










fit the two sets of VAFs almost equally well. Larger population frequencies avoid this situation, making1618

clearer the proper ordering of parents and children.1619

Intuitively, as more populations appear in a tree, the ηks frequencies will become smaller on average,1620

as the unit mass apportioned by the Dirichlet distribution from which the frequencies are drawn must be1621

split amongst more entities. Indeed, by the properties of the Dirichlet distribution, for K subpopulations1622

in a sample s with [η0s, η1s, . . . , ηKs] ∼ Dirichlet(α, α, . . . , α) (Section 6.4.2), we have E[ηks] = 1
K . This1623

is evident when we examine the distribution over ηks frequencies for each population in the simulated1624

trees (Fig. S12A), where the largest frequency observed across cancer samples for each population is typ-1625

ically close to 1 for trees with three subclones, but gets progressively smaller as the number of subclones1626

increases, with populations in 100-subclone trees dominated by small frequencies. To distinguish a pop-1627

ulation from its parent, it need have a non-negligible ηks frequency in only one sample s, which is part1628

of why adding cancer samples is so helpful in resolving evolutionary relationships between populations,1629

and ultimately reconstructing an accurate clone tree.1630

The second property related to population frequency that affects the difficulty of clone tree recon-1631

struction is the variance over cancer samples s in a subclone k’s frequencies φks. Suppose you are trying1632

to resolve the position of two subclones A and B in a tree, using the frequencies in cancer samples s1633

and s′. To gain the greatest benefit from having two samples rather than only one, we want there to1634

be as much variance as possible in the subclonal frequencies between samples. The power of multiple1635

samples comes from these differences—for instance, if φAs > φBs, but φAs′ < φBs′ , we conclude that1636

A cannot be the ancestor of B, and B cannot be the ancestor of A, since an ancestral subclone must1637

have a frequency at least as high as its descendants across every cancer sample. This is termed the1638

crossing rule [36], and leads to the conclusion that A and B must occur on separate tree branches. Un-1639

fortunately, as we observe only a noisy estimate of the subclonal frequencies through the VAFs, if the1640

subclonal frequencies for A and B are nearly the same in both samples, the noise in VAFs can obscure1641

this relationship. The less variance there is between φAs and φAs′ , and between φBs and φBs′ , the more1642

likely that |φAs−φBs| = |φAs′ −φBs′ | < ε for some near-zero ε, and the more difficult it will be to utilize1643

the crossing rule with our noisy observations.1644

Suppose we have a subclone C composed of |C| ≤ K populations, such that C ⊆ {0, 1, . . . ,K}. As1645

before, given cancer sample s, we have population frequencies [η0s, η1s, . . . , ηKs] ∼ Dirichlet(α, α, . . . , α)1646

(Section 6.4.2), and φCs =
∑
i∈C ηis. By the properties of the Dirichlet distribution, we know that the1647

sum of Dirichlet-distributed variables is itself Dirichlet-distributed, such that1648
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[∑
i∈C

ηis, η(|C|+1)s, . . . , ηKs

]
∼ Dirichlet(|C|α, α, . . . , α) ,

where the first element of the vector represents the subclonal frequency
∑
i∈C ηis = φCs, and the final1649

K − |C| elements represent the population frequencies of all populations not in subclone C. From this,1650

we get1651

var(φCs) =
|C|
K (1− C

K )

Kα+ 1
.

From the denominator, we see that variance is reduced either with more populationsK, or with a larger1652

Dirichlet parameter α. By plotting both the (theoretical) population standard deviation and (empirical)1653

sample standard deviation (Fig. S12B), we see that the latter conforms to the former, and that variance1654

is maximized for subclones with K
2 populations, conferring the greatest benefit from multiple cancer1655

samples to populations near the root of the tree, such that they have half the populations as descendants.1656

Conversely, subclones with less variance in frequency across samples will either be at the very top of the1657

tree, with almost all populations as descendants, or at the bottom of the tree, with few populations as1658

descendants. Note that, in Fig. S12, the sample standard deviation appears less than the population1659

standard deviation, particularly in the three- and ten-subclone cases. This effect is exaggerated for those1660

settings because they include single-sample datasets with zero sample standard deviation, whereas the1661

