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Abstract 9 

 10 

The stringent response is a broadly conserved stress response system that exhibits 11 

functional variability across bacterial clades. Here, we characterize the role of the 12 

stringent factor Rel in the non-tuberculous mycobacterial pathogen, Mycobacterium 13 

abscessus (Mab). We find that Rel in Mab is involved in restricting transcription of 14 

anabolism and growth genes in stress, as has been observed in many other species. 15 

However, the stringent response in Mab does not provide a survival advantage in 16 

several stress conditions or in antibiotic treatment. According to our transcriptional 17 

profiling, Rel in Mab does not activate transcription of stress response or antibiotic 18 

resistance genes. Instead, Rel actually represses transcription of many antibiotic 19 

resistance genes in stress. This study implies that combinatorial therapies with stringent 20 

factor inhibitors would not potentiate antibiotic treatment against Mab infections.  21 

 22 

Introduction 23 
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 24 

Bacteria must adjust their physiology to permit survival in fluctuating conditions. 25 

The stringent response is a conserved signaling system that promotes survival of many 26 

species in stress and antibiotics by altering the transcription of about a quarter of the 27 

genome (1–5). In this work, we profile the role of Rel, the sole annotated stringent 28 

factor, in the non-tuberculous, rapidly-growing mycobacterium Mycobacterium 29 

abscessus (Mab). Mab is an opportunistic pathogen that both lives in the environment, 30 

and causes skin and respiratory infections which are increasingly prevalent in Cystic 31 

Fibrosis patients (6). Mab infections are especially difficult to treat because this species 32 

is naturally resistant to many antibiotics (7), and highly tolerant under stress to almost 33 

all antibiotics tested (8, 9). One proposed strategy to help treat such antibiotic-34 

recalcitrant infections is to inhibit the regulatory systems, like the stringent response, 35 

that promote antibiotic tolerance (10–13). 36 

The conserved aspect of the stringent response is the synthesis, upon stress, of 37 

the hyperphosphorylated guanine (p)ppGpp by either Rel/SpoT homolog proteins (RSH, 38 

or Rel) or Small Alarmone Synthases (SAS). Once made, (p)ppGpp affects transcription 39 

in different ways (14–17) and also directly modulates replication (18, 19), nucleotide 40 

metabolism (20–22), ribosome maturation (23, 24) and translation (25–27). How exactly 41 

the stringent response exerts its effects in mycobacteria is not well understood, and the 42 

Mab stringent response has not been studied at all.  43 

Function of the stringent response varies along with the niche and lifestyle of the 44 

species (28). For example, the photosynthetic Synechococcus elongatus synthesizes 45 

(p)ppGpp when it is moved into the dark (29, 30), while the copraphagous E. coli makes 46 
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(p)ppGpp when it runs out of amino acids (31, 32) or lipids (33, 34). The physiological 47 

outputs of the stringent response also vary across species, but there are conserved 48 

themes. First, the stringent response generally downregulates genes required for 49 

growth, such as ribosome and cell wall synthesis factors, and it alters transcription of 50 

central metabolism to prioritize survival rather than construction of new cells (2, 3, 17, 51 

35). In most species studied, activation of the stringent response inhibits growth (31, 52 

35–40) which indirectly protects against some stresses and antibiotics that interfere with 53 

growth factors (Fig. 1). In many species, the stringent response upregulates stress 54 

response genes such as heat shock proteins, hibernation factors, and stress-specific 55 

transcription factors (3, 41, 42) and promotes survival in stress (13) (Fig. 1).  56 

The stringent response also helps many bacteria survive through antibiotic 57 

treatment by promoting antibiotic tolerance (12)(Fig. 1). Antibiotic tolerance allows a 58 

bacterial population to survive longer during treatment. This is different from antibiotic 59 

resistance, which is the ability of a population to grow in higher concentrations of 60 

antibiotic (43). Because most antibiotics inhibit enzymes required for growth, their 61 

effectiveness is proportional to growth rates (44), and much antibiotic tolerance can be 62 

achieved simply through growth inhibition. Mutations that activate the stringent 63 

response have been shown to be responsible for antibiotic-recalcitrant infections (45, 64 

