confidence trees Pairtree1556
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finds, it says nothing about the quality of those trees. To gain further insight, we can view a distribution1557

over trees as inducing a distribution over the parents of each subclone. For a given dataset, to compare1558

the Pairtree-computed tree distribution to the distribution of trees consistent with the true subclonal1559

frequencies, we can consider the joint Jensen-Shannon divergence between parent distributions induced1560

by these tree distributions, normalized to the number of subclones in the tree such that the divergence1561

will always lie between zero bits and one bit. We refer to this metric as the parent JSD. Even if the tree1562

distributions have no overlap—which could occur, for instance, if there is only a single true tree that1563

Pairtree fails to locate—the parent JSD nevertheless allows the distributions to have a small divergence if1564

they agree on parent choice for most subclones. We see that the parent JSD falls as the number of samples1565

increases for a given number of subclones (Fig. S10c), suggesting that Pairtree can efficiently exploit the1566

constraints provided by additional cancer samples to produce higher-quality trees. Moreover, when the1567

number of samples exceeds the number of subclones such that there is only one tree consistent with the1568

true subclonal frequencies (Fig. S10a), the parent JSD is effectively always zero, complementing the tree1569

entropy analysis (Fig. S10b) to show that the one tree Pairtree finds is almost perfectly consistent with the1570

true tree. Additionally, when the pairwise relation error is examined at a more granular level (Fig. S10d),1571

we see that for a given number of subclones and samples it is always less than the parent JSD. This suggests1572

that, even when Pairtree doesn’t perfectly determine the parents of each subclone, the distributions over1573

relationships between subclones (e.g., ancestor-descendant or on-different-branches) are closer to the1574

truth. The quality difference between pairwise relation distributions and parent distributions is stark for1575

the 100-subclone setting. Though Pairtree only rarely finds the correct parents, demonstrated by the1576

parent JSDs that are close to one (Fig. S10c), the pairwise relation errors are much lower (Fig. S10d),1577

indicating that the higher-level relationships between subclones are closer to being correct.1578

10.7 Characteristics of simulated data1579

10.7.1 Trees are dominated by small subclones1580

Examining statistics of simulated data illustrates factors that affect each clone-tree-reconstruction algo-1581

rithm’s ability to recover good solutions. The nodes of each clone tree correspond to populations, with1582

subclones consisting of sub-trees made up of a population and all its descendants (Section 3.1). Thus,1583

a tree with K populations defines K subclones. Subclones are nested within trees—a subclone with1584

population i at its head and c total populations is also part of a subclone with i’s parent at its head1585

and c + 1 total populations (excluding the root subclone that corresponds to the entire tree, which has1586
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no parental subclone). Characterizing subclone composition within simulated data is helpful, as several1587

properties of the simulated trees depend on how many populations compose each subclone.1588

A fully linear tree with no branching that contains K populations would yield a uniform distribution1589

over subclones consisting of 1, 2, . . . ,K populations, with exactly one subclone of each size. Branching1590

within trees depletes the contribution of larger subclones, replacing them with smaller ones. Because1591

of how we constructed simulated tree structures (Section 6.4.2), we see that small subclones dominate1592

regardless of the number of populations within a tree (Fig. S11), with most subclones consisting of ten or1593

fewer populations in the 30- or 100-subclone trees. In the tree generation algorithm, we choose parents1594

for each population in turn, selecting the preceding population as parent with 75% probability, and1595

otherwise choosing a parent uniformly from the other nodes already in the tree. As a result, the length of1596

linear chains of populations within the tree roughly follows a geometric distribution. Linear chain length1597

deviates from the distribution, however, because a node may choose as its parent the end of a different1598

chain, allowing that chain to continue extending under a new geometric process.1599

10.7.2 Tree construction becomes increasingly difficult with more subclones1600

Large trees containing many subclones are more difficult to reconstruct than small trees. In part, this is1601

because the number of possible tree structures scales exponentially with the number of populations [20].1602

We must also consider, however, how relationships between subclones become more difficult to infer as the1603

number of subclones grows, which is a factor independent of tree structure. Given how we generated the1604

simulated data (Section 6.4.2), we can derive statistics of the simulated data, then use them to show how1605

the difficulty of inferring relationships between subclones changes according to the numbers of subclones1606

and cancer samples.1607

In determining the proper placement of a population within a clone tree, two properties related1608

to population frequencies affect the difficulty of this task. Firstly, if a population k has a near-zero1609

population frequency ηks in a cancer sample s, the VAFs associated with its mutations in that sample1610

will be difficult to distinguish from the VAFs of mutations in k’s parent, which we will denote as population1611

j. This occurs because the VAFs for mutations that arose in each population are sampled based on the1612

subclonal frequencies of the populations’ subclones (Section 6.4.2), which are computed from the sum1613

of the population frequencies composing the subclone (Section 6.3.1). Thus, when ηks ≈ 0, we have1614

φks ≈ φjs, and the VAFs in k and j will be nearly the same. Assuming there are no cancer samples other1615

than sample s, we could thus swap the positions of k and j in the tree without affecting tree likelihood—1616

both populations would have nearly the same subclonal frequency fit to them in the tree, which would1617
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fit the two sets of VAFs almost equally well. Larger population frequencies avoid this situation, making1618

clearer the proper ordering of parents and children.1619

Intuitively, as more populations appear in a tree, the ηks frequencies will become smaller on average,1620

as the unit mass apportioned by the Dirichlet distribution from which the frequencies are drawn must be1621

split amongst more entities. Indeed, by the properties of the Dirichlet distribution, for K subpopulations1622

in a sample s with [η0s, η1s, . . . , ηKs] ∼ Dirichlet(α, α, . . . , α) (Section 6.4.2), we have E[ηks] = 1
K . This1623

is evident when we examine the distribution over ηks frequencies for each population in the simulated1624

trees (Fig. S12A), where the largest frequency observed across cancer samples for each population is typ-1625

ically close to 1 for trees with three subclones, but gets progressively smaller as the number of subclones1626

increases, with populations in 100-subclone trees dominated by small frequencies. To distinguish a pop-1627

ulation from its parent, it need have a non-negligible ηks frequency in only one sample s, which is part1628

of why adding cancer samples is so helpful in resolving evolutionary relationships between populations,1629

and ultimately reconstructing an accurate clone tree.1630

The second property related to population frequency that affects the difficulty of clone tree recon-1631

struction is the variance over cancer samples s in a subclone k’s frequencies φks. Suppose you are trying1632

to resolve the position of two subclones A and B in a tree, using the frequencies in cancer samples s1633

and s′. To gain the greatest benefit from having two samples rather than only one, we want there to1634

be as much variance as possible in the subclonal frequencies between samples. The power of multiple1635

samples comes from these differences—for instance, if φAs > φBs, but φAs′ < φBs′ , we conclude that1636