30- and 100-subclone datasets do not.1662

10.7.3 Simulated data often include subclones that are impossible to resolve1663

If a population k has a near-zero population frequency ηks across all cancer samples s, its position in a1664

clone tree relative to its parent j is difficult or impossible to resolve. Since k’s subclonal frequency φks1665

is equal to the sum of the population frequencies of all populations in the subclone, when ηks ≈ 0, we1666

have φks ≈ φjs. When this occurs, we will have two candidate trees that fit the data equally well—one1667

in which k is the parent of j, and one in which j is the parent of k. Both tree structures would permit1668

tree-constrained subclonal frequencies that fit the observed VAF data almost equally well. Well-behaved1669

algorithms should find both tree structures. Thus, populations whose frequencies are negligible across1670

all cancer samples lead to their subclonal frequencies being nearly equal across all cancer samples, which1671
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leads to ambiguity. In real data, we are unlikely to be faced with this situation. The observed VAFs1672

for two variants serve as noisy estimates of their subclones’ subclonal frequencies. When the observation1673

noise exceeds the negligible differences in the subclonal frequencies, we will deem the two variants as1674

having originated from the same subclone, such that the variants are placed in a single cluster.1675

Nevertheless, examining how often this situation occurs in simulated data is worthwhile, as it grants1676

insight into how well algorithms deal with ambiguity. Note that noisy observations of near-zero population1677

frequencies are not the only source of ambiguity—ambiguity can exist even given noise-free frequencies,1678

or with large population frequencies. All cases where tree enumeration using the noise-free subclonal1679

frequencies found multiple trees (Section 6.5.4) are demonstrations of this alternative ambiguity. Tree-1680

reconstruction algorithms should be able to deal with both sources of ambiguity by finding the full range1681

of solutions permitted for a dataset. With respect to our evaluation metrics, VAF loss (Section 3.4) does1682

not capture algorithms’ performance in this respect, since it penalizes discrepancies between VAFs and1683

tree-constrained subclonal frequencies, and so algorithms can do well regardless of whether they find a1684

single good solution or multiple equivalent solutions. Relationship reconstruction error (Section 3.4),1685

however, properly reflects algorithms’ performance in the face of ambiguity—in the example above in1686

which subclones j and k had nearly equal subclonal frequencies across all cancer samples, the solutions1687

recovered by a tree-reconstruction algorithm should show both that k could be an ancestor of j, and j1688

could be an ancestor of k.1689

To understand the role near-zero population frequencies play in introducing ambiguity, we must first1690

define a threshold ε on population frequencies, such that we will say a population frequency η is near-1691

zero if η < ε. This ε should ideally be defined as a function of read depth, since depth determines1692

how precisely the observed VAFs reflect the underlying subclonal frequencies, and ultimately how small1693

population frequencies can get before they are swamped by noise. To set this threshold, consider a fixed1694

read depth of D = 200, such that with V variant reads and R reference reads we have D = V +R = 200.1695

By our simulation framework, we have V ∼ Binom(D,ωφ), yielding [E](V ) = ωφD. We will define a1696

non-negligible population frequency as that which produces a difference of one read in the mean read1697

counts. While this is a subtle difference, we must remember that, in tree search, the read counts for all1698

variants belonging to a cluster will be summed, exaggerating the difference in observations for the two1699

clusters. Thus, for populations j and k, we will assume we have subclonal frequencies φj and φk with1700

φj > φk. Moreover, assume j is the parent of k, such that φj = φk + ηj . This gives us1701
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ωφjD − ωφkD ≥ 1

φj − φk ≥
1

ωD

ηj ≥
1

ωD

With ω = 1
2 , this results in a non-negligible population frequency of ηj ≥ 0.01 for read depth D = 200.1702

Conversely, we will define a near-zero population frequency as the complement of this, resulting in a1703

threshold ε = 0.01. To simplify the analysis, we will use this threshold regardless of read depth. With1704

read depths D ∈ {50, 200, 1000} (Section 6.4.2), this choice of ε will yield a greater difference in binomial1705

mean for D = 1000, and a smaller difference for D = 50. Nevertheless, the conclusions we reach for fixed1706

ε will be broadly applicable regardless of read depth.1707

First, we will consider how many populations within each simulated dataset have population frequen-1708

cies less than ε = 0.01 across all cancer samples s. Let ηks denote the population frequency of population1709

k in cancer sample s. For K subpopulations, we have [η0s, η1s, . . . , ηKs] ∼ Dirichlet(α, α, . . . , α). By the1710

properties of the Dirichlet distribution, we have1711

ηks ∼ Beta(αks,

K∑
j=0

1j 6=kαjs)

= Beta(α,Kα) .

