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Abstract 13 

Cellular differentiation is a fundamental process in which one cell type changes into one or more 14 

specialized cell types. Cellular differentiation starts at the beginning of embryonic development 15 

when a simple zygote begins to transform into a complex multicellular organism composed of 16 

various cell and tissue types. This process continues into adulthood when adult stem cells 17 

differentiate into more specialized cells for normal growth, regeneration, repair, and cellular 18 

turnover. Any abnormalities associated with this fundamental process of cellular differentiation is 19 

linked to life threatening conditions including degenerative diseases and cancers. Detection of 20 

undifferentiated and different stages of differentiated cells can be used for disease diagnosis but is 21 
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often challenging due to the laborious procedures, expensive tools, and specialized technical skills 22 

which are required. Here, a novel approach, called deep ultraviolet resonance Raman spectroscopy, 23 

is used to study various stages of cellular differentiation using a well-known myoblast cell line as 24 

a model system. These cells proliferate in the growth medium and spontaneously differentiate in 25 

differentiation medium into myocytes and later into myotubes and myofibers. The cellular and 26 

molecular characteristics of these cells mimic very well actual muscle tissue in vivo. We have 27 

found that undifferentiated myoblast cells and myoblast cells differentiated at three different stages 28 

are able to be easily separated using deep ultraviolet resonance Raman spectroscopy in 29 

combination with chemometric techniques. Our study has a great potential to study cellular 30 

differentiation during normal development as well as to detect abnormal cellular differentiation in 31 

human pathological conditions in future studies. 32 

Introduction 33 

Within multicellular organisms, tissues are organized as a collection of cells which differentiate 34 

from totipotent fertilized embryos to carry out specific physiological functions. The balance 35 

between cellular proliferation and differentiation is critical for normal physiological function and 36 

health. Disruption of this balance is associated with numerous human conditions including 37 

degenerative diseases(1) and cancer(2). In this study, a skeletal muscle stem cell (MuSCs)-derived 38 

myoblast cell line is used as a model system. Postnatal skeletal muscle development, growth, 39 

regeneration, and maintenance of homeostasis depends on MuSCs, also known as satellite cells. 40 

MuSCs reside beneath the basal lamina juxtaposed to the muscle fiber and are mitotically 41 

quiescent. In response to muscle injury, quiescent MuSCs are activated to reenter the cell cycle, 42 

followed by proliferation to form a pool of myoblasts, and eventually exit at the G1 phase in the 43 

cycle to then differentiate and fuse into newly formed or existing myofibers. A subset of MuSCs 44 
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are self-renewed and return to quiescence. This extensive process of making new muscle fibers is 45 

known as myogenesis and is quintessential for normal physiological function. If anything goes 46 

awry in these processes at the cellular or molecular level, human diseases like Duchenne muscular 47 

dystrophy or soft tissue cancer, called rhabdomyosarcoma, can arise. The gene expression 48 

program, including transcription factors and signaling molecules that govern myogenesis, has been 49 

well characterized. However, the processes involved to determine the stages of cellular 50 

differentiation through measurement of these molecular signatures are laborious and expensive 51 

and require specialized skills to implement. Thus, a new method for achieving this goal was 52 

explored using  deep ultraviolet resonance Raman spectroscopy (DUVRS). 53 

The advantages of DUVRS make it a suitable method for exploring various biological specimens 54 

and phenomena. DUVRS has been used in the past for investigating malignant biological 55 

specimens(3), respiratory diseases(4), and for studying protein structure and transformation(5-7) 56 

as well examining protein aggregates and fibrillogenesis.(8-11) Excitation in the deep ultraviolet 57 

(UV) range is known to enhance the inelastic scattering of many biological samples.(12) 58 

Specifically, the Raman signal of polypeptide side chains including aromatic amino acids are 59 

strongly resonantly enhanced. Aromatic amino acids such as tryptophan and tyrosine strongly 60 

absorb UV light around 280 nm and 230 nm which allows for the resonance enhancement of their 61 

