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Abstract

Motivation: Protein coding regions prediction is a very important but overlooked subtask for tasks such as
prediction of complete gene structure, coding/noncoding RNA. Many machine learning methods have been
proposed for this problem, they first encode a biological sequence into numerical values and then feed them
into a classifier for final prediction. However, encoding schemes directly influence the classifier's capability
to capture coding features and how to choose a proper encoding scheme remains uncertain. Recently,
we proposed a protein coding region prediction method in transcript sequences based on a bidirectional
recurrent neural network with non-overlapping kmer, and achieved considerable improvement over existing
methods, but there is still much room to improve the performance. In fact, kmer features that count the
occurrence frequency of trinucleotides only reflect the local sequence order information between the most
contiguous nucleotides, which loses almost all the global sequence order information.

Results: We here present a deep learning framework with hybrid encoding for protein coding regions
prediction in biological sequences, which effectively exploit global sequence order information, non-
overlapping kmer features and statistical dependencies among coding labels. Evaluated on genomic and
transcript sequences, our proposed method significantly outperforms existing state-of-the-art methods.
Availability: The source code and the dataset used in the paper are publicly available at:
https://github.com/xdcwei/DeepCoding/.

Contact: jyzhang@mail.xidian.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction and Karlin (1997), Augustus Stanke et al. (2004)) are integrated models,
in which the task of identifying gene structure is first divided into subtasks

Genome annotation helps in understanding complicated biological o > A ; )
such as the prediction of functional sites and coding regions, and then

mechanisms underlying gene regulation and remains a challenging . . B
these subtasks are integrated into a structured learning framework for the

prediction of gene structure Al-Turaiki ef al. (2011). Moreover, coding
features is also very important for computational methods to discriminate
mRNAs from long non-coding RNAs Li e al. (2014); Tong and Liu (2019).
However, prediction of protein coding regions from uncharacterized
biological sequences (e.g., genomic or transcript sequences) is a very

problem in biology. The development of next-generation sequencing
(NGS) technologies give rise to an exponential increase of sequence
data. Many efforts have been dedicated to the identification of genomic
mutations by using NGS datasets Yuan et al. (2017); Tuo et al. (2020) in the
past few years, it is urgent to find effective genome annotation techniques
for predicting genes Catherine et al. (2002).

The prediction of protein coding regions in genomic or transcript challenging task. This is because (1) genomic sequences contain introns

that disrupt the coding structure Catherine et al. (2002). (2) there exists
a considerable number of short exons bordered by large introns, which
is easily missed by computational methods Catherine et al. (2002). (3)
unlike consensus motifs, coding features often exhibit higher-order distant

sequences is a very important but overlooked subtask for genome
annotation. Many well-known gene prediction tools (e.g., GenScan Burge
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interactions among nucleotides and more difficult to capture Rajapakse and
Ho (2005).

Many existing computational methods Hatzigeorgiou et al. (1996);
Guigé (1997); Zhang et al. (1998); Hatzigeorgiou (2002); Shuo and Yi-
sheng (2009); Tzanis et al. (2012); Wei et al. (2020) have been proposed for
protein coding regions prediction in genomic or transcript sequence during
the past decades. They first encode a biological sequence into numerical
values and then feed them into a classifier for final prediction. There are
mainly two types according to the encoding scheme they use: sequential
model and discrete model. The sequential model converts each nucleotide
of abiological sequence into a numerical value one by one, which preserves
the original order of the bases that appears in the biological sequence.
A widely used encoding scheme is one-hot representation (also called
C4 encoding) Voss (1992) that encodes four nucleotides with a binary
vector of four bits (A-[1,0,0,0], C-[0,1,0,0], etc.). The binary numbers
for each nucleotide are orthonormal to each other and have identical
Hamming distance. The one-hot encoding scheme is not only applied to
protein coding regions prediction, but also a large number of applications
Alipanahi et al. (2015); Min et al. (2017); Du et al. (2018); Zuallaert
et al. (2018). In contrast, the discrete model exerts efforts on engineering
a set of features based on prior knowledge from a biological sequence.
Some widely used biological features include the codon usage Staden and
McLachian (1982), codon prototype Shepherd and J. (1981), hexmer usage
Claverie et al. (1990), and Z curves of biological sequence Chun-Ting and
Ren (1991), which have been comprehensively reviewed by Fickett and
Tung (1992).

