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Abstract: High-throughput sequencing techniques generate large volumes of DNA sequencing data at

ultra-fast speed and extremely low cost. As a consequence, sequencing techniques have become ubiquitous

in biomedical research and are used in hundreds of genomic applications. Efficient data structures and

algorithms have been developed to handle the large datasets produced by these techniques. The prevailing

method to index DNA sequences in those data structures and algorithms is by k-mers (k-long substrings)

known as minimizers. Minimizers are the smallest k-mers selected in every consecutive window of a fixed

length in a sequence, where the smallest is determined according to a predefined order, e.g., lexicographic.

Recently, a new k-mer order based on a universal hitting set (UHS) was suggested. While several studies

have shown that orders based on a small UHS have improved properties, the utility of using a small UHS in

high-throughput sequencing analysis tasks has not been demonstrated to date.

Here, we demonstrate the practical benefit of UHSs for the first time, in the genome assembly task. Re-

constructing a genome from billions of short reads is a fundamental task in high-throughput sequencing

analyses. de Bruijn graph construction is a key step in genome assembly, which often requires very large

amounts of memory and long computation time. A critical bottleneck lies in the partitioning of DNA se-

quences into bins. The sequences in each bin are assembled separately, and the final de Bruijn graph is

constructed by merging the bin-specific subgraphs. We incorporated a UHS-based order in the bin partition

step of the Minimum Substring Partitioning algorithm of Li et al. (2013). Using a UHS-based order instead

of lexicographic- or random-ordered minimizers produced lower density minimizers with more balanced bin

partitioning, which led to a reduction in both runtime and memory usage.
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1 Introduction

Large amounts of DNA sequencing data are generated today in almost any biological or clinical study. Due

to the low cost of sequencing, it has become standard to probe and measure molecular interactions and

biomarkers using DNA read quantities [13]. Technologies based on high-throughput sequencing (HTS) have

been developed for the major genomics tasks: genetic and structural variation detection, gene expression

quantification, epigenomic signal quantification, protein binding measurements, and many more [5]. A first

step in utilizing all these data types is the computational analysis of HTS data. Key challenges include read

mapping to a reference genome, read compression, storing reads in a data structure for fast querying, and

finding read overlaps. As a result, many computational methods were developed to analyze HTS data, and

the development of new methods is ongoing [1].

Many methods for analyzing HTS data use minimizers to obtain speed-up and reduce memory usage [14,

15, 7]. Given integers w and k, the minimizer of an L = w + k − 1-long sequence is the smallest k-mer

among the w contiguous k-mers in it, where the smallest is determined based on a predefined order, e.g.,

lexicographic [16]. For a longer sequence, all L-long windows are scanned and the minimizer is selected

in each one (Figure 1a). Using the minimizers to represent the L-long windows has three key advantages:

(i) the sampling interval is small; (ii) the same k-mers are often selected from overlapping windows; and

(iii) identical windows have the same minimizer. Minimizers help design algorithms that are more efficient in

both runtime and memory usage by reducing the amount of information that is processed while losing little

information. Minimizers were shown to be helpful and are used in many different settings, such as partitioning

input sequences [3, 14, 15], generating sparse data structures [4, 18], and sequence classification [17].

Recently, the concept of a universal hitting set (UHS) was introduced as a way to improve minimizers [12].

For integers k and L, a set of k-mers UkL is called a UHS if every possible sequence of length L contains at

least one k-mer from UkL as a contiguous substring. It was shown that by using a UHS of small size, one

can design an order for a minimizer scheme that results in fewer selected k-mers compared to the orders

commonly used in current applications (i.e., lexicographic or random orders) [10]. Therefore, using UHSs

has the potential to provide smaller signatures than currently used orders, and as a result reduce runtime

and memory usage of sequencing applications. We and others recently developed algorithms to generate

small UHSs [12, 10], but so far the prevailing methods in HTS analysis employ a lexicographic or random

order. To date, no method has been developed to take advantage of the improved properties of UHSs.

In this study we demonstrate, for the first time, the benefit of UHSs in a HTS analysis task: de Bruijn graph

construction for genome assembly by a disk-based partition method. We introduce a UHS into the graph

construction step of the Minimum Substring Partition assembly algorithm [9]. In tests on several genomic

datasets, the new method had lower memory usage, shorter runtime and more balanced disk partitions. The

code of our method is publicly available at github.com/Shamir-Lab/MSP_UHS.
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Figure 1: Illustrations of preliminary definitions. (a) A minimizers scheme (k = 4, w = 9). The input

sequence is broken into windows of length L = w+k−1 = 12, and the minimizer in each window is selected.

Consecutive windows tend to select the same minimizer. The positions of the selected k-mers constitute a

sampling of the original sequence. (b) de Bruijn graph of order 3 for three DNA sequences. The vertices

are the 3-mers contained in the set of sequences. Edges connect two vertices if the 4-mer they represent is

contained in a sequence in the set.

2 Background and Preliminaries

2.1 Definitions

2.1.1 Basic definitions

A read is a string over the DNA alphabet Σ = {A,C,G, T}. A k-mer is a k-long string over Σ. Given

a read s, |s| = n, s[i, j] denotes the substring of s from the i-th character to the j-th character, both

inclusive. (Here and throughout, substrings are assumed to be contiguous.) s contains n − k + 1 k-mers:

s[0, k − 1], s[1, k], . . . , s[n − k, n − 1]. Two k-mers in s that overlap in k − 1 letters, i.e., s[i, k + i − 1] and

s[i+ 1, k + i], are called adjacent in s.