A cannot be the ancestor of B, and B cannot be the ancestor of A, since an ancestral subclone must1637

have a frequency at least as high as its descendants across every cancer sample. This is termed the1638

crossing rule [36], and leads to the conclusion that A and B must occur on separate tree branches. Un-1639

fortunately, as we observe only a noisy estimate of the subclonal frequencies through the VAFs, if the1640

subclonal frequencies for A and B are nearly the same in both samples, the noise in VAFs can obscure1641

this relationship. The less variance there is between φAs and φAs′ , and between φBs and φBs′ , the more1642

likely that |φAs−φBs| = |φAs′ −φBs′ | < ε for some near-zero ε, and the more difficult it will be to utilize1643

the crossing rule with our noisy observations.1644

Suppose we have a subclone C composed of |C| ≤ K populations, such that C ⊆ {0, 1, . . . ,K}. As1645

before, given cancer sample s, we have population frequencies [η0s, η1s, . . . , ηKs] ∼ Dirichlet(α, α, . . . , α)1646

(Section 6.4.2), and φCs =
∑
i∈C ηis. By the properties of the Dirichlet distribution, we know that the1647

sum of Dirichlet-distributed variables is itself Dirichlet-distributed, such that1648
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[∑
i∈C

ηis, η(|C|+1)s, . . . , ηKs

]
∼ Dirichlet(|C|α, α, . . . , α) ,

where the first element of the vector represents the subclonal frequency
∑
i∈C ηis = φCs, and the final1649

K − |C| elements represent the population frequencies of all populations not in subclone C. From this,1650

we get1651

var(φCs) =
|C|
K (1− C

K )

Kα+ 1
.

From the denominator, we see that variance is reduced either with more populationsK, or with a larger1652

Dirichlet parameter α. By plotting both the (theoretical) population standard deviation and (empirical)1653

sample standard deviation (Fig. S12B), we see that the latter conforms to the former, and that variance1654

is maximized for subclones with K
2 populations, conferring the greatest benefit from multiple cancer1655

samples to populations near the root of the tree, such that they have half the populations as descendants.1656

Conversely, subclones with less variance in frequency across samples will either be at the very top of the1657

tree, with almost all populations as descendants, or at the bottom of the tree, with few populations as1658

descendants. Note that, in Fig. S12, the sample standard deviation appears less than the population1659

standard deviation, particularly in the three- and ten-subclone cases. This effect is exaggerated for those1660

settings because they include single-sample datasets with zero sample standard deviation, whereas the1661

30- and 100-subclone datasets do not.1662

10.7.3 Simulated data often include subclones that are impossible to resolve1663

If a population k has a near-zero population frequency ηks across all cancer samples s, its position in a1664

clone tree relative to its parent j is difficult or impossible to resolve. Since k’s subclonal frequency φks1665

is equal to the sum of the population frequencies of all populations in the subclone, when ηks ≈ 0, we1666

have φks ≈ φjs. When this occurs, we will have two candidate trees that fit the data equally well—one1667

in which k is the parent of j, and one in which j is the parent of k. Both tree structures would permit1668

tree-constrained subclonal frequencies that fit the observed VAF data almost equally well. Well-behaved1669

algorithms should find both tree structures. Thus, populations whose frequencies are negligible across1670

all cancer samples lead to their subclonal frequencies being nearly equal across all cancer samples, which1671
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leads to ambiguity. In real data, we are unlikely to be faced with this situation. The observed VAFs1672

for two variants serve as noisy estimates of their subclones’ subclonal frequencies. When the observation1673

noise exceeds the negligible differences in the subclonal frequencies, we will deem the two variants as1674

having originated from the same subclone, such that the variants are placed in a single cluster.1675

Nevertheless, examining how often this situation occurs in simulated data is worthwhile, as it grants1676

insight into how well algorithms deal with ambiguity. Note that noisy observations of near-zero population1677

frequencies are not the only source of ambiguity—ambiguity can exist even given noise-free frequencies,1678

or with large population frequencies. All cases where tree enumeration using the noise-free subclonal1679

frequencies found multiple trees (Section 6.5.4) are demonstrations of this alternative ambiguity. Tree-1680

reconstruction algorithms should be able to deal with both sources of ambiguity by finding the full range1681

of solutions permitted for a dataset. With respect to our evaluation metrics, VAF loss (Section 3.4) does1682

not capture algorithms’ performance in this respect, since it penalizes discrepancies between VAFs and1683

tree-constrained subclonal frequencies, and so algorithms can do well regardless of whether they find a1684

single good solution or multiple equivalent solutions. Relationship reconstruction error (Section 3.4),1685

however, properly reflects algorithms’ performance in the face of ambiguity—in the example above in1686

which subclones j and k had nearly equal subclonal frequencies across all cancer samples, the solutions1687

recovered by a tree-reconstruction algorithm should show both that k could be an ancestor of j, and j1688

could be an ancestor of k.1689

To understand the role near-zero population frequencies play in introducing ambiguity, we must first1690

define a threshold ε on population frequencies, such that we will say a population frequency η is near-1691

zero if η < ε. This ε should ideally be defined as a function of read depth, since depth determines1692

how precisely the observed VAFs reflect the underlying subclonal frequencies, and ultimately how small1693

population frequencies can get before they are swamped by noise. To set this threshold, consider a fixed1694

read depth of D = 200, such that with V variant reads and R reference reads we have D = V +R = 200.1695

By our simulation framework, we have V ∼ Binom(D,ωφ), yielding [E](V ) = ωφD. We will define a1696

non-negligible population frequency as that which produces a difference of one read in the mean read1697

counts. While this is a subtle difference, we must remember that, in tree search, the read counts for all1698

variants belonging to a cluster will be summed, exaggerating the difference in observations for the two1699

clusters. Thus, for populations j and k, we will assume we have subclonal frequencies φj and φk with1700

φj > φk. Moreover, assume j is the parent of k, such that φj = φk + ηj . This gives us1701
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ωφjD − ωφkD ≥ 1

φj − φk ≥
1

ωD

ηj ≥
1

ωD

With ω = 1
2 , this results in a non-negligible population frequency of ηj ≥ 0.01 for read depth D = 200.1702

Conversely, we will define a near-zero population frequency as the complement of this, resulting in a1703

threshold ε = 0.01. To simplify the analysis, we will use this threshold regardless of read depth. With1704

read depths D ∈ {50, 200, 1000} (Section 6.4.2), this choice of ε will yield a greater difference in binomial1705

mean for D = 1000, and a smaller difference for D = 50. Nevertheless, the conclusions we reach for fixed1706

ε will be broadly applicable regardless of read depth.1707

First, we will consider how many populations within each simulated dataset have population frequen-1708

cies less than ε = 0.01 across all cancer samples s. Let ηks denote the population frequency of population1709

k in cancer sample s. For K subpopulations, we have [η0s, η1s, . . . , ηKs] ∼ Dirichlet(α, α, . . . , α). By the1710

properties of the Dirichlet distribution, we have1711

ηks ∼ Beta(αks,

K∑
j=0

1j 6=kαjs)

= Beta(α,Kα) .