The abovementioned two models have both merits and demerits. In
fact, data representation in genome analysis plays an important role in
computational methods to learn relevant biological features Yu et al.
(2018); Kalkatawi et al. (2019), however, effectively encoding biological
sequences and building computational methods for features learning
remains uncertain Yu et al. (2018). The sequential model preserves the
global sequences order information Chen et al. (2014) but computational
methods could not fully capture biological features by this model. As
mentioned by Rajapakse and Ho (2005); Li et al. (2004), it is not easy for
neural networks to learn high-order correlations from extremely low-level
inputs, e.g., a string of nucleotides. The work Fu et al. (2019) also claim
that sequential model like one-hot encoding may contain limited useful
information compared to other objects like images or sounds that is more
suitable for deep learning. Recently, Choong and Lee (2017) claims that
one-hot encoding is unable to capture the frequency domain of features
like kmer. On the contrary, a discrete model like kmer representation
of biological sequences is a feature that has proved to be a successful
means to discriminate between coding and non-coding regions for the fact
that the distribution over the 64 different codons is significantly different
in coding regions compared to noncoding regions Axelson-Fisk (2010).
Despite the effectiveness of kmer, it can only incorporate local sequence
order information between the most contiguous nucleotides and none of
the global sequence order information can be reflected Chen et al. (2014).

Based on the aforementioned analysis, we explore how to enhance
the prediction of protein coding regions in genomic and transcript
sequences by integrating sequential with the discrete model. We propose
a novel method for protein coding regions prediction by using a hybrid
convolutional neural network Lecun er al. (2015) and bidirectional
recurrent neural network Schuster and Paliwal (1997) framework (CNN-
BRNN), which effectively exploits global sequence order information,
non-overlapping kmer features Hatzigeorgiou (2002), and statistical
dependencies among coding labels. Evaluated on genomic and transcript
sequences, our method gives an excellent prediction performance, which
significantly outperforms existing state-of-the-art method. There are
three contributions which may explain the excellent performance of our
proposed framework:

e We present a CNN-BRNN framework for protein coding regions
prediction both in genomic and transcript sequences, which
significantly outperforms existing state-of-the-art methods.

e We exploit a hybrid encoding (e.g., C2 Arniker et al. (2011) and kmer)
for protein coding regions prediction for the first time, it fuses global
sequence order information and kmer features simultaneously, which
demonstrate improved prediction performance over using each single
encoding.

e Inspired by our previous work Wei et al. (2020), we extend label
dependencies to genomic sequences and significantly improve the
prediction performance on genomic sequences over existing methods.

2 Related Work

We here review the most relevant works to us. A few previous works
demonstrate that combining sequence information with biological features
can bring considerable performance improvement in specific applications.
It is firstly introduced for promoter prediction in Xie et al. (2006), who
proposes a method called PromoterExplorer which integrates various
biological features (e.g., local distribution of pentamers, positional CpG
island features) with digitized DNA sequence in a cascade AdaBoost-
based classifier and achieves promising performance. The work Chen
et al. (2014) presents a sequence-based predictor, called iTIS-PseTNC, for
identifying translation initiation site in human genes and claims that using
kmer representation of DNA sequences only reflect local sequence order
information but lose all global sequence order information. They Chen
et al. (2014) remedy this by using a collaborative representation called
pseudo trinucleotide composition which incorporates the physicochemical
properties into DNA sequence and combines with kmer features. Recently,
in the work of Fu et al. (2019), they propose a hybrid sequence-based
deep learning model called MHCpG, which integrates MeDIP-seq data
with Histone information to predict DNA methylated CpG states, it
exceeds the other approaches and gained more satisfactory promoter
prediction performance owing to fusing multiple biological relevant
features and sequence information. Moreover, the work Pan and Shen
(2017) proposes a deep learning-based framework (iDeep) by using a
novel hybrid convolutional neural network and deep belief network to
predict the RNA-binding proteins (RBP) interaction sites and motifs on
RNAs. This new protocol is featured by transforming the original observed
data into a high-level abstraction feature space using multiple layers of
learning blocks, where the shared representations across different domains
are integrated. All the above works give us a strong intuition that there
exists a complementary relationship between sequence information and
biological features like kmer feature, and we could improve the prediction
performance of kmer based protein coding regions prediction methods by
incorporating global sequence order information.