46). Genetic manipulation of loci that decrease (p)ppGpp levels have been shown to 65 

lower tolerance to antibiotics in phylogenetically diverse species (5, 11, 47, 48). 66 

The pathogen Mtb has a single stringent factor, Rel. Mtb induces (p)ppGpp 67 

synthesis when respiration is inhibited, in stationary phase and in total carbon and 68 

nitrogen starvation (36, 49). Rel allows long term survival of Mtb in nutrient and oxygen 69 
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starvation and stationary phase (36). While Rel in Mtb does not affect growth during 70 

early infection of macrophages (36), it promotes survives during chronic infection of 71 

mice (1) and guinea pigs (50, 51).  Importantly, Rel also makes Mtb more tolerant to the 72 

first-line clinical antibiotic isoniazid during nutrient starvation and chronic infection in 73 

mice (11) (Fig. 1). 74 

In this study we studied the phenotypes of the ∆rel strain of Mycobacterium 75 

abscessus, which is lacking the sole predicted (p)ppGpp-synthesizing enzyme. We find 76 

that the Mab ∆rel strain does not exhibit defects in survival in several different stress 77 

conditions, but has a growth defect relative to wild type. Importantly, the stringent 78 

response in Mab does not activate antibiotic tolerance; it actually inhibits tolerance to 79 

the clinically used antibiotic, amikacin. We transcriptionally profiled the effects of rel and 80 

find that it downregulates many metabolic pathways in stasis conditions, as is seen in 81 

other species. However, we do not find that the Mab stringent response upregulates 82 

stress response genes in any condition we tested.  83 

 84 

Results 85 

 86 

In order to explore the role of rel in regulating growth, survival and antibiotic tolerance in 87 

Mab, we built a strain of Mab ATCC19977 with a deletion of the rel gene (MAB_2876). 88 

In many species, the stringent response promotes survival during stresses such as 89 

stationary phase, acid stress, starvation, or oxidative stress (5, 36, 39, 52–54). To 90 

evaluate the physiological role of the stringent response in stress in Mab, we assayed 91 

survival of log. phase cultures, in 7H9 media, of the wild-type, ∆rel and complemented 92 
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strains upon and after transfer to either carbon starvation (Fig. 2A), salt stress (Fig. 2B), 93 

oxidative stress, (Fig. 2C) or acidic media (pH 4) (Fig. 2D). We treated wild type and 94 

mutant Mab to growth limiting concentrations of these stressors and observed no 95 

differences in growth inhibition or survival relative to wild-type and the complemented 96 

strain. Thus, Rel in Mab does not regulate responses to these stresses under the 97 

conditions tested, or at least not enough to affect growth or survival. We also found that 98 

Rel does not promote survival in stationary phase in 7H9 media (Fig. 3A).  99 

 We conducted a growth curve and found that the ∆rel strain grew more slowly 100 

than the wild-type and complemented strains (Fig. 3B). This result suggests that Rel in 101 

Mab largely functions to promote growth in low stress conditions. This is surprising, in 102 

view of the fact that in most species studied, the stringent response functions to arrest 103 

growth under stress (4). In several proteobacterial species, ppGpp0 strains, which have 104 

deletions of all the (p)ppGpp-synthesizing enzymes, comparable to our ∆rel strain, 105 

actually grow faster than the wild-type (38, 53, 55–57). However, in the gram positive 106 

Enterobacter faecalis (58) and in Mycobacterium tuberculosis (36), the ppGpp0 strains 107 

also grow slowly, as we see in Mab (Fig.1).  108 

 Because the stringent response is a major activator of antibiotic tolerance and 109 

persistence in many species (5, 56, 58), we sought to assess how Rel contributes to 110 

antibiotic tolerance in Mab. First, we treated Mab cultures in logarithmic growth phase 111 

with the clinically used antibiotics amikacin, clarithromycin and cefoxitin (59). We found 112 

that clarithromycin alone did not kill a significant portion of any of the strains (Fig. 4A), 113 

likely due to inducible macrolide resistance that has been described (60). Cefoxitin 114 

treatment also did not have an effect. However, amikacin treatment resulted in 10-100-115 
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fold decrease in viability of wild-type and complemented strains, but had no effect on 116 