Raman scattering.(12) Strong resonance enhancement of Raman scattering from phenylalanine 62 

occurs at deep UV excitation below 200 nm.(10) Resonance Raman spectra of aromatic amino 63 

acid residues provide important information about the tertiary structure of proteins. Additionally, 64 

deep UV excitation resonantly enhances the Raman scattering of the amide chromophore, a 65 

building block of the polypeptide backbone.(13) This enhancement provides information 66 

regarding the secondary structure of a protein; as such, DUVRS is extremely useful for 67 
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investigating proteins within biological samples. Resonance enhancement of nucleic acids has 68 

additionally been observed via deep UV excitation due to their absorption of light in the same 69 

range.(14, 15) Both proteins and nucleic acids play influential roles in biochemical processes and 70 

are therefore anticipated to be useful for distinguishing between biological samples, making deep 71 

UV excitation uniquely advantageous when compared to excitation using visible or near-IR light.  72 

Along with providing unique enhancement of signals from crucial biomolecules, DUVRS typically 73 

produces a stronger signal-to-noise ratio in the resultant Raman spectrum due to the absence of 74 

fluorescence interference.(16) Fluorescence typically occurs at wavelengths longer than 250 nm, 75 

thus shifting the Raman excitation wavelength to be shorter than 250 nm will allow for a much 76 

better quality spectrum to obtained due to the lack of fluorescence interference.(12) A better signal-77 

to-noise ratio is crucial for examining biological samples such as cells in a liquid suspension. 78 

Typical Raman excitation in the visible or near-IR range will not produce the same quality of 79 

spectrum due to strong fluoresce accompanied with such a sample.  80 

DUVRS is used here to investigate various stages of myoblast differentiation. Results show that 81 

all four stages which were studied were successfully discriminated from each other using 82 

chemometric analysis. These results indicate the potential of the method to study abnormal and/or 83 

differential cellular differentiation in human pathological conditions including cancer, such as 84 

rhabdomyosarcoma, that arise from abnormal myoblast differentiation.(2) 85 

Materials and Methods 86 

Myoblast cell culture and differentiation assay  87 

Mouse myoblast cell line (C2C12) was acquired from the American Type Culture Collection 88 

(ATCC; Manassas, VA, USA). Cells were maintained at subconfluent densities in growth medium 89 
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(GM) at 37 °C in a tissue culture incubator with a constant supply of 5% CO2. GM was made up 90 

of Dulbecco’s modified Eagle medium (DMEM; Life Technologies, Carlsbad, CA, USA) 91 

supplemented with 10% FBS and 1X antibiotic-antimycotic (Life Technologies).(17, 18) For 92 

myogenic differentiation assays, the C2C12 myoblast cells were grown to about 75% confluency, 93 

washed with 1X phosphate-buffered saline (PBS), and cultured with differentiation medium (DM). 94 

DM was made up of DMEM containing 2% heat-inactivated horse serum (HyClone) and 1X 95 

antibiotic-antimycotic (Life Technologies).(17, 18) Cells were harvested while growing in GM 96 

and after 48 hours (DM2), 96 hours (DM4) and 144 hours (DM6) in DM. The images of 97 

undifferentiated (GM) and different stages of differentiated (DM2, DM4 and DM6) samples were 98 

taken using EVOS Cell Imaging Systems (Thermo Fisher Scientific, Waltham, MA, USA).  99 

Total RNA isolation and  quantitative reverse transcription polymerase chain reaction (qRT-PCR) 100 

assays 101 

Total RNA was extracted using RNEasy mini kit (Qiagen, Hilden, Germany) by following the 102 

manufacturer’s instructions. cDNA synthesis was carried out using the iScript cDNA Synthesis 103 

Kit (Bio-Rad, Hercules, CA, USA) as instructed. Then, qRT-PCR was carried out using Sybr green 104 

PCR master mix (Bio-Rad) in a Bio-Rad thermal cycler using Myogenin and Myosin Heavy Chain 105 

(MHC) specific primers. GAPDH primer pairs were used as a housekeeping gene for normalizing 106 

the values of Myogenin and MHC.  107 

DUVRS analysis of myoblasts 108 

A total of 31 cell samples were analyzed from four different stages of myoblast cell differentiation, 109 

including undifferentiated cells (GM, n=8) and cells allowed to differentiate in DM for 48 (DM2, 110 

n=8), 96 (DM4, n=8), and 144 hours (DM6, n=7). All samples were analyzed using a custom-built 111 
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deep ultraviolet Raman spectrograph (details of which can be found elsewhere).(19) Briefly, the 112 

samples were excited using 198-nm radiation generated at the 5th anti-Stokes shift from the third 113 

harmonic of a Ni-YAG laser in a Raman shifter which is filled with low pressure hydrogen. A UV 114 

laser beam (at a power of about 0.5 mW at the surface of the sample) was focused within a spinning 115 