3 Method

In this section, definitions of problems, data representation of biological
sequences, the CNN-BRNN framework for protein coding regions
prediction are introduced. The graphical illustration of the proposed
method is shown in Figure 1.

3.1 Preliminaries

In what follows, s = s1s2...5p, is a biological sequence (e.g., DNA or
mRNA), where s; € {A,C,T,G}, and y = y1y2...yn is the label
sequence of s, where y; € {1,0} denote the position 4 in s is coding
(y; = 1) or not (y; = 0). Then the protein coding regions prediction is
equivalent to solve the following maximum a posteriori (MAP) estimation
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Fig. 1. A graphical illustration of the proposed CNN-BRNN architecture for protein coding regions prediction. For each position in a biological sequence, the current subsequence and its

neighboring subsequences are firstly encoded into C2 and kmer encoding, then C2 encoding into a CNN and merges with kmer, which are finally fed into a BRNN for protein coding regions

prediction.

problem
y* = argmﬁxp(y|s) (€))

Almost all previous machine learning methods regard protein coding
regions prediction as an independent binary classification problem and
adopt a sliding window strategy to discriminate coding or non-coding,
then the Eq. 1 can be formulated as:

n
y* = arg max H p(yilsi,r) 2)

=1

and the predictions can be made separately, in the form
y; = arg n_}}axp(yi si,r) 3

where s, ;- indicate a subsequence of s centered at position p with a fixed
length window 2 X r + 1. In our previous work, we demonstrate the
significance of exploiting label dependencies among coding labels and
improve the prediction performance in transcripts. In this work, we also
extend the label dependencies to genomic sequences. Hence, for a position
4 in a genomic or transcript sequence, we here consider the following MAP
problem:

yi = argmaxp(yilsi,r, Y-i,u) @

where — denote not operator and Yoiu = Yi—u--Yi—1Yit+1---Yitu. It
can be observed from Eq. 4 that whether the position 7 in s is coding or not
depends on not only its local region s; ., but also its neighboring coding
labels y_,; ,,. This characteristic resembles the linear-chain conditional
random fields (CRF) Lafferty et al. (2001) that encodes state features
and transition features. State features encode the content properties of
the current position, while transition features focus on state transition
information (e.g., in our work, coding to coding or coding to non-coding).
It is worth emphasizing that the main difference of our model from CRF
is that, we here consider long-range dependencies between labels while
CRF consider the most neighboring two labels (e.g., y; and y;—1). In
the following subsection, we introduce a CNN-BRNN architecture to
effectively estimate conditional probability p(yi|si,r, Y; v,)-

3.2 CNN-BRNN for protein coding regions prediction

3.2.1 Hybrid encoding
The basic problem of machine learning methods for protein coding regions
prediction is designing an effective encoding scheme for a biological
sequence. Considering the demerits of the sequential model and discrete
model, we propose a hybrid encoding scheme that combines the sequential
model and discrete model, which could exploit the joint merits of each
model. Given a subsequence s; ., the hybrid encoding can be represented
as:

E = [E1; o] ®

we here adopt a sequential model such as C2 Arniker ef al. (2011) and
a discrete model like non-overlapping kmer representation, respectively.
Hence, E1 and E3 can be respectively formulated as:

Er = [C2(8i—1), C2(8i—r+41); s C2(Si4r)] (6

and
Ey = [f(AAA), f(AAC), ..., f(TTT)) 7)

where C2 converts a nucleotide into 2-bit binary (e.g., A-[0,0], C-
[1,1]1,G-[1,0],T-[0,1]) and f(AAA) counts the occurrence frequency of
non-overlapping trinucleotides A A A in biological sequence. For example,
si,r = AAAAACCC would have two codons f(AAA) = 1 and
f(AAC) =1.