Consequently, we since each cancer sample’s population frequencies are independent of every other,1712

for S cancer samples we get1713

p(ηk1 < ε, . . . , ηkS < ε) =
S∏
s=1

p(ηks < 0.01)

=
S∏
s=1

∫ ε

0

dxp(ηks = x)

=
S∏
s=1

β(ε|α,Kα)

β(α,Kα)

=
[β(ε|α,Kα)

β(α,Kα)

]S
(34)
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Here, β(ε|α,Kα) refers to the incomplete beta function, and β(α,Kα) refers to the complete beta1714

function. Empirically, the proportion of simulated populations with near-zero population frequencies1715

across samples agrees with the result predicted above (Fig. S13). Datasets with 30 or 100 populations1716

and one or three cancer samples would have at least 38% of populations with near-zero population1717

frequencies in all cancer samples, rendering their positions in the tree difficult to resolve. This would1718

create excessive ambiguity, which is why we did not include such datasets in our simulated data.1719

The relationship reconstruction error we used to evaluate method performance on simulated data1720

reflected how algorithms dealt with two sources of ambiguity: firstly, the multiple tree structures poten-1721

tially permitted by the noise-free frequencies (Section 10.6); and, secondly, the additional tree structures1722

permitted by populations with near-zero population frequencies. As we established above, if a population1723

k has near-zero population frequencies across all cancer samples, the subclonal frequencies of k and its1724

true parent j will be almost equal, such that the noisy VAF observations will render difficult the task of1725

determining whether j is the parent of k or vice versa. Observe that 14% of populations in 100-subclone,1726

10-sample trees have noise-free population frequencies less than ε = 0.01 across cancer samples. In the1727

average tree, these would correspond to 14 populations with near-zero frequencies. Since each such pop-1728

ulation could be swapped with its parent while minimally affecting tree likelihood, these would generate1729

214 ≈ 16, 000 additional trees. This assumes that none of the populations with near-zero frequencies have1730

edges between them; chains of two or more populations with near-zero frequencies would further increase1731

the number of potential tree configurations. We expect noisy observations to be the dominant source1732

of ambiguity. In the 100-subclone, 10-sample setting, none of the 36 simulated datasets permitted more1733

than 42 trees given the noise-free frequencies (Fig. S10), which is a value far smaller than the 16, 0001734

trees we expect to be permitted by the noisy observations.1735

This analysis also helps us understand how many cancer samples we must simulate to remove ambigu-1736

ity in tree search arising from noisy observations for a given number of subclones. Taking our threshold1737

ε = 0.01, we can ask how many cancer samples we need before p(ηk1 < ε, . . . , ηkS < ε). By solving for1738

S in Eq. (34), we find that need 24 or more samples before the probability of a population frequency1739

being less than ε across all samples falls below 1%. This has implications for variant clustering as well,1740

since a population’s variants become distinguishable from other variants by the clustering algorithm only1741

when one or more cancer samples with non-negligible frequencies for the associated population render1742

the VAFs clearly distinct.1743

To complement the above analysis concerning lone populations, we will also examine the probability1744

of simulated trees containing sub-trees that consist entirely of populations whose frequencies are less than1745
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ε = 0.01. We define a sub-tree to consist of a subset of the full tree’s nodes, as well as all edges between1746

them, ensuring the sub-tree is connected. Thus, a sub-tree can correspond to a subclone (Section 3.1),1747

but is more general in that may omit parts of the subclone defined by the ancestral population at the root1748

of the sub-tree. For this analysis, we did not conduct an empirical examination of the simulated data,1749

but used only theoretical results derived from the Dirichlet distribution properties. Given a complete1750

tree composed of K populations as well as the root node 0, and a sub-tree composed of populations1751

T ⊆ {0, 1, . . . ,K} with size |T |, we have in cancer sample s the result1752

∑
i∈T

ηis ∼ Dirichlet(
∑
i∈T

αi,
∑
j 6∈T

αj)