Suprasil NMR tube which contained approximately 200 µL of sample solution. The solution was 116 

kept continuously spinning with a magnetic stir bar to prevent burning of the sample. Scattered 117 

radiation was collected in the backscattering geometry, dispersed via a double monochromator, 118 

and detected using a liquid-nitrogen cooled CCD camera.  119 

To acquire the DUVRS spectral data, 20 accumulations of 30 s each were collected per sample. 120 

Each accumulation was saved as an individual spectrum to obtain multiple spectra per sample to 121 

use for statistical analysis. A comparison was made between the individual spectra acquired for 122 

each sample; no gradual changes to the spectra with respect to accumulation number were 123 

observed, indicating sample photodegradation due to UV radiation did not occur. 124 

DUVRS data analysis 125 

620 spectra were obtained from all samples and loaded into GRAMS v9.2 software (Thermo Fisher 126 

Scientific). The spectral signature of the quartz NMR tube and of the buffer solution was subtracted 127 

from each spectrum individually. Spectra were then calibrated from pixels to wavenumbers using 128 

the DUVRS spectrum of Teflon as a standard.  129 

Chemometric analysis 130 

PLS_Toolbox (Eigenvector Research Inc., Wenatchee, WA, USA) operating within MATLAB 131 

software (version 2017b, Mathworks, Inc, Natick, MA, USA) was used for chemometric analysis. 132 

Initially, preprocessing steps were performed including spectral smoothing, baseline correction, 133 
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and normalization. Following data processing, various chemometric methods were applied for 134 

distinguishing between the four stages of myoblast cell differentiation. The samples were split into 135 

two different datasets: a calibration dataset (n=27) and a validation dataset (n=4). The goal of the 136 

analysis was to separate all four stages of myoblast differentiation. Here, genetic algorithm (GA) 137 

was applied to reduce the complexity of the spectral dataset and to identify which features were 138 

the most useful for discrimination. Then, partial least squares discriminant analysis (PLS-DA) was 139 

performed using the GA-identified spectral dataset for building the quaternary model for 140 

classification purposes. The performance of the model was evaluated using the donors from the 141 

validation dataset. 142 

Results and Discussion  143 

The C2C12 myoblast cell line serves as an excellent model system for studying cellular 144 

differentiation. Differentiation of myoblast cells into myocytes, myotubes, or myofiber-like 145 

structures can be achieved in cell culture by reducing serum supplements. As shown in Figure 1, 146 

C2C12 myoblast cells proliferate in growth medium (GM) and differentiate in differentiation 147 

medium (DM). As the differentiation process progressed, myogenic markers, including Myogenin 148 

and MHC, were upregulated. We harvested 8 undifferentiated (GM), DM2, and DM4 samples 149 

each and 7 DM6 samples. 150 
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 151 

Figure 1. Myoblast cells (C2C12) proliferate in the growth medium and spontaneously 152 

differentiate when transferred to differentiation medium. (A) Undifferentiated and (B-D) different 153 

stages of differentiated myoblast cells are shown. (B) During early differentiation myoblast cells 154 

elongate and differentiate into myocytes and later (C) multiple myocytes fuse together to form 155 

myotubes, and subsequently (D) multiple myotubes align together to form myofiber-like 156 

structures. (E) An early differentiation marker, Myogenin and (F) a late myogenic marker, myosin 157 

heavy chain (MHC) mRNA levels are shown. Myogenin and MHC levels were normalized to 158 

GAPDH. As differentiation continues, both Myogenin and MHC expression levels are 159 

upregulated. All experiments were done with at least three or more biological replicates. Scale 160 