Consequently, we since each cancer sample’s population frequencies are independent of every other,1712

for S cancer samples we get1713

p(ηk1 < ε, . . . , ηkS < ε) =
S∏
s=1

p(ηks < 0.01)

=
S∏
s=1

∫ ε

0

dxp(ηks = x)

=
S∏
s=1

β(ε|α,Kα)

β(α,Kα)

=
[β(ε|α,Kα)

β(α,Kα)

]S
(34)
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Here, β(ε|α,Kα) refers to the incomplete beta function, and β(α,Kα) refers to the complete beta1714

function. Empirically, the proportion of simulated populations with near-zero population frequencies1715

across samples agrees with the result predicted above (Fig. S13). Datasets with 30 or 100 populations1716

and one or three cancer samples would have at least 38% of populations with near-zero population1717

frequencies in all cancer samples, rendering their positions in the tree difficult to resolve. This would1718

create excessive ambiguity, which is why we did not include such datasets in our simulated data.1719

The relationship reconstruction error we used to evaluate method performance on simulated data1720

reflected how algorithms dealt with two sources of ambiguity: firstly, the multiple tree structures poten-1721

tially permitted by the noise-free frequencies (Section 10.6); and, secondly, the additional tree structures1722

permitted by populations with near-zero population frequencies. As we established above, if a population1723

k has near-zero population frequencies across all cancer samples, the subclonal frequencies of k and its1724

true parent j will be almost equal, such that the noisy VAF observations will render difficult the task of1725

determining whether j is the parent of k or vice versa. Observe that 14% of populations in 100-subclone,1726

10-sample trees have noise-free population frequencies less than ε = 0.01 across cancer samples. In the1727

average tree, these would correspond to 14 populations with near-zero frequencies. Since each such pop-1728

ulation could be swapped with its parent while minimally affecting tree likelihood, these would generate1729

214 ≈ 16, 000 additional trees. This assumes that none of the populations with near-zero frequencies have1730

edges between them; chains of two or more populations with near-zero frequencies would further increase1731

the number of potential tree configurations. We expect noisy observations to be the dominant source1732

of ambiguity. In the 100-subclone, 10-sample setting, none of the 36 simulated datasets permitted more1733

than 42 trees given the noise-free frequencies (Fig. S10), which is a value far smaller than the 16, 0001734

trees we expect to be permitted by the noisy observations.1735

This analysis also helps us understand how many cancer samples we must simulate to remove ambigu-1736

ity in tree search arising from noisy observations for a given number of subclones. Taking our threshold1737

ε = 0.01, we can ask how many cancer samples we need before p(ηk1 < ε, . . . , ηkS < ε). By solving for1738

S in Eq. (34), we find that need 24 or more samples before the probability of a population frequency1739

being less than ε across all samples falls below 1%. This has implications for variant clustering as well,1740

since a population’s variants become distinguishable from other variants by the clustering algorithm only1741

when one or more cancer samples with non-negligible frequencies for the associated population render1742

the VAFs clearly distinct.1743

To complement the above analysis concerning lone populations, we will also examine the probability1744

of simulated trees containing sub-trees that consist entirely of populations whose frequencies are less than1745
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ε = 0.01. We define a sub-tree to consist of a subset of the full tree’s nodes, as well as all edges between1746

them, ensuring the sub-tree is connected. Thus, a sub-tree can correspond to a subclone (Section 3.1),1747

but is more general in that may omit parts of the subclone defined by the ancestral population at the root1748

of the sub-tree. For this analysis, we did not conduct an empirical examination of the simulated data,1749

but used only theoretical results derived from the Dirichlet distribution properties. Given a complete1750

tree composed of K populations as well as the root node 0, and a sub-tree composed of populations1751

T ⊆ {0, 1, . . . ,K} with size |T |, we have in cancer sample s the result1752

∑
i∈T

ηis ∼ Dirichlet(
∑
i∈T

αi,
∑
j 6∈T

αj)

= Dirichlet(|T |α, (K − |T |+ 1)α)

Note that if the sub-tree T = {j}∪{k|k is descendent of j}, then T is equivalent to the subclone with1753

population j at its head, and
∑
i∈T ηis = φjs. By using the Dirichlet’s marginal beta distribution, as in1754

the previous analysis, we can compute the probability of the arbitrary sub-tree T consisting exclusively1755

of populations whose summed frequencies across cancer samples are small, such that
∑
i∈T ηis < ε = 0.011756

for every cancer sample s (Fig. S14). For instance, in the 100-subclone, single-sample case, we have a1757

6% probability of an arbitrary eleven-population sub-tree having a near-zero population frequency sum.1758

With |T | populations in such a sub-tree, there are (T + 1)! orderings of nodes in the sub-tree that would1759

permit nearly equal tree-constrained subclonal frequencies, and thus nearly equal tree likelihood. In the1760

eleven-population case, there would thus be (11 + 1)! = 4.79e8 solution trees resulting from this single1761

ambiguous sub-tree.1762

To compute the probability of observing such a case in the simulated trees, we must first consider how1763

many linear chains of J populations exist in a tree with K nodes, as each has an equal chance of being1764

assigned these small frequencies. If a tree is fully linear with no branching, there would be (K+1)−J+11765

chains of J nodes, such that our chain of 11 populations in a 100-subclone tree would have 101−11+1 = 911766

sub-trees, assuming that tree was fully linear. This in turn yields a (100%− 6%)91 = 0.36% chance that1767

we would not observe any near-zero-frequency 11-population chains in our tree—i.e., with near certainty,1768

we would encounter such a chain. Any degree of branching in a tree can reduce the number of node chains1769

of a given length, thereby lessening the chance we would see this scenario. Nevertheless, the probability1770

can remain considerable, which is another reason we omitted the many-subclones, few-samples cases from1771

our simulated data. Amongst the settings we included, we see, for instance, that in ten-subclone, single-1772
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sample trees, 6% of five-population chains will have small population frequency sums, yielding a 35%1773

chance that we would encounter such a case in a fully linear tree.1774

10.7.4 Justifying our choice of the Dirichlet parameter for generating simulated data1775

In Sections 10.7.1 to 10.7.3, we saw that our choice of the Dirichlet parameter α when generating simulated1776

data (Section 6.4.2) affects multiple aspects of simulated data.1777

1. A smaller α leads to more variance in population frequencies between samples, increasing the chance1778

that multiple samples will make clear the proper pairwise relations between subclones.1779