= Dirichlet(|T |α, (K − |T |+ 1)α)

Note that if the sub-tree T = {j}∪{k|k is descendent of j}, then T is equivalent to the subclone with1753

population j at its head, and
∑
i∈T ηis = φjs. By using the Dirichlet’s marginal beta distribution, as in1754

the previous analysis, we can compute the probability of the arbitrary sub-tree T consisting exclusively1755

of populations whose summed frequencies across cancer samples are small, such that
∑
i∈T ηis < ε = 0.011756

for every cancer sample s (Fig. S14). For instance, in the 100-subclone, single-sample case, we have a1757

6% probability of an arbitrary eleven-population sub-tree having a near-zero population frequency sum.1758

With |T | populations in such a sub-tree, there are (T + 1)! orderings of nodes in the sub-tree that would1759

permit nearly equal tree-constrained subclonal frequencies, and thus nearly equal tree likelihood. In the1760

eleven-population case, there would thus be (11 + 1)! = 4.79e8 solution trees resulting from this single1761

ambiguous sub-tree.1762

To compute the probability of observing such a case in the simulated trees, we must first consider how1763

many linear chains of J populations exist in a tree with K nodes, as each has an equal chance of being1764

assigned these small frequencies. If a tree is fully linear with no branching, there would be (K+1)−J+11765

chains of J nodes, such that our chain of 11 populations in a 100-subclone tree would have 101−11+1 = 911766

sub-trees, assuming that tree was fully linear. This in turn yields a (100%− 6%)91 = 0.36% chance that1767

we would not observe any near-zero-frequency 11-population chains in our tree—i.e., with near certainty,1768

we would encounter such a chain. Any degree of branching in a tree can reduce the number of node chains1769

of a given length, thereby lessening the chance we would see this scenario. Nevertheless, the probability1770

can remain considerable, which is another reason we omitted the many-subclones, few-samples cases from1771

our simulated data. Amongst the settings we included, we see, for instance, that in ten-subclone, single-1772
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sample trees, 6% of five-population chains will have small population frequency sums, yielding a 35%1773

chance that we would encounter such a case in a fully linear tree.1774

10.7.4 Justifying our choice of the Dirichlet parameter for generating simulated data1775

In Sections 10.7.1 to 10.7.3, we saw that our choice of the Dirichlet parameter α when generating simulated1776

data (Section 6.4.2) affects multiple aspects of simulated data.1777

1. A smaller α leads to more variance in population frequencies between samples, increasing the chance1778

that multiple samples will make clear the proper pairwise relations between subclones.1779

2. A smaller α also leads, however, to a greater probability of observing near-zero frequencies for a1780

population across all cancer samples, inhibiting tree-reconstruction algorithms’ attempts to infer1781

the proper place for such populations in the tree. (We do not present results with alternative α1782

values here, but used these analyses to inform our choice of α.)1783

Our chosen α = 0.1 thus achieved a compromise between three factors.1784

1. It led to sufficient variance in population frequencies between cancer samples for algorithms to1785

benefit from having access to multiple cancer samples.1786

2. It avoided creating too many populations with near-zero frequencies across samples, which would1787

have created excessive ambiguity.1788

3. Yet it created enough such populations so that we could evaluate how algorithms dealt with ambi-1789

guity stemming from this source.1790

10.8 Impact of the infinite sites assumption1791

To simplify subclonal reconstruction, algorithms make the ISA, which posits that the genome is so large1792

as to be effectively infinite in size, meaning that each genomic site is mutated at most once during the1793

cancer’s evolution. This implies that the same site can never be mutated twice by separate events, and1794

that it can never return to the wildtype. Moreover, two cells bearing the same mutation are assumed to1795

share a common ancestor in which that mutation occurred. Most clone tree reconstruction algorithms1796

make this assumption. Equivalently, ISA violations can be understood as violations of the four-gamete test1797

[38]. Under this assumption, the cancer phylogeny is a perfect phylogeny, such that descendant subclones1798

inherit all the mutations of their ancestors. Critically, the ISA allows us to characterize more subclones1799
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than we have cancer samples. In addition, the ISA is necessary to infer the pairwise relationships between1800

mutations from their frequencies (Section 6.1).1801

Given complete genomes for each cancer cell, a perfect phylogeny can be constructed in linear time1802