Bar: 400 µM. 161 
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A total of 620 DUVRS spectra were collected from the 31 samples. The average spectrum for each 162 

of the four classes (GM, DM2, DM4, and DM6) is seen in Figure 2. Each spectrum is the average 163 

of all spectra collected from all samples in each class. 164 

 165 

 166 

Figure 2. Average Raman spectra obtained for all samples of each of the four stages of myoblast 167 

differentiation including undifferentiated cells (GM, red) and cells allowed to differentiate for 48 168 

(DM2, green), 96 (DM4, blue), or 144 hours (DM6, black). 169 

The average spectra appear very similar to each other – this is not surprising due to the anticipated 170 

high level of overlap in molecular composition between the differentiation stages. The majority of 171 

the peaks which contribute to the spectra correspond to proteins and nucleic acids. A summary of 172 

the main peaks and their tentative assignments is given in Table 1. 173 

 174 

 175 
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Table 1. Tentative assignments of the main peaks in the average Raman spectra of myoblasts at 176 

progressive stages of differentiation(20)  177 

Raman Shift (cm-1) Tentative Assignment* Contribution 

889  Proteins 

930 ν(C-C) Pro, Val (proteins) 

994 Ring breathing, sym Phe (proteins) 

1023  Glycogen 

1030 δ(C-H) in-plane Phe (proteins) 

1176 C, G RNA/DNA 

1206 ν(C-C6H5) Trp, Phe (proteins) 

1258 Amide III Proteins 

1339 A, G ring breathing DNA/RNA 

1378-1387 δ(CH3) sym Lipids 

1551 ν(C=C) Trp (proteins) 

1561  Trp (proteins) 

1578 Pyrimidine ring DNA/RNA 

1612 Cytosine (NH2) DNA/RNA 

1664 Amide I  Proteins 

*Notes: ν, stretch; δ, bend/scissor; sym, symmetric 178 

Analysis of all four stages of myoblast differentiation 179 

The small changes which are observed between the average spectra of the different myoblasts are 180 

not found to be significant. The largest observable difference is seen at 1633 cm-1, however when 181 
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the differences in average intensities at each stage are compared with ±1 standard deviations, the 182 

average intensity is not found to be significantly different between the groups (Figure 3). The same 183 

is found for other small changes in intensity, including the Raman peaks at 1563 cm-1 and 1561 184 

cm-1 (supplementary information Figures S.1 and S.2).  185 

 186 

Figure 3. The mean ±1 standard deviation of the 1633 cm-1 Raman peak intensity for each of the 187 

four classes, demonstrating insignificant differences as observed by the overlap in standard 188 

deviations between groups. 189 

Statistical analysis was thus required to discriminate between the four stages of myoblast 190 

differentiation. Genetic algorithm was first employed to identify the subset of spectral features 191 

which were the most useful for distinguishing between the classes of data and which will support 192 

the prediction algorithm’s capabilities. Results of GA (supplementary information, Figure S.3) 193 

indicated that proteins and DNA/RNA are the most influential biochemical components which 194 

allow for discriminating between the four stages. Myoblast differentiation is a dynamic and robust 195 

process; this process shows vigorous changes in a large number of gene expressions, which have 196 

been documented in numerous studies during myoblast differentiation.(21-25) Although gene 197 
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amplification usually occurs in cancer cells, a number of gene amplifications have been reported 198 

to occur during myoblast differentiation.(26) The global gene expression has found the changes in 199 

a large number of genes during myoblast differentiation shows.(21, 24, 25) Proteomic studies have 200 

further confirmed that a large number of proteins are up-regulated in the differentiated myoblast 201 

cells.(22, 23) Our own findings from RNA-seq data analysis show that more than four thousand 202 

genes are upregulated in the differentiated myotubes, and a subset of pro-myogenic genes such as 203 

Casq1, Myh3, Myh4, Actn2 are upregulated more than 2000-fold in these samples (data not 204 

shown). Therefore, it is not surprising to see that our findings detect and can discriminate the 205 

various stages of differentiated samples based on contributions from DNA/RNA and proteins. 206 

Further, PLS-DA was performed using the GA-identified spectral dataset to build a discriminatory 207 

model. The 27 samples of the calibration dataset were used to build the algorithm, and the four 208 

samples of the validation dataset were set aside for independent external validation of the method. 209 