2. A smaller α also leads, however, to a greater probability of observing near-zero frequencies for a1780

population across all cancer samples, inhibiting tree-reconstruction algorithms’ attempts to infer1781

the proper place for such populations in the tree. (We do not present results with alternative α1782

values here, but used these analyses to inform our choice of α.)1783

Our chosen α = 0.1 thus achieved a compromise between three factors.1784

1. It led to sufficient variance in population frequencies between cancer samples for algorithms to1785

benefit from having access to multiple cancer samples.1786

2. It avoided creating too many populations with near-zero frequencies across samples, which would1787

have created excessive ambiguity.1788

3. Yet it created enough such populations so that we could evaluate how algorithms dealt with ambi-1789

guity stemming from this source.1790

10.8 Impact of the infinite sites assumption1791

To simplify subclonal reconstruction, algorithms make the ISA, which posits that the genome is so large1792

as to be effectively infinite in size, meaning that each genomic site is mutated at most once during the1793

cancer’s evolution. This implies that the same site can never be mutated twice by separate events, and1794

that it can never return to the wildtype. Moreover, two cells bearing the same mutation are assumed to1795

share a common ancestor in which that mutation occurred. Most clone tree reconstruction algorithms1796

make this assumption. Equivalently, ISA violations can be understood as violations of the four-gamete test1797

[38]. Under this assumption, the cancer phylogeny is a perfect phylogeny, such that descendant subclones1798

inherit all the mutations of their ancestors. Critically, the ISA allows us to characterize more subclones1799
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than we have cancer samples. In addition, the ISA is necessary to infer the pairwise relationships between1800

mutations from their frequencies (Section 6.1).1801

Given complete genomes for each cancer cell, a perfect phylogeny can be constructed in linear time1802

[43], with mutations that deviate from the ISA detected via the four-gamete test [38]. However, the1803

bulk-tissue DNA sequencing data commonly used today do not provide complete genomes. Instead,1804

the samples consist of mixtures of different subclones, rendering NP-complete the construction of a1805

perfect phylogeny consistent with the exact subclonal frequencies of mutations across multiple samples1806

[44]. Nevertheless, the ISA implies relationships between mutation frequencies that can assist subclonal1807

reconstruction. Firstly, mutations in ancestral subclones must always have subclonal frequencies at least1808

as high as those in descendent subclones, across every observed cancer sample. Secondly, two mutations1809

on different tree branches can never have frequencies that sum to greater than one in any sample.1810

Pairtree can often detect such violations and discard the offending mutations using its garbage rela-1811

tion (Section 6.1.3). Specifically, Pairtree’s pairwise-relation-based mutation clustering algorithm (Sec-1812

tion 10.1.3) could be trivially modified to use this information to temporarily remove mutations violating1813

the ISA. After building a clone tree using all other mutations, the ISA-violating mutations could be lay-1814

ered over the tree using a separate inference step. These extensions would also be relevant to scDNA-seq1815

settings (Section 10.9).1816

10.9 Using single-cell DNA sequencing data for building clone trees1817

Single-cell DNA sequencing (scDNA-seq) is becoming more popular for studying cancer evolution [45,1818

46]. In principle, scDNA-seq gives unambiguous knowledge of each cancer cell’s genotype, avoiding the1819

need to deconvolve the signal from many cell subpopulations that is inherent to bulk sequencing. How-1820

ever, scDNA-seq data is noisy, with amplification biases giving rise to inaccurate estimates of mutation1821

prevalence [47]. The same issues result in many mutations being missed altogether. As a result, bulk1822

sequencing will likely remain widely used for many years, including in initial clinical applications of clone1823

trees—bulk data gives a more complete depiction of a cancer’s mutation spectrum, and better estimates1824

of mutation prevalence.1825

Nevertheless, scDNA-seq is likely to grow in popularity in the coming years. Pairtree can be extended1826

to construct clone trees from single-cell DNA sequencing (scDNA-seq) data. This can be accomplished by1827

modifying Pairtree’s pairwise relation framework to use binary valued information about the presence or1828

absence of mutations, rather than the mutation’s estimated subclonal frequencies. This would allow trees1829

to be built from mixtures of scDNA and bulk data, or from scDNA data alone [17]. Tree search would1830

79

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 18, 2021. ; https://doi.org/10.1101/2020.11.06.372219doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.06.372219


remain mostly unchanged, with modifications required only in defining a likelihood that incorporates1831

single-cell information.1832

We have demonstrated that Pairtree can accurately recover clone trees with more subclones than1833

cancer samples by deconvolving bulk samples. This suggests the potential for using Pairtree with quasi-1834

bulk data, whereby single cells would be pooled together to reduce sequencing costs, then deconvolved1835

post-hoc using techniques inspired by compressed sensing. This deconvolution ability could also be useful1836