Note that C4 encoding Arniker et al. (2011) is also a sequential model
that preserves the global sequence order information, however, it is more
computationally expensive than C2 encoding, hence we here adopt C2
encoding to substitute for C4 encoding. Meanwhile, the sliding window
size is relevant to prediction performance, the use of a smaller size can
increase the accuracy on the border of exon but leads to of higher rate of
false positive prediction Hatzigeorgiou et al. (1996). They Hatzigeorgiou
et al. (1996); Shuo and Yi-sheng (2009) use 91 whereas we adopt 90 in
practice for convenience of counting the number of codons. The slight
difference has almost no effect on the prediction performance.

3.2.2 CNN-BRNN
Given hybrid encoding for each sliding window s; ., another problem is
how to build an effective machine learning method to integrate global
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sequence order information, non-overlapping kmer features, and label
dependencies. We present a hybrid CNN-BRNN architecture to achieve
this goal. The graphical illustration is shown in Figure 1.

The hybrid CNN-RNN architecture has been successfully applied to
many applications including image segmentation Wang et al. (2016),
speech emotion recognition Yao et al. (2020). It provides a very natural way
for feature extraction and statistical dependency modeling. As one part of
CNN-RNN, CNN Lecun et al. (2015) is a specialized feedforward neural
network, which is characterized by the presence of convolutional layers
that use a stack of convolutional kernels to detect local patterns. Typically,
a CNN consists of an input layer, multiple pairs of convolutional-pooling
layers, a flatten layer, one or more fully connected layers, and the last
softmax layer. The convolutional layer is the most crucial part of CNN.
The output of a layer comes from its previous layer convolved with a set
of filters, that is

H®F) = g(Wk=1) g gk=1) 4 pk)) )

where H®) W &) and b(k) respectively denote the feature map,
convolutional filter, and biases of k-th layer, H (0) = E4, o denotes an
activation function that is usually employed to guarantee the non-linearity
of neural network. The most popular activation function is the rectified
linear unit (ReLU) defined as ReLU (xz) = max(0, z). In contrast, as
shown in Figure 1, we employ a CNN architecture that receives two inputs,
which separates two kinds of features (e.g., C2 encoding and kmer) by
feeding them into additional univariate networks summed at the flatten
layer of CNN, and then for a fixed window s; i, the flatten layer of CNN
can be formulated as:

0;=HY ¢ B> ©)

where @ is the concatenation operator. [ denotes the flatten layer of
CNN. We adopt CNN to incorporate global sequence information and
non-overlapping kmer features in viewing of its capabilities of modeling
non-linearities and capturing local patterns such as codon. Itis worth noting
that this network architecture is very common in recent works Ghafoorian
(2017); Zhehuan et al. (2016) which claim that a better performance can
be obtained when domain knowledge is incorporated into CNN.

The other part of CNN-RNN is an RNN which has been successfully
applied to bioinformatics. Sequence data usually exhibit statistical
dependencies and consider these dependencies usually yield performance
benefits. There exists a considerable number of works that exert efforts
to exploit statistical dependencies in DNA sequences, such as quantifying
the function of DNA sequences Daniel and Xie (2016), subcellular protein
localization Snderby et al. (2015), protein secondary structure prediction
Spencer et al. (2015), segmentation of DNA sequences Cheng et al.
(2012). In our previous work Wei et al. (2020), we demonstrate that
label dependencies among coding labels play an important role in protein
coding regions prediction for transcript sequences. In this work, we
extend this characteristic to genomic sequences and adopt the same BRNN
architecture in Wei et al. (2020). Instead of estimating the conditional
probability p(y;|si,r,y_;,) that has high-order dependencies among
coding labels, the BRNN architecture in Wei et al. (2020) consider two-
order dependencies among coding labels, and hence more computationally
efficient, it reduces the problem of Eq. 4 to the following formula:

y; = arg nLaXp(yi|3i,r7yi7v7 Yitv) (10

where v is a step interval that defines how far that two positions correlate.
As shown in Figure 1, after obtaining the output of CNN for three
subsequences, the forward and backward pass of BRNN can be formulated

as:

Iy = 02(Wa(01(Wili_2, + W10;_4)))) (11)
Jito = 02(Wa(o1(WyJigo, + W10;14)))) (12)

where W1, Wa, Wy, W ¢ respectively denote the weight matrices in the
first hidden layer, second hidden layer, forward recurrent layer, backward
recurrent layer of BRNN. o1 and o2 denote sigmoid and softmax activation
function, respectively. I; and J; respectively denote the forward and
backward passing message in a position ¢ of a sequence. Io and Jp denote
the initial states with constant zero entries. From Eq. 11, we can see that
the forward passing message I; in a position 4 is composed of the forward
passing message in a position ¢ —v, and the output of CNN in the position <.
Similarly, the backward passing message .J; in the position ¢ is composed
of the backward passing message in a position ¢ 4+ v, and the output of
CNN in the position 4. Actually, I; and J; is the estimations of y;, and the
difference lies in that I; determines y; by the current and past information
whereas J; determines y; by the current and future information. Finally,
the prediction for the sample s; ,- can be formulated as:

i = 0o(Wa(o1(Wli_y + W10; + Wi Jity)))) (13)

where ¢; indicates how likely is it that the nucleotide in the center of the
sliding window is coding. From Eq. 13, we can see that the prediction of a
sample s; ;- is dependent on the feedbacks from its neighboring positions
¢ — v and 7 + v, and the output O; of CNN in the position i.

Note that the step interval v must be a multiple of three for the
reason that in practice the coding label sequence y is actually not always
1 in open reading frame, but shows a periodicity of three nucleotides
(e.g., [1,0,0,1,0,0,...]). Meanwhile, as confirmed by experiments in
Wei et al. (2020), the setting of v is significantly relevant to the
prediction performance. Theoretically, the most neighboring positions
(v=3) contribute the most to position %, while the reverse is true in our
situation. If v is set small, s; is almost the same as s;_,, and s;.1,, in
which case I; _,, and J; ,, provide almost no additional information for the
prediction g;. Hence, the setting of v is optimal when it equals the sliding
window size, in which case s;, s;_, and s;,, is completely different so
that I; _,, and J;4,, provide the most information for the prediction g;.

4 Result

In this section, we conduct three experiments on four gene datasets.
The first is to prove the significance of hybrid encoding. In the second
experiment, we make a comparison of the proposed method to existing
state-of-art methods such as C4+MLP Hatzigeorgiou et al. (1996),
C4+SVM Shuo and Yi-sheng (2009), Z curve+LDA Zhang et al. (1998),
kmer+MLP Guigé (1997); Hatzigeorgiou (2002), kmer+SVM Tzanis et al.
(2012), kmer+BRNN Wei ez al. (2020). The goal of the last experiment is to
evaluate the time cost of the proposed method. The network architectures
are shown in Table 1.

