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Abstract

Network neuroscience models the brain as interacting elements. However, a

large number of elements imply a vast number of interactions, making it difficult to

assess which connections are relevant and which are spurious. Zalesky et al. (2010)

proposed  the  Network-Based  Statistics  (NBS),  which  identifies  clusters  of

connections and tests their likelihood via permutation tests. This framework shows a

better trade-off of Type I and II errors compared to conventional multiple comparison

corrections.  NBS  uses  General  Linear  Hypothesis  Testing  (GLHT),  which  may

underestimate the within-subject variance structure when dealing with longitudinal

samples  with  a  varying  number  of  observations  (unbalanced  samples).  We

implemented  NBR,  an  R-package  that  extends  the  NBS  framework  adding

(non)linear mixed-effects (LME) models. LME models the within-subject variance in

more detail, and deals with missing values more flexibly. To illustrate its advantages,

we used a public dataset of 333 human participants (188/145 females/males; age

range: 17.0-28.4 y.o.) with two (n=212) or three (n=121) sessions each. Sessions

include a resting-state fMRI scan and psychometric data. State anxiety scores and

connectivity  matrices  between  brain  lobes  were  extracted.  We  tested  their
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relationship using GLHT and LME models for balanced and unbalanced datasets,

respectively. Only the LME approach found a significant association between state

anxiety and a subnetwork that includes the cingulum, frontal, parietal, occipital, and

cerebellum.  Given  that  missing  data  is  very  common in  longitudinal  studies,  we

expect that NBR will be very useful to explore unbalanced samples.

Significant Statement

Longitudinal  studies are increasing in neuroscience, providing new insights

into the brain under treatment, development, or aging. Nevertheless, missing data is

highly frequent in those studies, and conventional designs may discard incomplete

observations or underestimate the within-subject variance. We developed a publicly

available software (R package: NBR) that implements mixed-effect models into every

possible connection in a sample of networks, and it can find significant subsets of

connections  using  non-parametric  permutation  tests.  We  demonstrate  that  using

NBR on larger unbalanced samples has higher statistical power than when exploring

the balanced subsamples.  Although this  method is  applicable in general  network

analysis, we anticipate this method being potentially useful in systems neuroscience

considering the increase of longitudinal samples in the field.
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1. Introduction

Network science models complex phenomena from a system perspective, and

its application covers a large variety of disciplines (Barabasi,  2016; Gosak et al.,

2018). Particularly, network science has been applied to study the brain (Telesford et

al., 2011; Basset & Sporns, 2017), where its structural and functional properties had

been modeled from the interaction of its inner elements (defined at  multiple scales),

i.e., the brain connectome (Sporns, 2011; Craddock et al., 2013). This approach has

been highly influential  in non-invasive neuroimaging projects (Biswal  et al.,  2010;

Van Essen et al., 2013), with great interest in its application to study the whole brain,

longitudinally,  across  several  time-scales  and  exploring  multiple  conditions  (Di

Martino et al., 2014). In this regard, longitudinal projects are currently increasing in

order to address the insights of brain development, maturation, and degeneration

(Ewing et al., 2018; Somerville et al., 2018; Becht & Mills, 2020). Accordingly, new

tools are needed to account for both the connectome and its inherent change over

time.

The brain network is modelled as a set of nodes (elements), defined based on

anatomy,  function,  or  another  relevant  distinction;  and their  connections (edges),

usually based on (undirected) structural or functional associations (e.g., covariance

of their BOLD signal). In the case of undirected associations, a network composed of

V nodes may have up to  V*(V-1)/2  connections,  and V2 in  the  case of  directed

associations.  Thus,  testing  individual  connections  for  statistical  relevance  (for

example,  the association with a health trait,  or  differences between groups) may

result in low statistical power, needing to correct for the large number of multiple

comparisons.  The  Network-Based  Statistics  (NBS;  Zalesky  et  al.,  2010)  aims  to
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assess the whole set of interactions of a network with an efficient trade-off between

the control of false positives and statistical power. This method (described below in

more detail) focuses on the statistical feasibility of clusters of connections within a

network, and it has been widely used to study the connectome in health and disease