[43], with mutations that deviate from the ISA detected via the four-gamete test [38]. However, the1803

bulk-tissue DNA sequencing data commonly used today do not provide complete genomes. Instead,1804

the samples consist of mixtures of different subclones, rendering NP-complete the construction of a1805

perfect phylogeny consistent with the exact subclonal frequencies of mutations across multiple samples1806

[44]. Nevertheless, the ISA implies relationships between mutation frequencies that can assist subclonal1807

reconstruction. Firstly, mutations in ancestral subclones must always have subclonal frequencies at least1808

as high as those in descendent subclones, across every observed cancer sample. Secondly, two mutations1809

on different tree branches can never have frequencies that sum to greater than one in any sample.1810

Pairtree can often detect such violations and discard the offending mutations using its garbage rela-1811

tion (Section 6.1.3). Specifically, Pairtree’s pairwise-relation-based mutation clustering algorithm (Sec-1812

tion 10.1.3) could be trivially modified to use this information to temporarily remove mutations violating1813

the ISA. After building a clone tree using all other mutations, the ISA-violating mutations could be lay-1814

ered over the tree using a separate inference step. These extensions would also be relevant to scDNA-seq1815

settings (Section 10.9).1816

10.9 Using single-cell DNA sequencing data for building clone trees1817

Single-cell DNA sequencing (scDNA-seq) is becoming more popular for studying cancer evolution [45,1818

46]. In principle, scDNA-seq gives unambiguous knowledge of each cancer cell’s genotype, avoiding the1819

need to deconvolve the signal from many cell subpopulations that is inherent to bulk sequencing. How-1820

ever, scDNA-seq data is noisy, with amplification biases giving rise to inaccurate estimates of mutation1821

prevalence [47]. The same issues result in many mutations being missed altogether. As a result, bulk1822

sequencing will likely remain widely used for many years, including in initial clinical applications of clone1823

trees—bulk data gives a more complete depiction of a cancer’s mutation spectrum, and better estimates1824

of mutation prevalence.1825

Nevertheless, scDNA-seq is likely to grow in popularity in the coming years. Pairtree can be extended1826

to construct clone trees from single-cell DNA sequencing (scDNA-seq) data. This can be accomplished by1827

modifying Pairtree’s pairwise relation framework to use binary valued information about the presence or1828

absence of mutations, rather than the mutation’s estimated subclonal frequencies. This would allow trees1829

to be built from mixtures of scDNA and bulk data, or from scDNA data alone [17]. Tree search would1830
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remain mostly unchanged, with modifications required only in defining a likelihood that incorporates1831

single-cell information.1832

We have demonstrated that Pairtree can accurately recover clone trees with more subclones than1833

cancer samples by deconvolving bulk samples. This suggests the potential for using Pairtree with quasi-1834

bulk data, whereby single cells would be pooled together to reduce sequencing costs, then deconvolved1835

post-hoc using techniques inspired by compressed sensing. This deconvolution ability could also be useful1836