The model was built using three latent variables, which captured the maximum covariance between 210 

the groups. Through internal cross-validation, the model obtained an average accuracy of 75% for 211 

correctly predicting the class of a spectrum.  212 

The spectral data of the four independent donors of the validation dataset were then loaded into 213 

the model. The spectral predictions generated for the four donors of the calibration dataset 214 

indicated 83% accuracy for external validation (Table 2, left panel). Using the spectral-level 215 

predictions, overall sample-level predictions were made; here, 100% accuracy was achieved for 216 

correctly predicting the stage of differentiation at the sample-level for each of the four samples 217 

used for external validation (Table 2, right panel).  218 
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Table 2. Classification predictions for all individual spectra (left) and overall sample-level 219 

classification predictions (right) of the four independent samples used for external validation 220 

Individual Spectral Predictions External Validation Results 

Sample Predicted Class Sample Predicted Class True Class 

                  GM    DM2    DM4     DM6    

#1 16 4 0 0 #1 GM GM 

#2 4 16 0 0 #2 DM2 DM2 

#3 0 4 14 2 #3 DM4 DM4 

#4 0 0 7 13 #4 DM6 DM6 

An additional classification system was generated in a similar manner to discriminate between 221 

early (GM and DM2) and late (DM4 and DM6) stages of myoblast cell differentiation in a binary 222 

model; this model showed similar levels of success for class separation (supplementary 223 

information Figure S.4) 224 

The minimal changes in biochemical composition which occur are shown here to be sufficient for 225 

discriminating between four different stages of myoblast differentiation. DNA/RNA and proteins 226 

are indicated as the most significant classes of biomolecules for successful separation of the four 227 

stages. Importantly, the results obtained during external validation support the capability of the 228 

method for classifying spectral data from samples which were not used to build it. This indicates 229 

the potential of the method to be expanded upon in the future for clinical applications, such as for 230 

the analysis of abnormal cellular differentiation in human pathological conditions including cancer 231 

and Duchenne muscular dystrophy. Conducting differentiation at the single cell level using 232 

spontaneous Raman spectroscopy could also be possible, as the method was recently reported for  233 
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Celiac disease diagnostics based on analysis of a single red blood cell.(27) 234 

Deep ultraviolet resonance Raman spectroscopy (DUVRS) is capable of capturing vital 235 

information regarding a biological samples’ composition, including information regarding protein 236 

structure and nucleic acid composition. DUVRS is used in this study to successfully distinguish 237 

between myoblasts which were either undifferentiated or allowed to differentiate for varying 238 

numbers of hours. Specifically, a model was built using GA and PLS-DA for distinguishing 239 

between four stages of myoblast differentiation. This model achieved 100% successful 240 

classification at the level of individual sample during external validation. Analysis of the DUVRS 241 

spectra indicate that biochemical changes which occur during cell differentiation stem mostly from 242 

proteins and nucleic acids. DUVRS is fully capable of discriminating between the various stages 243 

of myoblast differentiation, opening the door for future exploration into cellular differentiation 244 

during normal development as well as into detecting abnormal cellular differentiation in human 245 

pathological conditions. 246 

Acknowledgments  247 

This work was supported by the SUNY startup, the American Heart Association (AHA 248 

17SDG33670339) and the National Institute of Arthritis and Musculoskeletal and Skin Diseases, 249 

NIAMS (R15AR074728) grants to B.K.D. N.M.R was supported by NIH training Grant T32 250 

GM13206. 251 

Conflict of Interest 252 

The authors have no conflicts to declare. 253 

 254 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 8, 2020. ; https://doi.org/10.1101/2020.11.08.373001doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.08.373001