in detecting and resolving cell doublets.1837
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11 Supplementary figures1838
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Figure S1: Untruncated VAF reconstruction losses on 576 simulated datasets. These results
are the same as in Fig. 3b, but without axis truncation. As in the truncated plots, results reflect each
method’s performance on the subset of datasets where it succeeded in running.
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Figure S2: Untruncated relationship reconstruction errors on 576 simulated datasets. These
results are the same as in Fig. 3c, but without axis truncation. As in the truncated plots, results reflect
each method’s performance on the subset of datasets where it succeeded in running.
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Figure S3: Untruncated VAF reconstruction losses on 14 B-ALL datasets. These results are the
same as in Fig. 5, but without axis truncation. As in the truncated plots, results reflect each method’s
performance on the subset of datasets where it succeeded in running.
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Figure S4: VAF reconstruction loss of each method relative to Pairtree. Each point represents
a method’s VAF reconstruction loss on a simulated dataset relative to Pairtree, with positive values
indicating worse error. As each method failed on different simulations (Fig. 3a), values are reported only
on datasets where a method produced a result.
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Figure S5: Pairtree’s performance on different numbers of subclones and cancer samples.
a. Pairtree’s VAF reconstruction loss for each number of subclones and number of cancer samples. b.
Pairtree’s relationship reconstruction error for each number of subclones and number of cancer samples.
c. Pairtree’s Pairs Tensor’s relationship reconstruction error for each number of subclones and number
of cancer samples.
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Figure S6: Number of CPU seconds methods took to produce results. Box mid-lines indicate
medians. When using multiple CPU cores, these numbers can be much higher than elapsed wall-clock
time (Fig. S7). Results for each method reflect only its performance on the datasets where it could
produce a result.
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Figure S7: Elapsed wall-clock seconds methods took to produce results. Box mid-lines indicate
medians. When using multiple CPU cores, these numbers can be much lower than the number of CPU
seconds consumed (Fig. S6). Results for each method reflect only its performance on the datasets where
it could produce a result.
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Figure S8: Number of CPU seconds each method took to produce results relative to Pairtree.
Each point indicates the number of additional CPU seconds a method took on a dataset relative to Pairtree
on that dataset. Points below zero indicate a method took less time than Pairtree on those datasets.
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Figure S9: Elapsed wall-clock seconds each method took to produce results relative to
Pairtree. Each point indicates the number of additional wall-clock seconds a method took on a dataset
relative to Pairtree on that dataset. Points below zero indicate a method took less time than Pairtree on
those datasets.
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Figure S10: Characteristics of the distributions over possible trees for the 576 simulated clone
tree reconstruction problems. Mid-lines in box plots indicate medians. a. Regardless of the number
of subclones, with one cancer sample there are usually multiple trees consistent with the true subclonal
frequencies. The highest median number of true trees (88,860) is reached for 10-subclone, single-sample
reconstructions problems. Given ten or more samples, the tree becomes highly constrained, and there
is usually only a single consistent tree. b. The entropies of the Pairtree-recovered tree distribution and
true tree distribution reflect how many high-confidence trees Pairtree recovers relative to the number
of possible trees. In general, Pairtree recognizes when the true tree is highly constrained, and returns
only one high-confidence tree. c. For a simulated dataset, a distribution over possible trees induces a
distribution over parent choice for every population represented in the tree. Shown are the joint Jensen-
Shannon divergence between parent distributions for Pairtree relative to truth for each simulated dataset,
normalized to the number of subclones in each tree. These divergences range between zero and one, with
small values indicating that parent choices are nearly always correct. For a given number of subclones,
Pairtree generally exhibits lower divergences with more cancer samples, indicating it was able to use
the information provided by those samples to improve its solution set. d. Relationship reconstruction
errors show that, even when the parents chosen for subclones are sometimes incorrect (panel c), the
relationship reconstructions can be more accurate. This is the same information as presented in Fig. 3b,
but partitioned by number of cancer samples.
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Figure S11: Prevalence of different subclone sizes within simulated trees. Subclone size indicates
the number of subpopulations present within a subclone, reflecting the number of subpopulations that
are descendants of the subpopulation that initiated the subclone.
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Figure S12: Properties of population and subclone frequencies. a. Largest population frequency
ηks for each population k across cancer samples s in simulated data. b. Standard deviation of subclonal
frequencies φks for each subclone k across cancer samples s in simulated data, as a function of the number
of populations in the subclone. Box plots show the empirical standard deviation measured in (noise-free)
simulated data, with solid line indicating the median and dashed line showing the mean. Orange circles
show the predicted standard deviation derived from Dirichlet distribution properties.
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Figure S13: Proportion of populations with small population frequencies in all cancer samples.
Proportion of populations k with population frequencies ηks < 1% across all cancer samples s. Box plots
show the empirical proportions measured in (noise-free) simulated data, with solid line indicating the
median and dashed line showing the mean. Grey circles show the predicted proportions derived from
Dirichlet distribution properties.
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Figure S14: Probability that sub-trees will consist entirely of populations with small fre-
quencies in all cancer samples. Probability that sub-tree containing given number of populations
will have population frequencies ηks < 1% for all populations k in the sub-tree across all cancer samples
s, computed using properties of Dirichlet distribution. A sub-tree consists of a subset of nodes from the
full-tree and all edges between those nodes. By this definition, all subclones are sub-trees, but a sub-tree
need not be a subclone.

94

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 18, 2021. ; https://doi.org/10.1101/2020.11.06.372219doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.06.372219


References1839

1. Dentro, S. C. et al. Pervasive intra-tumour heterogeneity and subclonal selection across cancer types.1840

Accepted at Cell (2021).1841

2. Hanahan, D. & Weinberg, R. a. Hallmarks of cancer: the next generation. Cell 144, 646–74. issn:1842

1097-4172. http://www.ncbi.nlm.nih.gov/pubmed/21376230 (Mar. 2011).1843

3. Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128. issn: 1476-4687.1844

https://www.nature.com/articles/s41586-019-1907-7 (2020) (Feb. 2020).1845

4. Espiritu, S. M. G. et al. The Evolutionary Landscape of Localized Prostate Cancers Drives Clinical1846

Aggression. Cell 173, 1003–1013.e15. issn: 0092-8674. http://www.sciencedirect.com/science/1847

article/pii/S009286741830309X (2018) (May 3, 2018).1848

5. Jamal-Hanjani, M. et al. Tracking the Evolution of Non–Small-Cell Lung Cancer. New England1849

Journal of Medicine 376, 2109–2121. issn: 0028-4793, 1533-4406. http://www.nejm.org/doi/10.1850

1056/NEJMoa1616288 (2018) (June 2017).1851

6. Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 520, 353–1852

357. issn: 1476-4687 (Apr. 16, 2015).1853

7. Sakamoto, H. et al. Evolutionary Origins of Recurrent Pancreatic Cancer. bioRxiv, 811133. https:1854

//www.biorxiv.org/content/10.1101/811133v1 (2019) (Oct. 31, 2019).1855

8. Alves, J. M., Prado-López, S., Cameselle-Teijeiro, J. M. & Posada, D. Rapid evolution and biogeo-1856

graphic spread in a colorectal cancer. Nature Communications 10. Number: 1 Publisher: Nature1857

Publishing Group, 5139. issn: 2041-1723. https://www.nature.com/articles/s41467- 019-1858

12926-8 (2020) (Nov. 13, 2019).1859

9. Hu, Z. et al. Quantitative evidence for early metastatic seeding in colorectal cancer. Nature Genetics,1860

1. issn: 1546-1718. https://www.nature.com/articles/s41588-019-0423-x (2019) (June 17,1861