∆rel . Typically, the stringent response promotes tolerance (5, 56, 58), but here we are 117 

seeing increased tolerance when the stringent factor Rel is missing.   118 

 Antibiotic tolerance increases in stationary phase in most bacterial species 119 

relative to log. phase (5, 61). To assess how the stringent response in Mab impacts 120 

stress-induced antibiotic tolerance, we repeated the antibiotic survival experiments on 121 

stationary phase cultures. In stationary phase, Rel does not affect tolerance to 122 

clarithromycin or cefoxitin, and none of the strains are killed appreciably in this condition 123 

(Fig. 4B). Similar to amikacin treatment in growth, Rel also promotes increased 124 

susceptibility in stasis. We expected to observe greater tolerance of all strains to the 125 

cell-wall targeting drug cefoxitin in stationary phase because beta-lactam susceptibility 126 

typically correlates with growth rate (44), however, we did not (Fig. 4AB).  127 

Studies are ongoing to find drugs that would inhibit Rel proteins (11, 13), as such 128 

drugs are expected to increase susceptibility to other clinically available antibiotics. Our 129 

results indicate that Rel inhibitors, should they become available, might actually 130 

increase tolerance when administered in combination with amikacin to treat Mab 131 

infections, and may have no effect with clarithromycin and cefoxitin. 132 

 A major function of the stringent response in other species is to remodel the 133 

transcriptome (4). To determine the effects of Rel on transcription in Mab, we compared 134 

the wild-type and ∆rel transcriptome in both logarithmic growth and stationary phases. 135 

We found that Rel represses many more genes than it activates in both log. and 136 

stationary phase in Mab. 137 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2020. ; https://doi.org/10.1101/2020.11.07.372714doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.07.372714
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 In mid log. phase, when the ∆rel strain are growing more slowly (Fig. 3B), we 138 

found 150 genes that were repressed by Rel by at least 3-fold, and only 7 genes that 139 

were activated by Rel. The only annotated upregulated genes are an efflux pump 140 

(MAB_0677) and a MFS transporter (MAB_0069).  We found several mce family genes 141 

that were repressed by Rel (Table S2). Mce proteins are typically lipid transporters, but 142 

they also play roles in host cell entry and immune modulation (62). Notably, we also 143 

found two antibiotic resistance genes that are repressed by Rel in log. phase, 144 

MAB_4837 and MAB_2875 (Table 1). MAB_4837 is annotated as an aminoglycoside 145 

phosphotransferase; this class of enzymes inactivates aminoglycoside antibiotics. 146 

Overexpression of MAB_4837 in the ∆rel strain may account for the increased tolerance 147 

to amikacin seen in that strain (Fig. 4A). MAB_2875 encodes the β-lactamase blaMab, 148 

which degrades β-lactams including several penams and carbapenems, but which has 149 

very poor activity against cefoxitin (63). This may explain partly why we see no 150 

difference in susceptibility to cefoxitin between our wild type and Rel mutant strains (Fig. 151 

4).  152 

 Even though there was no apparent difference in survival between the wild-type 153 

and ∆rel strains in stationary phase, we observed significant differences in transcription. 154 

We found hundreds of genes that were repressed by Rel in stationary phase, but none 155 

that were activated by Rel 3-fold or more. The two antibiotic resistance genes, 156 

MAB_4837 and MAB_2875, mentioned above were also significantly repressed by Rel 157 

in stationary phase, which may help explain why the antibiotic susceptibility results for 158 

amikacin and cefoxitin were not significantly different in log. and stationary phase. We 159 

also found many genes in the WhiB7 regulon (Table 1) which are repressed in 160 
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stationary phase, though they are mostly unaffected in log. phase. WhiB7 is a 161 

transcription factor that activates many antibiotic resistance genes and promotes 162 

resistance to many classes of antibiotics in Mab (64). It is notable that these antibiotic 163 

resistance genes are repressed by Rel in stasis, which would imply that the wild-type 164 

Mab would be more susceptible to antibiotics in this condition, which is what we see in 165 

amikacin treatment. In the case of clarithromycin and cefoxitin, increased tolerance 166 

through downregulation of target expression may counterbalance the repression of the 167 

antibiotic resistance genes, resulting in no differences in susceptibility in our assays 168 