15 
 

References 255 

1. Dey BK, Gagan J, Yan Z, Dutta A. miR-26a is required for skeletal muscle differentiation and 256 
regeneration in mice. Genes & Development. 2012;26(19):2180-91. 257 
2. Xia SJ, Pressey JG, Barr FG. Molecular pathogenesis of rhabdomyosarcoma. Cancer Biology & 258 
Therapy. 2002;1(2):97-104. 259 
3. Ralbovsky NM, Egorov V, Moskovets E, Dey P, Dey BK, Lednev IK. Deep-Ultraviolet Raman 260 
Spectroscopy for Cancer Diagnostics: A Feasibility Study with Cell Lines and Tissues. Cancer Studies and 261 
Molecule Medicine Open Journal. 2019;5(1):1-10. 262 
4. Žukovskaja O, Kloß S, Blango MG, Ryabchykov O, Kniemeyer O, Brakhage AA, et al. UV-Raman 263 
Spectroscopic Identification of Fungal Spores Important for Respiratory Diseases. Analytical Chemistry. 264 
2018;90(15):8912-8. 265 
5. Shashilov VA, Sikirzhytski V, Popova LA, Lednev IK. Quantitative methods for structural 266 
characterization of proteins based on deep UV resonance Raman spectroscopy. Methods. 267 
2010;52(1):23-37. 268 
6. Xu M, Ermolenkov VV, He W, Uversky VN, Fredriksen L, Lednev IK. Lysozyme fibrillation: Deep 269 
UV Raman spectroscopic characterization of protein structural transformation. Biopolymers. 270 
2005;79(1):58-61. 271 
7. Oladepo SA, Xiong K, Hong Z, Asher SA, Handen J, Lednev IK. UV Resonance Raman 272 
Investigations of Peptide and Protein Structure and Dynamics. Chemical Reviews. 2012;112(5):2604-28. 273 
8. Popova LA, Kodali R, Wetzel R, Lednev IK. Structural Variations in the Cross-β Core of Amyloid β 274 
Fibrils Revealed by Deep UV Resonance Raman Spectroscopy. Journal of the American Chemical Society. 275 
2010;132(18):6324-8. 276 
9. Shashilov VA, Lednev IK. 2D Correlation Deep UV Resonance Raman Spectroscopy of Early 277 
Events of Lysozyme Fibrillation:  Kinetic Mechanism and Potential Interpretation Pitfalls. Journal of the 278 
American Chemical Society. 2008;130(1):309-17. 279 
10. Xu M, Ermolenkov VV, Uversky VN, Lednev IK. Hen egg white lysozyme fibrillation: a deep-UV 280 
resonance Raman spectroscopic study. Journal of Biophotonics. 2008;1(3):215-29. 281 
11. Xu M, Shashilov V, Lednev IK. Probing the Cross-β Core Structure of Amyloid Fibrils by 282 
Hydrogen−Deuterium Exchange Deep Ultraviolet Resonance Raman Spectroscopy. Journal of the 283 
American Chemical Society. 2007;129(36):11002-3. 284 
12. Lednev IK. Biological Applications of Ultraviolet Raman Spectroscopy. In: Uversky VN, Permyakov 285 
EA, editors. Methods in Protein Structure and Stability Analysis: Vibrational spectroscopy: Nova 286 
Publishers; 2007. 287 
13. Jakubek RS, Handen J, White SE, Asher SA, Lednev IK. Ultraviolet resonance Raman 288 
spectroscopic markers for protein structure and dynamics. TrAC Trends in Analytical Chemistry. 289 
2018;103:223-9. 290 
14. Ziegler LD, Hudson B, Strommen DP, Peticolas W. Resonance Raman spectra of mononucleotides 291 
obtained with 266 and 213 nm ultraviolet radiation. Biopolymers: Original Research on Biomolecules. 292 
1984;23(10):2067-81. 293 
15. Fodor SPA, Rava RP, Hays TR, Spiro TG. Ultraviolet resonance Raman spectroscopy of the 294 
nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation. Journal of the American Chemical 295 
Society. 1985;107(6):1520-9. 296 
16. Khalil AA. Biomarker discovery: a proteomic approach for brain cancer profiling. Cancer Science. 297 
2007;98(2):201-13. 298 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 8, 2020. ; https://doi.org/10.1101/2020.11.08.373001doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.08.373001


