








population j at its head, and
P
i2T ηis = φjs. By using the Dirichlet’s marginal beta distribution, as in2173

the previous analysis, we can compute the probability of the arbitrary sub-tree T consisting exclusively2174

of populations whose summed frequencies across cancer samples are small, such that
P
i2T ηis < ε = 0.012175

for every cancer sample s (Fig. S14). For instance, in the 100-subclone, single-sample case, we have a2176

6% probability of an arbitrary eleven-population sub-tree having a near-zero population frequency sum.2177

With jT j populations in such a sub-tree, there are (T + 1)! orderings of nodes in the sub-tree that would2178

permit nearly equal tree-constrained subclonal frequencies, and thus nearly equal tree likelihood. In the2179

eleven-population case, there would thus be (11 + 1)! = 4.79e8 solution trees resulting from this single2180

ambiguous sub-tree.2181

To compute the probability of observing such a case in the simulated trees, we must first consider how2182

many linear chains of J populations exist in a tree with K nodes, as each has an equal chance of being2183

assigned these small frequencies. If a tree is fully linear with no branching, there would be (K+1)�J+12184

chains of J nodes, such that our chain of 11 populations in a 100-subclone tree would have 101�11+1 = 912185

sub-trees, assuming that tree was fully linear. This in turn yields a (100%� 6%)91 = 0.36% chance that2186

we would not observe any near-zero-frequency 11-population chains in our tree—i.e., with near certainty,2187

we would encounter such a chain. Any degree of branching in a tree can reduce the number of node chains2188

of a given length, thereby lessening the chance we would see this scenario. Nevertheless, the probability2189

can remain considerable, which is another reason we omitted the many-subclones, few-samples cases from2190

our simulated data. Amongst the settings we included, we see, for instance, that in ten-subclone, single-2191

sample trees, 6% of five-population chains will have small population frequency sums, yielding a 35%2192

chance that we would encounter such a case in a fully linear tree.2193

10.15.4 Justifying our choice of the Dirichlet parameter for generating simulated data2194

In Sections 10.15.1 to 10.15.3, we saw that our choice of the Dirichlet parameter α when generating2195

simulated data (Section 10.8.2) affects multiple aspects of simulated data.2196

1. A smaller α leads to more variance in population frequencies between samples, increasing the chance2197

that multiple samples will make clear the proper pairwise relations between subclones.2198

2. A smaller α also leads, however, to a greater probability of observing near-zero frequencies for a2199

population across all cancer samples, inhibiting tree-reconstruction algorithms’ attempts to infer2200

the proper place for such populations in the tree. (We do not present results with alternative α2201

values here, but used these analyses to inform our choice of α.)2202
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Our chosen α = 0.1 thus achieved a compromise between three factors.2203