(Zhang et al., 2011; Pannek et al., 2013; Knyazev et al., 2015; Baggio et al., 2018;

Gracia-Tabuenca  et  al.,  2020a,  2020b;  Noble  &  Scheinost,  2020).  Like  other

commonly  used  toolboxes  in  neuroscience,  the  original  NBS  toolbox

(RRID:SCR_002454) is limited to general linear hypothesis testing. Although general

linear  models  (GLM)  are  highly  flexible  to  test  relationships  between  several

variables of  interest,  they are limited when handling longitudinal  data.  Generally,

GLM handles within-subject variability by the means of the individual intercepts, as

covariates.  However,  this  may  underestimate  the  within-subject  variability  of  the

remaining variables of interest, particularly, when dealing with unbalanced samples,

i.e., subjects with a different number of observations (Friston et al., 2005; Chen et

al., 2013; Winter et al., 2013). Suitable methods to fit longitudinal data include mixed-

effects models (Lindstrom & Bates, 1990), through which, the within- and between-

subject  variability  structure  is  more  widely  described,  by  including  individual

variability in the dependent variables and intercepts, and their covariance as well

(Barr et al., 2013). Also, these models handle missing data in a more flexible way

(Mallinckrodt et al., 2001; Krueger et al., 2004; López-Gutierrez et al., 2019).

Here,  we  introduce  the  implementation  of  mixed-effects  models  into  the

Network Based Statistics approach, in order to properly address statistical tests in

unbalanced longitudinal (repeated measures) samples. In particular, we introduce

the Network-Based R-statistics (NBR; RRID:SCR_019114) package that implements

NBS with mixed-effects models. We opted for an R package because R is a free
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software  environment  available  for  many  operating  systems  and  platforms,  with

widely used implementations of mixed-effects. As a demonstration, NBR was applied

to an unbalanced sample of 333 participants, with two to three sessions, for a total of

787  observations.  Each  session  included  an  MRI  scan  plus  psychometric

assessment.  We  tested  if  the  anxiety  state  score  is  related  to  the  functional

connectome, for both the largest balanced sample and the complete unbalanced

dataset. 

2. Methods

2.1 NBS: familywise error rates for network components

The Network-Based Statistics (NBS; RRID: SCR_002454) firstly implemented

by Zalesky et al. (2010), aims to identified clusters of edges (i.e. components) within

a network and calculates the familywise error (FWE) probabilities of them.

First, an a priori threshold is applied for every single edge, then those above

the  threshold  that  share  nodes  in  common  are  considered  components.  These

components  are  “valued”  based  on  their  (binary  or  weighted)  sum  of  edges.

Components FWE probabilities are computed based on a permutation test of the

maximum statistic.  That  is,  for  every  permutation,  data  is  shuffled  and  network

components are calculated. Then, the highest sum of edges for all components is

stored as the maximum statistic. This process is repeated a great number of times to

create a pseudo-aleatory null distribution of components sum. And based on this, the

components FWE probabilities can be computed following how likely it is to achieve

their observed sum by chance.

In  addition,  this  approach  can  control  the  false  positive  rate  by  a  non-

parametric test based on the original data itself, while maintaining a higher statistical
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power than other mass multiple testing methods, such as false discovery rate (FDR;

Benjamini & Hochberg, 1995).

2.2 NBR: the NBS for mixed-effects models

The  present  work  aims  to  extend  the  NBS  to  mixed-effect  models

implemented in R (RCT, 2020; RRID: SCR_001905). NBS allows the application of

edgewise  general  linear  hypothesis  testing  (GLHT),  however  when  dealing  with

longitudinal data, the approximation is to include individual intercepts as covariates

and  permutation  is  restricted  to  within  individual  balanced  datasets,  i.e.,  each

individual must have the same number of observations. In this regard, mixed-effects

models extend the linear model adding random-effects that can be interpreted as

additional error terms, which take into account the correlation of observation within

the same individual. Furthermore, they are more flexible handling a variable number

of observations and/or missing values (Pinheiro & Bates, 2006).