2019).1862

10. Dobson, S. M. et al. Relapse-Fated Latent Diagnosis Subclones in Acute B Lineage Leukemia Are1863

Drug Tolerant and Possess Distinct Metabolic Programs. Cancer Discovery. Publisher: American1864

Association for Cancer Research Section: Research Articles. issn: 2159-8274, 2159-8290. https:1865

//cancerdiscovery.aacrjournals.org/content/early/2020/03/12/2159-8290.CD-19-10591866

(2020) (Feb. 21, 2020).1867

95

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 18, 2021. ; https://doi.org/10.1101/2020.11.06.372219doi: bioRxiv preprint 

http://www.ncbi.nlm.nih.gov/pubmed/21376230
https://www.nature.com/articles/s41586-019-1907-7
http://www.sciencedirect.com/science/article/pii/S009286741830309X
http://www.sciencedirect.com/science/article/pii/S009286741830309X
http://www.sciencedirect.com/science/article/pii/S009286741830309X
http://www.nejm.org/doi/10.1056/NEJMoa1616288
http://www.nejm.org/doi/10.1056/NEJMoa1616288
http://www.nejm.org/doi/10.1056/NEJMoa1616288
https://www.biorxiv.org/content/10.1101/811133v1
https://www.biorxiv.org/content/10.1101/811133v1
https://www.biorxiv.org/content/10.1101/811133v1
https://www.nature.com/articles/s41467-019-12926-8
https://www.nature.com/articles/s41467-019-12926-8
https://www.nature.com/articles/s41467-019-12926-8
https://www.nature.com/articles/s41588-019-0423-x
https://cancerdiscovery.aacrjournals.org/content/early/2020/03/12/2159-8290.CD-19-1059
https://cancerdiscovery.aacrjournals.org/content/early/2020/03/12/2159-8290.CD-19-1059
https://cancerdiscovery.aacrjournals.org/content/early/2020/03/12/2159-8290.CD-19-1059
https://doi.org/10.1101/2020.11.06.372219


11. Hu, Z., Li, Z., Ma, Z. & Curtis, C. Multi-cancer analysis of clonality and the timing of systemic1868

spread in paired primary tumors and metastases. Nature Genetics 52. Number: 7 Publisher: Nature1869

Publishing Group, 701–708. issn: 1546-1718. https://www.nature.com/articles/s41588-020-1870

0628-z (2020) (July 2020).1871

12. Zahir, N., Sun, R., Gallahan, D., Gatenby, R. A. & Curtis, C. Characterizing the ecological and1872

evolutionary dynamics of cancer. Nature Genetics 52. Number: 8 Publisher: Nature Publishing1873

Group, 759–767. issn: 1546-1718. https://www.nature.com/articles/s41588- 020- 0668- 41874

(2020) (Aug. 2020).1875

13. Williams, M. J. et al. Quantification of subclonal selection in cancer from bulk sequencing data.1876

Nature Genetics, 1. issn: 1546-1718. http://www.nature.com/articles/s41588-018-0128-61877

(2018) (May 28, 2018).1878

14. Pogrebniak, K. L. & Curtis, C. Harnessing Tumor Evolution to Circumvent Resistance. Trends in1879

Genetics 34, 639–651. issn: 01689525. https://linkinghub.elsevier.com/retrieve/pii/1880

S0168952518300921 (2018) (Aug. 2018).1881

15. Jiang, Y., Qiu, Y., Minn, A. J. & Zhang, N. R. Assessing intratumor heterogeneity and tracking1882

longitudinal and spatial clonal evolutionary history by next-generation sequencing. Proceedings of1883

the National Academy of Sciences 113, E5528–E5537. issn: 0027-8424, 1091-6490. http://www.1884

pnas.org/content/113/37/E5528 (2017) (Sept. 13, 2016).1885

16. Malikic, S., McPherson, A. W., Donmez, N. & Sahinalp, C. S. Clonality inference in multiple tumor1886

samples using phylogeny. Bioinformatics 31, 1349–1356. issn: 1460-2059, 1367-4803. https://1887

academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btv0031888

(2019) (May 1, 2015).1889

17. Malikic, S., Jahn, K., Kuipers, J., Sahinalp, S. C. & Beerenwinkel, N. Integrative inference of sub-1890

clonal tumour evolution from single-cell and bulk sequencing data. Nature Communications 10.1891

Number: 1 Publisher: Nature Publishing Group, 2750. issn: 2041-1723. https://www.nature.com/1892

articles/s41467-019-10737-5 (2020) (June 21, 2019).1893

18. Deshwar, A. G., Vembu, S. & Morris, Q. Comparing nonparametric Bayesian tree priors for clonal1894

reconstruction of tumors. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing,1895

20–31. issn: 2335-6936 (2015).1896

19. Popic, V. et al. Fast and scalable inference of multi-sample cancer lineages. Genome Biology 16.1897

issn: 1465-6906. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501097/ (2017) (2015).1898

96

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 18, 2021. ; https://doi.org/10.1101/2020.11.06.372219doi: bioRxiv preprint 

https://www.nature.com/articles/s41588-020-0628-z
https://www.nature.com/articles/s41588-020-0628-z
https://www.nature.com/articles/s41588-020-0628-z
https://www.nature.com/articles/s41588-020-0668-4
http://www.nature.com/articles/s41588-018-0128-6
https://linkinghub.elsevier.com/retrieve/pii/S0168952518300921
https://linkinghub.elsevier.com/retrieve/pii/S0168952518300921
https://linkinghub.elsevier.com/retrieve/pii/S0168952518300921
http://www.pnas.org/content/113/37/E5528
http://www.pnas.org/content/113/37/E5528
http://www.pnas.org/content/113/37/E5528
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btv003
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btv003
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btv003
https://www.nature.com/articles/s41467-019-10737-5
https://www.nature.com/articles/s41467-019-10737-5
https://www.nature.com/articles/s41467-019-10737-5
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501097/
https://doi.org/10.1101/2020.11.06.372219


20. Satas, G. & Raphael, B. J. Tumor phylogeny inference using tree-constrained importance sampling.1899

Bioinformatics 33, i152–i160. issn: 1367-4803. https://academic.oup.com/bioinformatics/1900

article/33/14/i152/3953987/Tumor-phylogeny-inference-using-tree-constrained (2017)1901

(July 15, 2017).1902

21. Salcedo, A. et al. A community effort to create standards for evaluating tumor subclonal recon-1903

struction. Nature Biotechnology 38. Number: 1 Publisher: Nature Publishing Group, 97–107. issn:1904