4.1 Datasets

Four datasets are collected for performance comparison, including two
genomic datasets, e.g., H10873, BGHM975, and two transcript datasets,
e.g., H24842 and M19900. H10873 is built by extracting human
chromosome 1-22 from Refseq build 37.3. A total number of 10873
sequences are obtained after removing repeated entries. H24842 and
M19900 come from our previous work Wei et al. (2020). We adopt the
hold-out strategy, randomly selecting 8000, 20000, 15000 sequences as
training set to test the remaining 2873, 4842, and 4900 sequences, for
H10873, H24842, and M 19900 datasets, respectively. We refer to Bernal
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Fig. 2. Performance comparison of the proposed method with C4+MLP, C4+SVM, Z curve+LDA, kmer+MLP, kmer+SVM and kmer+BRNN. (A) the ROC curves on BGHM975 dataset;
(B) the ROC curves on H10873 dataset; (C) the ROC curves on H24842 dataset; (D) the ROC curves on M19900 dataset.

et al. (2007) and select 1284 human genomic sequences as training set for
BGHM975. To avoid the imbalanced data problem, negative examples are
chosen such that their number equals that of the positive examples.

4.2 Performance measurements

In order to evaluate the performance of the proposed method for coding
regions prediction, the analysis in this paper employs three evaluation
criteria in terms of Sensitivity (Sn), Specificities (Sp) and Area Under the
Receiver Operating Characteristic curve (auROC). All these criteria are
based on the notions of TP, FP, TN, and FN, which correspond to number
of true positives, false positives, true negatives, and false negatives. In a
ROC, one typically plots the true positive rate (TPR=TP/(TP+FN)) as a
function of the false negative rate (FNR=FN/(FN+TN)). The auROC can
be calculated by using the trapezoidal areas created between each ROC
points. The detailed definition can be found in Mitchell ez al. (1997); Davis
and Goadrich (2006).

4.3 Significance of hybird encoding

In order to prove the effectiveness of hybrid encoding, we conduct an
ablation study to separate the hybrid encoding and observe the prediction
performance for each single encoding. To be specific, hybrid encoding
is separated into C2 and kmer encoding and then fed into CNN and
MLP (e.g., C2+CNN and kmer+MLP). As it can be seen from Table 2-3,
C2+kmer+CNN significantly outperform C2+CNN and kmer+MLP, both
on genomic and transcript sequences. Moreover, it is worth noting that
C2 encoding achieves better performance than kmer+MLP, especially in
genomic sequences, which prove the effectiveness of global sequence order
information, but at the cost of computational complexity. All the prediction
performance decreases from transcript sequences to genomic sequences
for the fact that coding regions are continuous on transcript sequences but
interrupted by introns on genomic sequences. In brief, we can conclude
from the result that there exists a complementation relationship between

C2 encoding and kmer features, integration of which can facilitate the
machine learning method to fully capture coding features.

4.4 Performance comparison with existing state-of-the art
methods on genomic and transcript sequences

We compare the performance of the proposed method with that of
existing methods such as C4+MLP, C4+SVM, Z curve+LDA, kmer+MLP,
kmer+SVM, kmer+BRNN. All the methods are trained and evaluated with
the same dataset for a fair comparison. From Table 2-3, it is observed that
our proposed method performs the best among the existing methods and
achieves the highest Sn, Sp and auROC scores on all the four datasets,
the average Sn, Sp, auROC scores reach .929, .9498, .9843 on genomic
sequences, and .9837, .977, .9976 on transcript sequences, respectively.
We also plot the ROC curve on genomic and transcript sequences. As
it can be seen in Figure 2, given a fixed false positive rate of .05, our
proposed method respectively achieves a sensitivity of .913, .9433, on
BGHM975, H10873, an improvement of .1518, .2084 over the second
best method, kmer+MLP. Meanwhile, given a fixed false positive rate of
.025, the proposed method respectively achieves a sensitivity of .9791,
984 on H24842 and M19900, an improvement of .014, .0185 over the
second best method, kmer+BRNN. All the results demonstrate that our
proposed method is a high-accuracy protein coding regions prediction
method, especially in transcript sequences.