A general linear mixed-effects model can be expressed as (Jiang, 2007):

y = X∙  + Z∙𝛽 b + 𝜺

Where  y stands for the response vector, X and Z are the fixed-effects and

random-effects covariance matrices, while  and 𝛽 b are the fixed-effects and random-

effects  coefficients,  respectively.   stands  for  the  error  vector  (for  a  detailed𝜺

description  of  the  random  variance-covariance  matrices  and  the  parameters

estimation see Pinheiro & Bates, 2006). In the context of a longitudinal study of brain

connectomes  and  its  relationship  with  a  particular  explanatory  variable  (e.g.,

phenotypic  or  genotypic),  y will  represent  a  single connectivity  edge vector  of  N

observations, grouped in n subjects. X will be a two-column design matrix including
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the intercept and the explanatory variable, while Z will be a 2xn-column matrix due to

it  includes the  intercept  and explanatory  for  each subject  in  separated columns,

being zeros the positions that correspond to another subject.

NBR extends NBS by applying  edgewise (non-)linear  mixed-effects  (LME)

models through the R package ‘nlme’ (Pinheiro et al., 2017; RRID: SCR_015655).

NBR functions allow the input of a 3D array of concatenated matrices along with the

sample observations at the third dimension or a 2D matrix with every edge in the

upper triangle of the matrices for each observation. The sample inference model is

applied following the Wilkinson & Rogers (1973) notation, which is thoroughly used

in  R.  If  a  group  factor  is  specified  in  the  random  component  of  the  LME,  the

randomization  of  the  permuted  data  will  be  restricted  to  that  factor  even  if  it  is

unbalanced. The next steps follow those of the NBS: setting an  a priori threshold,

storing the observed components, generating a null distribution by permutation, and

calculating  the  FWE  p-value  for  each  component  (Figure  1).  NBR  (RRID:

SCR_019114)  can  be  downloaded  via  the  CRAN  (RRID:  SCR_003005)  in

https://CRAN.R-project.org/package=NBR and it runs for Linux, Mac, and Windows

platforms.
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Figure 1. Network-based R-statistics diagram. Brain connectomes and variables of

interest  are  the  inputs.  Then  LM(E)  is  applied  edgewise  for  the  observed  and

permuted data. Finally, familywise error (FWE) p-values of the observed components

are  calculated  comparing  their  edge  sum  respect  to  the  maximum  statistic  null

distribution obtained by K permutations.
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2.3 Using NBR in a real-world longitudinal sample: the SLIM database

In order to illustrate a real case application, NBR was implemented in a public

dataset.  In  particular,  the  Southwest  University  Longitudinal  Imaging  Multimodal

(SLIM) database (Liu et al., 2017), which is publicly available for research through

the  International  Data-sharing  Initiative  (INDI;

http://fcon_1000.projects.nitrc.org/indi/retro/southwestuni_qiu_index.html).  This  is  a

large dataset (n = 595) focused on the neural basis of psychological traits, such as

creativity and anxiety.  The number of  sessions varies between subjects between

one, two, or three-time points.  The average period between the first  and second

scans were 304.14 days, while between the second and the third sessions were 515

days.  Each  session  included  a  multimodal  MRI  scan  protocol  and  behavioral

assessment  using  psychometric  tests.  Moreover,  preprocessed  functional

connectivity matrices of resting-state fMRI scans are available. Scan parameters are

available  from Liu  et  al.  (2017),  and  preprocessing  steps  followed  the  standard

DPABI pipeline (Yan et al., 2016; RRID: SCR_010501).

Those  subjects  with  at  least  two  sessions  were  identified,  resulting  in  a

sample of 333 participants (145 males; age range: 17.0 - 28.4 y.o.), of which, 212

have two sessions and 121 have three sessions.  Their  corresponding functional

connectivity  matrices  expressed  as  Fisher’s  z-transformed  correlation  values,

obtained with the Dosenbach160 brain segmentation (Dosenbach et al., 2010) were

selected  for  further  analyses.  The  connectivity  values  for  each  pair  of  regions

between  each  pair  of  anatomical  lobes  (labeled  by  Watson,  2017)  were  further

averaged, resulting in 8x8 connectivity matrices for each session.