(Fig. 4).  169 

 We also found several cell wall biosynthetic genes that are downregulated by Rel 170 

in stationary phase (Table S2). Downregulation of growth factors is typical in stringent 171 

responses across many bacterial species (3, 37, 58, 65, 66). However, unusually, the 172 

microarray experiment profiling the Rel transcriptome in Mtb found that several cell wall 173 

enzymes were upregulated by Rel in stationary phase (1).  174 

 We see that Rel downregulates many central metabolism genes in stationary 175 

phase. However, it is notable that not all the genes in a given pathway are 176 

downregulated by Rel equally (Fig. 5, Table S3). We hypothesize that this uneven 177 

regulation of certain pathways may allow certain metabolites to accumulate in the wild-178 

type strain in stasis. Such metabolites may be re-directed to other pathways. We 179 

observed that several of the products of enzymes that are not downregulated, which 180 

may therefore be accumulating under these conditions, converge on the NAD synthesis 181 

pathway. None of the genes in the NAD synthesis pathway are downregulated by Rel, 182 

which implies that continued metabolism of NAD, which is a critical cofactor in many 183 
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pathways, may be important in stationary phase, and that flux toward its biosynthesis 184 

may be prioritized by the stringent response.  185 

From our preliminary analysis, it is clear that the stringent response in Mab helps 186 

regulate growth and central metabolism, and affects expression of antibiotic resistance 187 

genes; however, it does not seem to upregulate specific stress responses.  188 

 189 

Discussion 190 

 191 

Our results show that the stringent factor Rel in Mab does not promote survival in 192 

many in vitro stress conditions (Fig.2, 3A). This is surprising because data from other 193 

species shows the stringent response is responsible for upregulating stress response 194 

genes (3, 42, 67, 68) as well as downregulating growth genes. Our transcriptomics 195 

analysis indicate that Rel in Mab does not upregulate stress response genes, at least 196 

during stationary phase in lab media. It is possible that stationary phase is dissimilar 197 

from any conditions that Mab evolved to adapt to, and therefore these data may not be 198 

physiologically relevant. However, Mab does not link growth arrest with activation of 199 

stress response genes by the Rel. It appears that the stringent response in Mab is 200 

mainly involved in downregulating metabolism for growth arrest. Other regulators must 201 

control stress response genes independently.  202 

While our data show that the Mab stringent response does remodel metabolism 203 

during both growth and stationary phase (Table S3, Fig. 5), it is actually required for 204 

maximal growth rates during log. phase (Fig. 3B). This suggests that the stringent 205 

response in Mab may function more to modulate metabolism to promote growth under 206 
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variable conditions rather than to arrest growth in highly stressful conditions. It is 207 

interesting that ppGpp0 strains of Gram positive and Actinobacterial strains tend to grow 208 

slower than the wild-type strains, whereas the ppGpp0 Gram negative strains tend to 209 

grow faster than the wild-type (Fig. 1). Thus, the model that the function of the stringent 210 

response is to arrest growth under stress appears to be applicable mostly in the 211 

Proteobacteria. In Firmicutes and Actinobacteria, including Mab, the stringent response 212 

may actually be promoting growth under certain circumstances.  213 

However, our work has not established whether the Mab ∆rel strain completely 214 

lacks (p)ppGpp. In Mtb, Rel is the only (p)ppGpp synthesizing enzyme (36, 69). 215 

However, there are at least three enzymes in Msmeg that synthesize (p)ppGpp, and 216 

only two have been described (70). It is therefore possible that Mab has another 217 

enzyme that synthesizes (p)ppGpp, and the phenotypes we observe in the Mab ∆rel 218 

strain are partly due to increased (p)ppGpp due to the loss of Rel’s hydrolase function.  219 

Rel in Mab may inhibit growth more in different conditions than those tested here. 220 