in detecting and resolving cell doublets.1837
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11 Supplementary figures1838
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Figure S1: Untruncated VAF reconstruction losses on 576 simulated datasets. These results
are the same as in Fig. 3b, but without axis truncation. As in the truncated plots, results reflect each
method’s performance on the subset of datasets where it succeeded in running.
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Figure S2: Untruncated relationship reconstruction errors on 576 simulated datasets. These
results are the same as in Fig. 3c, but without axis truncation. As in the truncated plots, results reflect
each method’s performance on the subset of datasets where it succeeded in running.
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Figure S3: Untruncated VAF reconstruction losses on 14 B-ALL datasets. These results are the
same as in Fig. 5, but without axis truncation. As in the truncated plots, results reflect each method’s
performance on the subset of datasets where it succeeded in running.
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Figure S4: VAF reconstruction loss of each method relative to Pairtree. Each point represents
a method’s VAF reconstruction loss on a simulated dataset relative to Pairtree, with positive values
indicating worse error. As each method failed on different simulations (Fig. 3a), values are reported only
on datasets where a method produced a result.
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Figure S5: Pairtree’s performance on different numbers of subclones and cancer samples.
a. Pairtree’s VAF reconstruction loss for each number of subclones and number of cancer samples. b.
Pairtree’s relationship reconstruction error for each number of subclones and number of cancer samples.
c. Pairtree’s Pairs Tensor’s relationship reconstruction error for each number of subclones and number
of cancer samples.
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Figure S6: Number of CPU seconds methods took to produce results. Box mid-lines indicate
medians. When using multiple CPU cores, these numbers can be much higher than elapsed wall-clock
time (Fig. S7). Results for each method reflect only its performance on the datasets where it could
produce a result.
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Figure S7: Elapsed wall-clock seconds methods took to produce results. Box mid-lines indicate
medians. When using multiple CPU cores, these numbers can be much lower than the number of CPU
seconds consumed (Fig. S6). Results for each method reflect only its performance on the datasets where
it could produce a result.
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Figure S8: Number of CPU seconds each method took to produce results relative to Pairtree.
Each point indicates the number of additional CPU seconds a method took on a dataset relative to Pairtree
on that dataset. Points below zero indicate a method took less time than Pairtree on those datasets.
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Figure S9: Elapsed wall-clock seconds each method took to produce results relative to
Pairtree. Each point indicates the number of additional wall-clock seconds a method took on a dataset
relative to Pairtree on that dataset. Points below zero indicate a method took less time than Pairtree on
those datasets.
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Figure S10: Characteristics of the distributions over possible trees for the 576 simulated clone
tree reconstruction problems. Mid-lines in box plots indicate medians. a. Regardless of the number
of subclones, with one cancer sample there are usually multiple trees consistent with the true subclonal
frequencies. The highest median number of true trees (88,860) is reached for 10-subclone, single-sample
reconstructions problems. Given ten or more samples, the tree becomes highly constrained, and there
is usually only a single consistent tree. b. The entropies of the Pairtree-recovered tree distribution and
true tree distribution reflect how many high-confidence trees Pairtree recovers relative to the number
of possible trees. In general, Pairtree recognizes when the true tree is highly constrained, and returns
only one high-confidence tree. c. For a simulated dataset, a distribution over possible trees induces a
distribution over parent choice for every population represented in the tree. Shown are the joint Jensen-
Shannon divergence between parent distributions for Pairtree relative to truth for each simulated dataset,
normalized to the number of subclones in each tree. These divergences range between zero and one, with
small values indicating that parent choices are nearly always correct. For a given number of subclones,
Pairtree generally exhibits lower divergences with more cancer samples, indicating it was able to use
the information provided by those samples to improve its solution set. d. Relationship reconstruction
errors show that, even when the parents chosen for subclones are sometimes incorrect (panel c), the
relationship reconstructions can be more accurate. This is the same information as presented in Fig. 3b,
but partitioned by number of cancer samples.
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Figure S11: Prevalence of different subclone sizes within simulated trees. Subclone size indicates
the number of subpopulations present within a subclone, reflecting the number of subpopulations that
are descendants of the subpopulation that initiated the subclone.
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Figure S12: Properties of population and subclone frequencies. a. Largest population frequency
ηks for each population k across cancer samples s in simulated data. b. Standard deviation of subclonal
frequencies φks for each subclone k across cancer samples s in simulated data, as a function of the number
of populations in the subclone. Box plots show the empirical standard deviation measured in (noise-free)
simulated data, with solid line indicating the median and dashed line showing the mean. Orange circles
show the predicted standard deviation derived from Dirichlet distribution properties.
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Figure S13: Proportion of populations with small population frequencies in all cancer samples.
Proportion of populations k with population frequencies ηks < 1% across all cancer samples s. Box plots
show the empirical proportions measured in (noise-free) simulated data, with solid line indicating the
median and dashed line showing the mean. Grey circles show the predicted proportions derived from
Dirichlet distribution properties.
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Figure S14: Probability that sub-trees will consist entirely of populations with small fre-
quencies in all cancer samples. Probability that sub-tree containing given number of populations
will have population frequencies ηks < 1% for all populations k in the sub-tree across all cancer samples
s, computed using properties of Dirichlet distribution. A sub-tree consists of a subset of nodes from the
full-tree and all edges between those nodes. By this definition, all subclones are sub-trees, but a sub-tree
need not be a subclone.
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