We  tested  if  psychometric  anxiety  scores  are  related  to  a  specific  brain

network of interacting elements. In particular, the brain-behavior relationship taking
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into account longitudinal effects was evaluated taking the state component of the

STAI  psychometric  test.  The  State-Trait  Anxiety  Inventory  (STAI)  is  a  Likert-like

questionnaire  that  evaluates  two  types  of  anxiety:  state  or  trait.  Since  the  state

component is less stable over time (Tian et al., 2016), it is a potential variable to test

in  relation with the functional  connectome, including intra-individual  effects in the

models.

Several models were tested edgewise to illustrate the potential use of mixed-

effects models in NBR compared to the common GLHT in NBS:

1. NBS-2tp:  Given  that  the  general  linear  model  in  NBS  only  allows

balanced samples, the subsample of n = 211 subjects (98 male; 17.0 -

25.7 y.o. age range) with two sessions each (N = 422 observations)

was explored with NBS.

2. NBS-3tp: Similar to the previous case but exploring the three available

time points in the subsample of n = 53 subjects (25 male; 18.0 - 23.9

y.o. age range) with three sessions each (N = 159 observations).

3. NBR: LME of unbalanced two and three time points (n = 333 subjects).

The  complete  subsample  of  subjects  with  at  least  two  time  points,

resulting in a total of N = 787 observations.

Given  that  NBS  tests  only  one-sided  t-values,  we  opted  to  address  the

variability of the STAI by the means of F-test, setting F > 4 as an a priori threshold.

This threshold was selected due to the probability of F = 4, given 1 and more than

100 degrees of freedom (which is the case for the three models) is close to 0.05.
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2.4 Data and code availability

The summarized data and all the code implemented in this work is available in

a  public  repository  at  https://github.com/BrainMapINB/NBR-SLIM.  Present  results

were analyzed with R 3.4.4 and computed with an Intel Core i7-4790 CPU @ 3.60 

GHz × 8 with Ubuntu 18.04.3 LTS 64-bit. 

3. Results

The implementation of the network-based models in the SLIM dataset showed

a component  (cluster  of  connections)  that  involved frontal,  parietal,  and occipital

lobes,  cingulate,  and  cerebellum (Figure  2).  However,  after  multiple  comparison

corrections only the component identified with NBR was statistically significant, i.e.

under the nominal alpha (pFWE < 0.05). Besides, not only the number of significant

edges were higher for the NBR model, but its statistical strength was higher as well

(Table 1). Lastly, the null distribution of the permuted original data showed lower

variability for the NBR model (Figure 2).

NBS-2tp NBS-3tp NBR

Cingulate-Cerebellum 4.2238 7.5192 5.5079

Frontal-Cerebellum 4.0628 10.8919

Frontal-Parietal 6.2351 6.7341

Occipital-Cigulate 4.9174 12.0977
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Table 1. F-values for the edges above the  a priori threshold (F>4) for each tested

model.

Figure 2. Implementation of network-based models: NBS-2tp (1), NBS-3tp (2), NBR

longitudinal  (3).  For  each  model,  its  corresponding  components  are  shown  in

pairwise (left) and circlesize (center) plots, next to the null distribution density plot of

the largest component for 1000 permutations (right) with family-wise error p-value
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(pFWE). Red line in the density plots shows the weighted size of the component shown

in the left. Abbreviations: frontal (FRT), parietal (PAR), temporal (TEMP), occipital

(OCC), insula (INS), cingulate (CING), subcortical (SUB), and cerebellum (CBL).

4. Discussion

This  work  showed  a  new  toolbox,  NBR,  designed  to  analyze  longitudinal

connectome samples, specifically, implementing mixed-effects models for Network-

Based Statistics (NBS). Also, when applying it to a longitudinal sample, NBR was

able  to  identify,  beyond chance,  a  functional  component  of  interconnected brain

areas that are related to a varying psychological feature.

Regarding the NBR application example, this approach was able to identify a

component of interacting brain regions that covariates with the anxiety state scores

over  time.  Those  regions  include  the  frontal,  parietal,  cingulate,  occipital,  and

cerebellum.  The  unbalanced  mixed-effects  model  was  able  to  combine  the  two

clusters of connections that were identified when exploring the balanced datasets,

i.e. the  complete-cases designs. That is, NBR takes into account the covariance of

the anxiety  scores over time including both, two and three sessions. In addition,

these results are congruent with previous studies taking a functional connectome

approach that has found similar components in anxiety-related disorders (Maglanoc

et al., 2019; Yang et al., 2019). 