4.5 Time cost of the proposed method

‘We further briefly analyze the computational cost of the proposed method.
All the experiments are conducted on an Intel Core i5-10400 CPU 2.90
GHz PC with 16 GB RAM. The proposed method is implemented mainly
in Tensorflow and partly in Matlab. Table 4 gives the time cost of the
proposed method on four datasets. It can be observed that a larger dataset
requires more additional training time. The training and test process is
performed efficiently on all four datasets.
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Table 1. Different network architectures in experiments.
Layer C4+MLP kmer+MLP C2+CNN kmer+BRNN C2+kmer+CNN  C2+kmer+CNN+BRNN
input layer 360 64 90 x 2 3 x 64 64 90 x 2 3x64 3x90x2
conv layer - - 80 x [7,2] - - 80 x[72] - 80 x [7,2]
maxpool layer - - [2,1] - - [2,1] - [2,1]
dropout layer - - 0.5 - - 05 - 0.5
conv layer - - 80 x [3,1] - - 80 x[3,1] - 80 x [3,1]
maxpool layer - - [2,1] - - [2,1] - [2,1]
dropout layer - - 0.5 - - 05 - 0.5
dense layer 100 6 20 5 20 20
dropout layer 0.5 - 0.5 - 0.5 -
recurrent layer - - - W Wy, :2x5 - W Wy 12 x20
softmax layer 2 2 2 2 2 2

Table 2. Performance comparison of DeepCoding with the other state-of-the-art methods on genomic datasets.

Method BGHMO957 H10873
Sn Sp auROC Sn Sp auROC

Z curve+LDA Zhang et al. (1998) .8010 .8462 - 7829 8114 -
C4+MLP Hatzigeorgiou et al. (1996) .8564 .8558 9342 .8423 8671 .9328
C4+SVM Shuo and Yi-sheng (2009)  .8609 .8629 - .8369 .8369 -
kmer+MLP Guigd (1997) .8648 8815 .9451 .8685 .8606 .9378
C2+CNN .8739 8814 9508 .8940 .9275 9717
C2+kmer+CNN .8760 9181 .9632 9104 .9258 9745
C2+kmer+CNN+BRNN 9215 9439 9816 .9365 .9558 .9870

Table 3. Performance comparison of DeepCoding with the other state-of-the-art methods on transcript datasets.

Method H24842 M19900

Sn Sp auROC Sn Sp auROC
Z curve+LDA Zhang et al. (1998) .8131 .8407 - .8339 8422 -
kmer+MLP Hatzigeorgiou (2002) 9243 9177 9746 9321 .9086 .9746
kmer+SVM Tzanis et al. (2012) 9276 .9292 - 9291 9271 -
kmer+BRNN Wei et al. (2020) 9682 9713 .9951 9689 .9716 .9954
C2+CNN 9209 9261 9775 9446 9146 .9804
C2+kmer+CNN 9504 9258 .9844 9464 9281 9838
C2+kmer+CNN+BRNN 9837 9744 9976 9837 9799 .9977

Table 4. Brief description of time cost on four datasets with regard to the proposed method.

Datasets Type Sequence Number (train/test) Coding Number (train/test) Time Cost (s)
BGHM957 Genomic 1283/957 1,023,874/497,110 760
H10873 Genomic 800072873 1,778,488/632,030 1886
H24842 Transcript 20000/4842 1,828,898/438,710 1972
M19900 Transcript 15000/4900 1,751,904/578,198 1856

5 Conclusions Funding

In summary, protein coding regions prediction is a very important This work is supported by the Natural Science Foundation of China under

but overlooked subtask for tasks such as prediction of complete gene
structure, coding/non-coding RNA. However, it is still a lack of effective
computational methods to learn coding features from genomic and
transcript sequences. Indeed, coding features in biological sequences
usually exhibit heterogeneity (e.g., global sequence order information,
frequency domain of features like kmer, statistical dependencies among
coding labels) and are difficult to capture by using a single encoding
scheme and machine learning method. In this paper, we present a deep
learning framework with hybrid encoding for protein coding regions
prediction, which effectively incorporates the three kinds of features into
a hybrid CNN-BRNN architecture and achieves a remarkable prediction
performance when compared with existing state-of-the-art methods on
genomic and transcript sequences.

Grants 11674352, and 91853123.
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