β-oxidation, i.e., consumption of lipids as a carbon source, in Mtb is correlated with 221 

latency and pathogenesis (71, 72), and the stringent response inhibits growth in the 222 

presence of lipids as a carbon source (36), implying that it could be part of this 223 

regulation. Studies of Mab during infection show that β-oxidation genes are upregulated 224 

in macrophages and amoeba infection (73). We do not see significant differences in 225 

expression of fatty acid synthesis or degradation genes in any of the conditions we 226 

tested, but this could be because we did not add lipids to our media. The stringent 227 

response in Mab could possibly regulate β-oxidation or other processes in conditions in 228 

different nutrient conditions, or in infection.  229 
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We observed in our transcriptional data that Rel downregulated numerous 230 

antibiotic resistance genes in stationary phase (Table 1). This is surprising in view of the 231 

literature on the stringent response from other species, where the stringent response 232 

both promotes antibiotic tolerance (5, 11, 58) and sometimes also increases expression 233 

of antibiotic resistance genes (74, 75). Mab is notorious for having resistance to many 234 

clinical antibiotics and expressing many antibiotic resistance genes (64, 76, 77) which is 235 

why it is such a problematic pathogen for cystic fibrosis patients (78). Studies in Mtb 236 

show that the Rel-mediated stringent response activates tolerance to at least some 237 

antibiotics in that pathogen (11), and it is natural to assume that this would also hold 238 

true for Mtb’s close relatives (79); however, our data in Mab show that antibiotic 239 

tolerance in Non-tuberculous Mycobacteria (NTMs) can be regulated differently. The 240 

environmental niche of most NTMs is the soil and water systems (80), whereas Mtb 241 

lives exclusively in human tissues. Antibiotics have been prevalent in soil habitats for 242 

possibly a billion years (81–83), but have only been prevalent in human tissues for 243 

around 100 years (84). In addition, NTMs are likely exposed to a greater variety of 244 

environmental stresses than Mtb. Therefore, saprophytic NTMs like Mab are likely to 245 

have hard-wired the connections between stress responses and antibiotic tolerance and 246 

resistance in different ways than Mtb.  247 

 Our work shows that the stringent factor Rel in Mab, in lab media, works mainly 248 

to remodel metabolism, and does not appear to be important in stress responses and 249 

antibiotic tolerance. Future work will determine whether this stringent response 250 

regulates different genes and processes in infection. 251 

 252 
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 253 

Materials and Methods  254 

 255 

 256 

Construction of strains. Primers 1233 – 1238 (Fig.S1A) were used to amplify a 502 bp 257 

segment upstream of relmab which included the start codon, a 448 bp segment 258 

downstream of relmab which included the stop codon, and a 788 bp ZeoR cassette. All 3 259 

segments were stitched together by PCR to form the ∆rel::zeoR double stranded 260 

recombineering knockout construct. The ∆relMab mutant strain was generated through 261 

double stranded recombineering, as previously described (85) (Fig.S1C). Colonies from 262 

the transformation of the  ∆rel::zeoR  construct were PCR checked by using primers 263 

1424-761, 1235-1236, and 762-1425 (Fig.S1A). To make the complemented strain, 264 

the rel gene was amplified through PCR using primers 1329-1330 and inserted into 265 

pKK216 (86) with NdeI and HindIII. This new plasmid, pCB1248, was transformed into 266 

the ∆relMab mutant strain in order to create the relMab complemented strain, in which rel 267 

expression is driven by a constitutive promoter (BN17, Fig.S1B).  268 

 269 

Media and culture conditions. All M. abscessus ATCC 19977 wild-type cultures, 270 

∆relMab cultures, and relMab complemented cultures, were started in 7H9 (Becton, 271 

Dickinson, Franklin Lakes, NJ) medium with 5 g/liter bovine serum albumin, 2 g/liter 272 

dextrose, 0.85 g/liter NaCl, 0.003 g/liter catalase, 0.2% glycerol, and 0.05% Tween 80 273 

and shaken overnight at 37°C until log. phase. For starvation and other specific assays, 274 

Hartmans-de Bont (HdB) minimal medium was made as described previously (87). 275 
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Cultures were inoculated to an optical density of 0.05, unless otherwise stated. All CFU 276 

time points were plated on LB agar and placed in 37° C incubator for 4 days.  277 