NBS  relies  on  general  linear  hypothesis  testing  (GLHT),  which  may

underestimate the within-subjects variability when dealing with longitudinal data. In

this regard, NBR implements LME models to properly account for fixed and random

variabilities.  LME  models  can  account  for  the  within-subject  variability  of  the

intercepts,  but also for the slopes, and their corresponding covariance. This may
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implicate  a  more  complex  model  in  terms  of  parameters,  with  its  consequent

decrease of statistical power, however, not considering this within-subject covariance

structure  may  drive  to  an  increase  of  false  positive  rates  (Barr  et  al.,  2013;

Matuschek et al., 2017). Nevertheless, another relevant advantage of this approach

is the possibility to explore all the observations in unbalanced samples, which in the

application  here  explored  resulted  in  a  substantial  increase  in  statistical  power

compared to using the possible balanced subsamples. Thus, the use of NBR not

only allows for a more precise control of the within-subject variance, but allows the

use  of  larger  datasets  when  data  is  missing.  Given  the  high  costs  of  acquiring

longitudinal datasets that imminently will suffer from missing data, NBR represents

an ideal option to efficiently explore all the available observations using a network

perspective. The main objective of NBR, as that of NBS, is to identify clusters of

connections (components, or subnetworks) that satisfy a statistical test considering

the available observations per subject.

We implemented NBR as an R package, because R is a free state-of-the-art

statistical software available for Mac, Linux, and Windows operating systems. NBR

can be run in R versions newer or equal to 2.10. Also, we opted to use the ‘nlme’

library  to  compute  the  LME  instead  of  using  other  potential  libraries  that  also

implement these models because it is included in the default R base libraries. One

potential limitation of the NBR is the high computation time. For instance, running the

current  example  takes  55  minutes  using  the  eight  cores  parallelization  in  the

specified computer in the methods section. In contrast,  running the NBS-2tp and

NBS-3tp takes only 6 and 14 seconds, respectively. This occurs for two reasons, first

the GLHT implies less computation steps than LME even with the same number of

model  parameters.  Second,  as  the  complexity  of  the  within-subject  covariance
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structure increases it  does also the computing demand, for example, running the

NBR-LME  model  but  including  just  the  within-subjects  intercepts  takes  only  6

minutes  to  be  computed.  Besides,  adding  the  anxiety  scores  along  with  the

intercepts to the random effects (the ‘maximal model’) takes the aforementioned 55

minutes, because it estimates the random coefficients for the intercepts, slopes, and

also their covariance. Although, the ‘maximal model’ is recommendable in terms of

generalization  (Barr  et  al.,  2013),  in  particular  cases  it  may  have  too  many

parameters,  but  the  decision  to  select  a  more  parsimonious  model  should  be

determined by the random effect structure that is supported by the data and not by

the computation  time (Matuschek et  al.,  2017).  However,  in  order  to  lighten the

computation  time,  NBR allows  multi-core  computing  parallelization  based  on  the

'parallel' library, which is also included in the R base libraries.

Lastly,  NBR  has  additional  features.  Mixed-effects  models  may  output

different degrees of freedom for fixed and random variables of the model, for this

regard,  NBR  allows  setting  the  a  priori threshold  to  define  the  clusters  of

connections, based on significance, i.e. the p-value, as an alternative to the use of

the F, T or Z-values. The package also includes HTML vignettes with other examples

and  datasets,  available  in  the  CRAN  repository

(https://cran.r-project.org/web/packages/NBR/vignettes/). 

5. Conclusion

Network-Based R-statistics is a new package to explore statistical inferences

in longitudinal connectomes, including but not limited to brain-behavior relationships.

Its  suitability  to  fit  within-  and  between-subject  variability,  even  in  unbalanced

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 8, 2020. ; https://doi.org/10.1101/2020.11.07.373019doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.07.373019
http://creativecommons.org/licenses/by-nc/4.0/


samples, makes NBR an appropriate method to address the upcoming growth of

longitudinal datasets in neuroscience.
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