16 
 

17. Dey BK, Pfeifer K, Dutta A. The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and 299 
miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes & Development. 300 
2014;28(5):491-501. 301 
18. Dey BK, Gagan J, Dutta A. miR-206 and-486 induce myoblast differentiation by downregulating 302 
Pax7. Molecular and Cellular Biology. 2011;31(1):203-14. 303 
19. Lednev IK, Ermolenkov VV, He W, Xu M. Deep-UV Raman spectrometer tunable between 193 304 
and 205 nm for structural characterization of proteins. Analytical and bioanalytical chemistry. 305 
2005;381(2):431-7. 306 
20. Talari ACS, Movasaghi Z, Rehman S, Rehman IU. Raman spectroscopy of biological tissues. 307 
Applied Spectroscopy Reviews. 2015;50(1):46-111. 308 
21. Tripathi AK, Patel AK, Shah RK, Patel AB, Shah TM, Bhatt VD, et al. Transcriptomic dissection of 309 
myogenic differentiation signature in caprine by RNA-Seq. Mech Dev. 2014;132:79-92. 310 
22. Casadei L, Vallorani L, Gioacchini AM, Guescini M, Burattini S, D'Emilio A, et al. Proteomics-based 311 
investigation in C2C12 myoblast differentiation. Eur J Histochem. 2009;53(4):e31. 312 
23. Kislinger T, Gramolini AO, Pan Y, Rahman K, MacLennan DH, Emili A. Proteome dynamics during 313 
C2C12 myoblast differentiation. Mol Cell Proteomics. 2005;4(7):887-901. 314 
24. Moran JL, Li Y, Hill AA, Mounts WM, Miller CP. Gene expression changes during mouse skeletal 315 
myoblast differentiation revealed by transcriptional profiling. Physiol Genomics. 2002;10(2):103-11. 316 
25. de Klerk E, Fokkema IF, Thiadens KA, Goeman JJ, Palmblad M, den Dunnen JT, et al. Assessing 317 
the translational landscape of myogenic differentiation by ribosome profiling. Nucleic Acids Res. 318 
2015;43(9):4408-28. 319 
26. Fischer U, Ludwig N, Raslan A, Meier C, Meese E. Gene amplification during myogenic 320 
differentiation. Oncotarget. 2016;7(6):6864-77. 321 
27. Ralbovsky NM, Lednev IK. Analysis of individual red blood cells for Celiac disease diagnosis. 322 
Talanta. 2021;221:121642. 323 

  324 

 325 

 326 

 327 

 328 

 329 

 330 

 331 

 332 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 8, 2020. ; https://doi.org/10.1101/2020.11.08.373001doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.08.373001


17 
 

Supplementary Information 333 

Determining the stages of cellular differentiation using Deep Ultraviolet Resonance Raman 334 

Spectroscopy 335 

Nicole M. Ralbovsky1,2, Paromita Dey2, Bijan K. Dey2,3* and Igor K. Lednev1,2,3* 336 

1Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 337 

12222, USA 338 

2The RNA Institute, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, 339 

USA 340 

3Department of Biological Sciences, University at Albany, SUNY, 1400 Washington Avenue, 341 

Albany, NY 12222, USA 342 

*corresponding authors: Bijan K. Dey, Ph.D., email: bdey@albany.edu, phone: 518-437-4481; 343 

Igor K. Lednev, Ph.D., email: ilednev@albany.edu, phone: 518-591-8863 344 

 345 

 346 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 8, 2020. ; https://doi.org/10.1101/2020.11.08.373001doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.08.373001


18 
 

 347 

Figure S.1. The mean ±1 standard deviation of the 1551 cm-1 peak intensity for each of the four 348 

classes, demonstrating insignificant differences as observed by the overlap in standard deviations 349 

between groups. 350 
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 356 

Figure S.2. The mean ±1 standard deviation of the 1563 cm-1 peak intensity for each of the four 357 

classes, demonstrating insignificant differences as observed by the overlap in standard deviations 358 

between groups. 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 8, 2020. ; https://doi.org/10.1101/2020.11.08.373001doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.08.373001


20 
 

 369 

Figure S.3. Mean DUVRS spectra of myoblast cell differentiation at various stages, including the 370 

spectral ranges selected by genetic algorithm: GM (red), DM2 (green), DM4 (blue), and DM6 371 

(black). Areas selected by genetic algorithm are marked by bolded lines whereas spectral regions 372 

deemed uninformative for discrimination are seen as unfilled lines. 373 
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 380 

Figure S.4. Results of PLS-DA external validation of a binary model for discriminating between 381 

early (GM and DM2) and late (DM4 and DM6) stages of myoblast differentiation. Each spectrum 382 

from the validation dataset is plotted according to which class it was predicted as belonging: early 383 

stage (blue diamond) or late stage (purple square). Each symbol represents one spectrum. 384 
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