1546-1696. https://www.nature.com/articles/s41587-019-0364-z (2020) (Jan. 2020).1905

22. Dentro, S. C., Wedge, D. C. & Van Loo, P. Principles of Reconstructing the Subclonal Architecture1906

of Cancers. Cold Spring Harbor Perspectives in Medicine, a026625 (2017).1907

23. Kuipers, J., Jahn, K., Raphael, B. J. & Beerenwinkel, N. Single-cell sequencing data reveal widespread1908

recurrence and loss of mutational hits in the life histories of tumors. Genome Research 27, 1885–1909

1894. issn: 1088-9051. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668945/ (2020)1910

(Nov. 2017).1911

24. Singer, J., Kuipers, J., Jahn, K. & Beerenwinkel, N. Single-cell mutation identification via phylo-1912

genetic inference. Nature Communications 9, 5144. issn: 2041-1723. https://www.nature.com/1913

articles/s41467-018-07627-7 (2020) (Dec. 4, 2018).1914

25. Bonizzoni, P., Ciccolella, S., Della Vedova, G. & Soto, M. Does relaxing the infinite sites assumption1915

give better tumor phylogenies? An ILP-based comparative approach. bioRxiv. http://biorxiv.1916

org/lookup/doi/10.1101/227801 (2019) (Dec. 3, 2017).1917

26. Ciccolella, S. et al. Inferring Cancer Progression from Single-cell Sequencing while Allowing Mutation1918

Losses. bioRxiv. http://biorxiv.org/lookup/doi/10.1101/268243 (2019) (Apr. 13, 2018).1919

27. Satas, G., Zaccaria, S., Mon, G. & Raphael, B. J. SCARLET: Single-Cell Tumor Phylogeny Inference1920

with Copy-Number Constrained Mutation Losses. Cell Systems 10, 323–332.e8. issn: 2405-4712.1921

http://www.sciencedirect.com/science/article/pii/S2405471220301150 (2020) (Apr. 22,1922

2020).1923

28. Roth, A. et al. PyClone: statistical inference of clonal population structure in cancer. Nature methods1924

(2014).1925

29. Miller, C. A. et al. SciClone: Inferring Clonal Architecture and Tracking the Spatial and Temporal1926

Patterns of Tumor Evolution. PLoS Computational Biology 10 (ed Beerenwinkel, N.) e1003665. issn:1927

97

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 18, 2021. ; https://doi.org/10.1101/2020.11.06.372219doi: bioRxiv preprint 

https://academic.oup.com/bioinformatics/article/33/14/i152/3953987/Tumor-phylogeny-inference-using-tree-constrained
https://academic.oup.com/bioinformatics/article/33/14/i152/3953987/Tumor-phylogeny-inference-using-tree-constrained
https://academic.oup.com/bioinformatics/article/33/14/i152/3953987/Tumor-phylogeny-inference-using-tree-constrained
https://www.nature.com/articles/s41587-019-0364-z
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668945/
https://www.nature.com/articles/s41467-018-07627-7
https://www.nature.com/articles/s41467-018-07627-7
https://www.nature.com/articles/s41467-018-07627-7
http://biorxiv.org/lookup/doi/10.1101/227801
http://biorxiv.org/lookup/doi/10.1101/227801
http://biorxiv.org/lookup/doi/10.1101/227801
http://biorxiv.org/lookup/doi/10.1101/268243
http://www.sciencedirect.com/science/article/pii/S2405471220301150
https://doi.org/10.1101/2020.11.06.372219


1553-734X. JSTOR: {PMC}4125065. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125065/1928

(Aug. 2014).1929

30. Gillis, S. & Roth, A. PyClone-VI: Scalable inference of clonal population structures using whole1930

genome data. bioRxiv. Publisher: Cold Spring Harbor Laboratory Section: New Results, 2020.08.31.276212.1931

https://www.biorxiv.org/content/10.1101/2020.08.31.276212v1 (2020) (Sept. 1, 2020).1932

31. Tarabichi, M. et al. A practical guide to cancer subclonal reconstruction from DNA sequencing.1933

Nature Methods 18. Number: 2 Publisher: Nature Publishing Group, 144–155. issn: 1548-7105.1934

https://www.nature.com/articles/s41592-020-01013-2 (2021) (Feb. 2021).1935

32. Hastings, W. K. Monte Carlo Sampling Methods Using Markov Chains and Their Applications.1936

Biometrika 57. Publisher: [Oxford University Press, Biometrika Trust], 97–109. issn: 0006-3444.1937

https://www.jstor.org/stable/2334940 (2020) (1970).1938

33. Jahn, K., Kuipers, J. & Beerenwinkel, N. Tree inference for single-cell data. Genome Biology 17,1939

86. issn: 1474-760X. http://dx.doi.org/10.1186/s13059-016-0936-x (2016) (2016).1940

34. Jia, B., Ray, S., Safavi, S. & Bento, J. Efficient Projection onto the Perfect Phylogeny Model.1941

arXiv:1811.01129 [cs]. arXiv: 1811.01129. http://arxiv.org/abs/1811.01129 (2018) (Nov. 2,1942

2018).1943

35. Sundermann, L. K., Wintersinger, J., Rätsch, G., Stoye, J. & Morris, Q. Reconstructing tumor1944

evolutionary histories and clone trees in polynomial-time with SubMARine. PLOS Computational1945

Biology 17. Publisher: Public Library of Science, 1–28. https://doi.org/10.1371/journal.1946

pcbi.1008400 (2021).1947

36. Deshwar, A. G. et al. PhyloWGS: Reconstructing subclonal composition and evolution from whole1948

genome sequencing of tumors. Genome Biology 16, 35 (2015).1949

37. Satas, G. & Raphael, B. PASTRI source code Aug. 16, 2019. https://github.com/raphael-1950

group/PASTRI (2020).1951

38. Hudson, R. R. & Kaplan, N. L. Statistical Properties of the Number of Recombination Events1952

in the History of a Sample of DNA Sequences. Genetics 111, 147–164. issn: 0016-6731. https:1953

//www.ncbi.nlm.nih.gov/pmc/articles/PMC1202594/ (2019) (Sept. 1985).1954

39. Campbell, P. J. et al. Pan-cancer analysis of whole genomes. Nature 578. Number: 7793 Publisher:1955

Nature Publishing Group, 82–93. issn: 1476-4687. https://www.nature.com/articles/s41586-1956