 278 

∆relMab stress assays. For all stress assays, strains were prepared and grown into log. 279 

phase. Unless otherwise stated, cultures for stress assays were done in non-culture 280 

treated 24-well plates and shaken at 130rpm in 37C incubator. For carbon starvation, 281 

strains were inoculated in 30mL inkwells in HdB minimal media with no glycerol, and 282 

with Tyloxapol as a detergent. For acid stress, strains were inoculated in 7H9 medium 283 

with a pH of 4. For osmotic stress, strains were inoculated in LB medium with 1M salt 284 

(ACS Sodium Chloride, VWR Chemicals BDH).  For oxidative stress, all strains were 285 

inoculated in complete HdB minimal medium, which does not contain catalase, and 286 

strains were exposed to different concentrations of tert-Butyl Hydroperoxide (Alfa 287 

Aesar). CFU time points were taken upon inoculation, at 1 hour, 3 hours, and 24 hours 288 

post-inoculation.  289 

 290 

∆relMab  growth curve and stationary phase survival. Log-phase cultures of all strains 291 

were inoculated to OD 0.05 in 30mL inkwells in 7H9 media. Cultures were then placed 292 

in shaking incubator at 37C and 130rpm. CFU time points were then taken throughout a 293 

12-hour period. For stationary phase survival, a second set of cultures were grown into 294 

stationary phase up to 48 hours. Initial CFU time-point was taken at 48 hour after 295 

dilution of log. phase samples to OD=0.05, with subsequent time points taken at 5, 6, 7, 296 

8, 9, and 10 days.  297 

 298 
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 299 

Antibiotic assays. For the log. phase experiments, strains that had been kept in log. 300 

phase in 7H9 for ~24 hours were diluted to OD=0.05 and treated with either 150 µg/mL 301 

of amikacin, 200 µg/mL clarythromycin, or 80 µg/mL of cefoxitin. CFUs were measured 302 

upon treatment (T=0) and 48 hours after treatment (T=48). For stationary phase, log. 303 

phase cells at OD=0.05 were shaken for 48 hours and then treated as above. CFUs 304 

were measured upon treatment and 72 hours after treatment. 305 

 306 

RNA isolation, library preparation and data analysis. RNA from three biological 307 

replicates of each strain and condition was isolated as previously described (88) with 308 

some modifications. After growth for ~24 hours in either log. or stationary phase, cells 309 

were transferred to 15mL conical tubes and centrifuged at 4C for 3 min at 4000rpm. Cell 310 

pellets were immediately resuspended in 750µl of TriZol (Invitrogen) and lysed by bead 311 

beating.  RNA was purified according to protocol with the Zymogen Direct-zol RNA 312 

Miniprep Plus (cat. No 2070). RNA was processed for Illumina sequencing using the 313 

TRuSeq Total RNA Library Prep from Illumina, with bacterial rRNA removal probes 314 

provided separately by Illumina. Sequencing was performed using Illumina NovaSeq at 315 

the North Texas Genome Center at the University of Texas in Arlington.  316 

Between 50-300 million pair-end reads per library were mapped to the M. 317 

abscessus subs. abscessus ATCC 19977 published genome using CLC Genomic 318 

Workbench software (Qiagen). To minimize the skewing effect that certain PCR 319 

jackpots had on the data, we adjusted the number of reads mapped from each library so 320 

that the median reads per gene was the same within an experiment. In the log. phase 321 
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samples, the median reads per gene was ~600. In the stationary phase samples, the 322 

median reads per gene was ~100.  After normalization, the Reads Per Kilobase Million 323 

(RPKM) values were determined for each ORF, and the weighted proportion fold 324 

change of RPKM between the wild type and ∆rel strains for each condition were 325 

calculated by CLC Workbench. The Baggerley’s test was used to generate a false 326 

discovery rate corrected P-value.  We then used a cut-off of 3-fold change with a false-327 

discovery rate corrected P-value of ≤ 0.05 to identify significantly differentially regulated 328 

genes between wild type and ∆rel in the different conditions. Because the median reads 329 

per gene for log. phase samples was 6 times higher than for stationary phase samples, 330 

we linearly scaled the fold-change values when comparing wild type log. to Wild-type 331 

stationary phase data to normalize for this difference in read depth.  332 
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 335 

Table 1. Antibiotic Resistance Genes – (Under whiB7 regulon)* 336 

 337 

Mab GENE 

Annotation 

FC-

∆re/ 

vs. 