1. It led to sufficient variance in population frequencies between cancer samples for algorithms to2204

benefit from having access to multiple cancer samples.2205

2. It avoided creating too many populations with near-zero frequencies across samples, which would2206

have created excessive ambiguity.2207

3. Yet it created enough such populations so that we could evaluate how algorithms dealt with ambi-2208

guity stemming from this source.2209
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11 Supplementary figures2210
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Figure S1: Untruncated VAF reconstruction losses on 576 simulated datasets. These results
are the same as in Fig. 3b, but without axis truncation. As in the truncated plots, results reflect each
method’s performance on the subset of datasets where it succeeded in running.
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Figure S2: Untruncated relationship reconstruction errors on 576 simulated datasets. These
results are the same as in Fig. 3c, but without axis truncation. As in the truncated plots, results reflect
each method’s performance on the subset of datasets where it succeeded in running.
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Figure S3: Untruncated VAF reconstruction losses on 14 B-ALL datasets. These results are the
same as in Fig. 5, but without axis truncation. As in the truncated plots, results reflect each method’s
performance on the subset of datasets where it succeeded in running.
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Figure S4: VAF reconstruction loss of each method relative to Pairtree. Each point represents
a method’s VAF reconstruction loss on a simulated dataset relative to Pairtree, with positive values
indicating worse error. As each method failed on different simulations (Fig. 3a), values are reported only
on datasets where a method produced a result.
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Figure S5: Pairtree’s performance on different numbers of subclones and cancer samples.
a. Pairtree’s VAF reconstruction loss for each number of subclones and number of cancer samples. b.
Pairtree’s relationship reconstruction error for each number of subclones and number of cancer samples.
c. Pairtree’s Pairs Tensor’s relationship reconstruction error for each number of subclones and number
of cancer samples.
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Figure S6: Number of CPU seconds methods took to produce results. Box mid-lines indicate
medians. When using multiple CPU cores, these numbers can be much higher than elapsed wall-clock
time (Fig. S7). Results for each method reflect only its performance on the datasets where it could
produce a result.
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Figure S7: Elapsed wall-clock seconds methods took to produce results. Box mid-lines indicate
medians. When using multiple CPU cores, these numbers can be much lower than the number of CPU
seconds consumed (Fig. S6). Results for each method reflect only its performance on the datasets where
it could produce a result.
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Figure S8: Number of CPU seconds each method took to produce results relative to Pairtree.
Each point indicates the number of additional CPU seconds a method took on a dataset relative to Pairtree
on that dataset. Points below zero indicate a method took less time than Pairtree on those datasets.
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Figure S9: Elapsed wall-clock seconds each method took to produce results relative to
Pairtree. Each point indicates the number of additional wall-clock seconds a method took on a dataset
relative to Pairtree on that dataset. Points below zero indicate a method took less time than Pairtree on
those datasets.
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Figure S10: Characteristics of the distributions over possible trees for the 576 simulated clone
tree reconstruction problems. Mid-lines in box plots indicate medians. a. Regardless of the number
of subclones, with one cancer sample there are usually multiple trees consistent with the true subclonal
frequencies. The highest median number of true trees (88,860) is reached for 10-subclone, single-sample
reconstructions problems. Given ten or more samples, the tree becomes highly constrained, and there
is usually only a single consistent tree. b. The entropies of the Pairtree-recovered tree distribution and
true tree distribution reflect how many high-confidence trees Pairtree recovers relative to the number
of possible trees. In general, Pairtree recognizes when the true tree is highly constrained, and returns
only one high-confidence tree. c. For a simulated dataset, a distribution over possible trees induces a
distribution over parent choice for every population represented in the tree. Shown are the joint Jensen-
Shannon divergence between parent distributions for Pairtree relative to truth for each simulated dataset,
normalized to the number of subclones in each tree. These divergences range between zero and one, with
small values indicating that parent choices are nearly always correct. For a given number of subclones,
Pairtree generally exhibits lower divergences with more cancer samples, indicating it was able to use
the information provided by those samples to improve its solution set. d. Relationship reconstruction
errors show that, even when the parents chosen for subclones are sometimes incorrect (panel c), the
relationship reconstructions can be more accurate. This is the same information as presented in Fig. 3b,
but partitioned by number of cancer samples.
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Figure S11: Prevalence of different subclone sizes within simulated trees. Subclone size indicates
the number of subpopulations present within a subclone, reflecting the number of subpopulations that
are descendants of the subpopulation that initiated the subclone.
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Figure S12: Properties of population and subclone frequencies. a. Largest population frequency
ηks for each population k across cancer samples s in simulated data. b. Standard deviation of subclonal
frequencies φks for each subclone k across cancer samples s in simulated data, as a function of the number
of populations in the subclone. Box plots show the empirical standard deviation measured in (noise-free)
simulated data, with solid line indicating the median and dashed line showing the mean. Orange circles
show the predicted standard deviation derived from Dirichlet distribution properties.
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Figure S13: Proportion of populations with small population frequencies in all cancer samples.
Proportion of populations k with population frequencies ηks < 1% across all cancer samples s. Box plots
show the empirical proportions measured in (noise-free) simulated data, with solid line indicating the
median and dashed line showing the mean. Grey circles show the predicted proportions derived from
Dirichlet distribution properties.
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Figure S14: Probability that sub-trees will consist entirely of populations with small fre-
quencies in all cancer samples. Probability that sub-tree containing given number of populations
will have population frequencies ηks < 1% for all populations k in the sub-tree across all cancer samples
s, computed using properties of Dirichlet distribution. A sub-tree consists of a subset of nodes from the
full-tree and all edges between those nodes. By this definition, all subclones are sub-trees, but a sub-tree
need not be a subclone.
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Figure S15: Ability to detect simulated garbage mutations using pairwise relations. Garbage
mutations are mutations that do not fit in the tree because of ISA violations (homoplasy and wildtype
back mutations), incorrect input ploidies (missed CNAs corresponding to LOH events), or technical noise.
Pairtree can use pairwise relations to detect and discard such mutations. Shown are the precision and
recall for this garbage detection procedure on 160 simulated trees with 10 subclones, 200 non-garbage
mutations, and 20 garbage mutations per tree (a.), and on 30 subclones, 600 non-garbage mutations,
and 60 garbage mutations per tree (b.). The number of true positives, false positives, and true negatives
were combined across datasets in each class to produce single values for precision and recall.
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Figure S16: Influence of hyperparameters on garbage detection precision and recall. The
hyperparameters represent the prior probability of the garbage relationship between mutation pairs (γ)
and the maximum pairwise garbage probability permitted amongst mutations classified as not garbage
(ρ). Performance is reported on the same 160 simulated clone trees used in Fig. S15.
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Figure S17: Ability to detect missed LOH events without using pairwise relations. If the
input data given to Pairtree does not report CNA events corresponding to LOH, the mutation VAFs can
imply subclonal frequencies outside a realistic range. Pairtree can detect such problems without having
to use pairwise relationships to legitimate mutations. Shown are precision and recall for 100 trees with
10 subclones (200 legitimate mutations, 20 garbage mutations) and 100 trees with 30 subclones (600
legitimate mutations, 60 garbage mutations). The number of true positives, false positives, and true
negatives were combined across datasets in each class to produce single values for precision and recall.
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