020-1969-6 (2021) (Feb. 2020).1957

98

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 18, 2021. ; https://doi.org/10.1101/2020.11.06.372219doi: bioRxiv preprint 

http://www.jstor.org/stable/{PMC}4125065
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125065/
https://www.biorxiv.org/content/10.1101/2020.08.31.276212v1
https://www.nature.com/articles/s41592-020-01013-2
https://www.jstor.org/stable/2334940
http://dx.doi.org/10.1186/s13059-016-0936-x
https://arxiv.org/abs/1811.01129
http://arxiv.org/abs/1811.01129
https://doi.org/10.1371/journal.pcbi.1008400
https://doi.org/10.1371/journal.pcbi.1008400
https://doi.org/10.1371/journal.pcbi.1008400
https://github.com/raphael-group/PASTRI
https://github.com/raphael-group/PASTRI
https://github.com/raphael-group/PASTRI
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1202594/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1202594/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1202594/
https://www.nature.com/articles/s41586-020-1969-6
https://www.nature.com/articles/s41586-020-1969-6
https://www.nature.com/articles/s41586-020-1969-6
https://doi.org/10.1101/2020.11.06.372219


40. Riedmiller, M. & Braun, H. A direct adaptive method for faster backpropagation learning: The1958

RPROP algorithm in IEEE international conference on neural networks (1993), 586–591.1959

41. Hinton, G. Neutral Networks for Machine Learning: Lecture 6a: Overview of min-batch gradient1960

descent. 2014. https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.1961

pdf.1962

42. Bei, J. & Bento, J. libprojectppm source code original-date: 2018-10-26T22:41:45Z. Apr. 8, 2019.1963

https://github.com/bentoayr/Efficient-Projection-onto-the-Perfect-Phylogeny-Model.1964

43. Gusfield, D. Efficient algorithms for inferring evolutionary trees. Networks 21, 19–28. issn: 1097-1965

0037. http://onlinelibrary.wiley.com/doi/10.1002/net.3230210104/abstract (2017)1966

(Jan. 1, 1991).1967

44. El-Kebir, M., Oesper, L., Acheson-Field, H. & Raphael, B. J. Reconstruction of clonal trees and1968

tumor composition from multi-sample sequencing data. Bioinformatics (Oxford, England) 31, i62–1969

70. issn: 1367-4811 (June 15, 2015).1970

45. Stewart, C. A. et al. Single-cell analyses reveal increased intratumoral heterogeneity after the onset1971

of therapy resistance in small-cell lung cancer. Nature Cancer 1. Number: 4 Publisher: Nature1972

Publishing Group, 423–436. issn: 2662-1347. https://www.nature.com/articles/s43018-019-1973

0020-z (2020) (Apr. 2020).1974

46. Miles, L. A. et al. Single cell mutational profiling delineates clonal trajectories in myeloid malignan-1975

cies. bioRxiv. Publisher: Cold Spring Harbor Laboratory Section: New Results, 2020.02.07.938860.1976

https://www.biorxiv.org/content/10.1101/2020.02.07.938860v1 (2020) (Feb. 9, 2020).1977

47. Lähnemann, D. et al. Eleven grand challenges in single-cell data science. Genome Biology 21, 31.1978

issn: 1474-760X. https://doi.org/10.1186/s13059-020-1926-6 (2020) (Feb. 7, 2020).1979

99

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 18, 2021. ; https://doi.org/10.1101/2020.11.06.372219doi: bioRxiv preprint 

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://github.com/bentoayr/Efficient-Projection-onto-the-Perfect-Phylogeny-Model
http://onlinelibrary.wiley.com/doi/10.1002/net.3230210104/abstract
https://www.nature.com/articles/s43018-019-0020-z
https://www.nature.com/articles/s43018-019-0020-z
https://www.nature.com/articles/s43018-019-0020-z
https://www.biorxiv.org/content/10.1101/2020.02.07.938860v1
https://doi.org/10.1186/s13059-020-1926-6
https://doi.org/10.1101/2020.11.06.372219

	Abstract
	Introduction
	Methods and results
	Pairtree inputs and outputs
	Delineating ancestral relationships between pairs of subclones using the Pairs Tensor
	Using pairwise ancestry to guide the search for clone trees
	Benchmarking Pairtree performance using novel scoring metrics
	Selecting comparison methods and generating simulated data
	Pairtree outperforms existing methods on simulated data
	Pairtree improves with more cancer samples, but other methods worsen
	Pairtree performs better than human experts on complex real clone tree reconstructions
	Consensus graphs intuitively illustrate uncertainty in clone trees

	Discussion
	Figures
	Methods
	Computing pairwise relations
	Establishing a probabilistic likelihood for pairwise relations
	Defining a binomial observation model for read count data
	Defining constraints on subclonal frequencies imposed by pairwise relationships
	Efficiently computing evidence for ancestral, descendent, and branched pairwise relationships
	Efficiently computing evidence for garbage and coincident pairwise relationships
	Computing the posterior probability for pairwise relationships

	Performing tree search
	Representing cancer evolutionary histories with trees
	Tree likelihood
	Using Metropolis-Hastings to search for trees
	Modifying trees via tree proposals
	Using the pairs tensor to generate tree proposals
	Escaping local maxima in tree space by allowing uniformly sampled tree proposals
	Tree initialization
	Reducing Pairtree's computational burden using supervariants

	Fitting subclonal frequencies to trees
	Converting between subclonal frequencies and subpopulation frequencies
	Fitting subclonal frequencies using rprop
	Fitting subclonal frequencies using projection

	Creating simulated data
	Parameters for simulating data
	Algorithm to generate simulated data

	Evaluation metrics for method comparisons
	Intuitive explanation of metrics
	VAF reconstruction loss
	Relationship reconstruction error
	Enumerating trees quickly


	Acknowledgements
	Author contributions
	Competing interests statement
	Supplementary information
	Clustering mutations into subclones
	Clustering overview
	Clustering mutations using subclonal frequencies
	Clustering mutations using pairwise relations
	Performing Gibbs sampling

	Running comparison methods
	Examining method failures
	Why existing algorithms failed
	Comparing the computational costs of methods
	Criteria for measuring computational costs
	Examining method runtime
	Evaluating the performance costs of Pairtree's two stages

	Multiple trees are often consistent with observed data, which Pairtree can accurately characterize
	Characteristics of simulated data
	Trees are dominated by small subclones
	Tree construction becomes increasingly difficult with more subclones
	Simulated data often include subclones that are impossible to resolve
	Justifying our choice of the Dirichlet parameter for generating simulated data

	Impact of the infinite sites assumption
	Using single-cell DNA sequencing data for building clone trees

	Supplementary figures