WT 

LOG 

FDR- 

corrected 

P value 

∆rel/ vs. 

WT 

LOG 

FC- 

∆rel/ 

vs.WT 

Stat. 

FDR- 

corrected 

P value 

∆rel/ vs. 

WT 

Stat. 

FC-

WT.stat/ 

WT.log 

FDR- 

corrected  

P value 

WT.Log 

vs. 

WT.Stat 

Mab GO. Mol. function 

MAB_0163c +2 1.1E-04 +40 5.1E-12 +2 1.7E-311 Aminoglycoside 
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 Phosphotransferase 

 

 

MAB_0185c +1 0.3 +5.4 6.4E-03 -5.4 0 Arabinosyl 

Transferase* 

MAB_0186c 

 

+1 0.8 +9.7 1.8E-04 -7.4 0 Arabinosyl 

Transferase* 

MAB_1341 +1 0.45 +34 2.3E-11 -1.3 5.5E-13 

 

Decarboxylase* 

MAB_1342 +1.4 0.03 +14 0 -1 0 Acyl-CoA synthetase* 

MAB_1395 +2.7 1.3E-04 +48 5.2E-10 +1 7.2E-29 Transporter* 

MAB_1396 +2.5 3.7E-06 +36 0 -1 0 Multidrug MFS transporter 

MAB_1846 -1.3 0.44 +28 4.2E-06 -1.4 2.9E-265 

 

ABC transporter* 

MAB_2273 +2.3 8.8E-12 +101 1.96E-08 +2.2 0 MFS transporter* 

MAB_2297 +1.5 0.02 +99.2 7.1E-08 -2.1 0 Methyltransferase-erm41*  

MAB_2310 +1.3 0.5 +5.7 0.03 +3.6 1.5E-50 

 

Multidrug transporter 

MAB_2355c +2.2 1.5E-08 +17 0 +2.8 0 ABC transporter* 

MAB_2396 +2.1 8.2E-03 +18 7.3E-09 +1.5 4.5E-122 

 

Probably 

acetyltransferase* 

MAB_2640c +1.2 0.122 +5 5.4E-03 -2.4 0 Mmr - multidrug transport 

integral membrane protein 

MAB_2736c +1 0.6 +13 1.99E-10 -3.7 0 ABC transporter 

MAB_2780c 

 

+1.7 0.01 +27 1.14E-07 +3.3 0 MFS transporter* 

MAB_2807 -1 0.7 +5 4.4E-03 -4.7 0 MFS transporter 
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MAB_2875 +5.4 9.7E-06 +38 0 +1.2 1.6E-171 

 

Beta-lactamase 

MAB_2989 +2 5.1E-04 

 

+6.8 2.9E-05 +2.93 1.1E-222 

 

Chloramphenicol 

acetyltransferase 

MAB_3042c +2.7 1.9E-12 +24 0 +1.82 0 GTpase-Hflx* 

MAB_3467c +6 2.5E-03 +21 0 +92 0 Heat shock protein* 

MAB_3508c +1.8 0.3 +31 0.08 +14 0.38 WhiB7 

MAB_3762 +2 2.4E-09 +11 2.9E-10 +7.09 4.9E-143 

 

Membrane protein* 

MAB_3869c -1.3 0.158 +6.7 5.4E-03 -1.67 0 DNA directed RNA 

polymerase* 

MAB_4294 +1.8 3.1E-03 +28 0 +1.88 0 Aminotransferase* 

MAB_4395 +2.4 0 +8 8.8E-07 +1.1 0 Aminoglycoside- 2’-N-

acetyltransferase 

MAB_4837 +4.6 0 +26 0 +1.84 1.9E-312 Aminoglycoside 

phosphotransferase 

 338 

 339 

 340 

 341 

 342 

Figures 343 

 344 
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345 

Figure 1. Survival or growth of ppGpp0 strains from different species. Summary of 346 

published phenotypic data from ppGpp0 strains (lacking all known factors that 347 

synthesize (p)ppGpp) across several bacterial clades in different stress conditions. Blue 348 

squares represent species in which the ppGpp0 phenotype was the same as the wild-349 

type strain. Red squares indicate that the ppGpp0 strain either grows more slowly or 350 

survives less than wild-type strain in the indicated condition. Green squares indicate 351 

that the ppGpp0 strain either grows more rapidly or survives better than the wild-type 352 

strain in the indicated condition.  Data for Mycobacterium abscessus is shown in this 353 

paper. (Sokawa et al., 1975; Gentry et al., 2000; Primm et al., 2000; Balzer and 354 
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McLean, 2002; Mouery et al., 2006; Nanamiya et al., 2007; Lesley and Shapiro, 2008;; 355 

Zhou et al., 2008; Abranches et al., 2009; Boutte and Crosson, 2011; Potrykus et al., 356 

2011; Vogt et al., 2011; He et al., 2012; Sugisaki et al., 2013; Gaca et al., 2013; Holley 357 

et al., 2014; Oh et al., 2015; Xu et al., 2016; Harms et al., 2017; Kim et al., 2018; 358 

Dasgupta et al., 2019; Yin et al., 2019; Schäfer et al., 2020; Pokhrel et al., 2020) 359 

 360 

 361 
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 362 

Figure 2. Contribution of relMab  to survival in various stresses. (A) CFU of wild-type 363 

Mycobacterium abscessus ATCC19977 (blue), ▲relMab mutant (red), and the 364 

complemented strain ▲rel L5::rel (green) in Hartman’s du Bont medium with no glycerol 365 

pe 

ol 
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and Tyloxapol as a detergent. (B) CFU in 7H9 Middlebrook medium with a pH of 4. (C) 366 

CFU in Lennox LB with 1M of NaCl. (D) CFU in Hartmans du Bont medium with 5mM, 367 

25mM or 60mM of tert-butyl peroxide after 24 hours. Relative CFU is calculated by 368 

taking the ratio between each CFU value and the initial CFU value at time zero. All data 369 

points are an average of three biological replicates. Error bars represent standard 370 

deviation. There are no significant differences in any of these data by a two-tailed t-test. 371 

 372 

 373 

Figure 3. Growth and stationary phase survival of ▲relMab. (A) CFU in stationary 374 

phase in 7H9 media. The 2 day time point is 48 hours after diluting log. phase cultures 375 

to OD=0.05. (B) CFU during log. phase growth in 7H9 medium.Graph is set at a log2 376 

scale. P values are for the wild-type compared to the ∆rel strain. P values for T=4, P = 377 

0.0415; T=7, P = 0.00015; T=10, P =0.006; T=12, P =0.00029. P -values between wild-378 

type and the complemented strain were not significant.  379 

a 

.   
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 380 

 381 

382 

Figure 4. Contribution of relMab to survival in antibiotic treatment. Relative CFUs of 383 

Mab strain treated with either 200µg/mL of clarithromycin, 150 µg/mL of amikacin, or 80 384 

µg/mL of cefoxitin for either (A) 48 hours in log. phase or (B) 72 hours in stationary 385 

phase.  Relative CFU is calculated by taking the ratio between each CFU and the initial 386 

CFU value at time zero The bars represent the mean of 6-9 biological replicates, the 387 

individual values are shown by the dots. Error bars represent standard deviation. Log. 388 

phase P values: (Amk150) WT vs ∆rel = 0.005; WT vs. ∆rel L5::rel = 0.01; ∆rel vs. ∆rel 389 

L5::rel = 0.004 . Stationary phase P values: (AMK150) WT vs ∆rel = 0.00017; WT vs. 390 

∆rel L5::rel = 0.0217; ∆rel vs. ∆rel L5::rel = 0.0017. Asterisks represent significance as 391 

 

0 
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measured by the two-tailed student’s t -test; * = P ≤ 0.05 ; ** = P ≤ 0.01 ; *** = P ≤ 392 

0.001; n.s. = P > 0.05. 393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 

 401 

 402 

 403 

 404 

 405 
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406 

Figure 5. Repression of central metabolic genes by Rel. Genes in red are 407 

downregulated by Rel at least 3-fold in stationary phase, P < 0.05. Genes in black are 408 

not significantly regulated by Rel in stationary phase. See Table S3 for data.  409 

 410 
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