2.1.2 De Bruijn graphs

Given a set of strings S = {S0, S1, S2, . . . , Sm−1} over Σ and an integer k ≥ 2, the de Bruijn graph of S of

order k (Figure 1b) is a directed graph dBGk(S) = (V,E) where:

V =

{
v ∈ Σk | ∃j ∈

{
0, 1, ...,m− 1

}
such that v is a substring of Sj

}
E =

{
(u, v) | u = Sj [i, k + i− 1], v = Sj [i+ 1, k + i] for some j and i

}
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Modern genome assembly algorithms are based on de Bruijn graph construction. This process breaks

each input read into k-mers (vertices in the graph) and then connects adjacent k-mers according to their

overlap relations in the reads (edges). The graph represents the reconstructed genome. This process can

assemble very large quantities (even billions) of reads. The most memory consuming and time-intensive part

in assembly algorithms is the de Bruijn graph construction step [9].

2.1.3 Minimizers and orders

An order o on Σk is a one-to-one function o : Σk −→ {1, 2, ..., |Σ|k}. k-mer m1 is smaller than k-mer m2

according to order o if: o(m1) < o(m2). In other words, an order is a permutation on the set of all k-mers.

A minimizer for a triplet (s, o, k) is the smallest k-long substring m in sequence s according to order o. We

also call m the o-minimizer k-mer in s. A minimizers scheme is a function fk,w that selects the start position

of a minimizer k-mer in every sequence of length L = w + k − 1, i.e., f : Σw+k−1 → [0 : w − 1] (Figure 1a).

2.1.4 Particular density

The set of selected positions of a scheme fk,w on a string s is Mfk,w
(s) = {i+ fk,w(s[i, i+ k+w− 2]) where

0 ≤ i ≤ |s| −w− k+ 1} (asterisks in Figure 1a). The particular density of a scheme fk,w on a string s is the

proportion of k-mers selected:

df,k,w(s) =
|Mf,k,w(s)|
|s| − k + 1

(1)

The trivial upper and lower bounds for the density are 1/w ≤ df,k,w ≤ 1, where 1/w corresponds to scanning

the sequence from left to right and selecting exactly one position in every new non-overlapping window, and

1 corresponds to selecting every position [10]. In general, lower density can lead to greater computational

efficiency and is therefore desirable.

2.1.5 Universal hitting sets

A set of k-mers M hits sequence s if there exists a k-mer in M that is a substring in s. A universal hitting

set (UHS) UkL is a set of k-mers that hits every L-long string over Σ. A trivial UHS always exists by taking

all (|Σ|k) k-mers. A UHS M can be used in a minimizers scheme as follows: Define an order on M ’s k-mers,

and for any L-long window select the minimum k-mer from M in the window according to the defined order.

The universality of M guarantees that there will always be at least one k-mer from M in any L-long window.

2.2 Minimum Substring Partitioning

The Minimum Substring Partitioning (MSP) method is a memory-efficient and fast algorithm for de Bruijn

graph construction [9]. MSP breaks reads into multiple bins so that each bin can be loaded into memory,

processed individually, and later merged with other bins to form the de Bruijn graph. The lexicographically

smallest k-mer in each sequence window (i.e., the minimizer) is used as key for that window.

MSP partitions L-long windows into multiple disjoint bins, in a way that tends to retain adjacent L-mers in

the same bin. This has two advantages: (i) consecutive L-mers are combined into super L-mers (substrings
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Figure 2: The partitioning step of the MSP method. A read is scanned in windows of length 10. The

3-mer minimizer in each window is marked with the rectangles.

of length ≥ L), which reduces the space requirements; (ii) local assembly can be performed on the bins in

parallel, and later all assemblies are merged to generate a global assembly.

MSP is motivated by the fact that adjacent L-mers tend to share the same minimizer k-mer, since there

is an overlap of length L − 1 between them. Figure 2 shows an example of the partitioning step of MSP

with L = 10 and k = 3. In this example, the first four L-mers share the minimizer AAC; and the last

four L-mers share the minimizer AAA. In this case, instead of generating all seven L-mers separately, MSP

generates only two super L-mers. The first four L-mers are combined into TGGCGAACGTAA, and this

super L-mer is assigned to the bin labeled AAC. Similarly, the last four L-mers are combined into a super

L-mer GAACCGTAAAGT , and this super L-mer is assigned to the bin labeled AAA. In general, given a

read r = r0r1 . . . rn−1, if the j adjacent L-mers from r[i, i+L− 1] to r[i+ j− 1, i+ j+L− 2] share the same

minimizer m (and j is maximal with regard to that property), then the super L-mer riri+1 . . . ri+j+L−2 is

assigned to the bin labeled m without breaking it into j individual L-mers. This procedure reduces memory

usage as instead of keeping j · L characters in memory, only j + L − 1 characters are kept. If j tend to be

large, this strategy dramatically reduces memory usage. To reduce the number of bins, MSP warps the bins

using a hash function into a user-defined number of bins nb.

3 Methods

MSP uses a minimizers scheme with a lexicographic order [9]. We denote this method Lexico_MSP. We

modified MSP to employ a minimizers scheme with a UHS-based order and denote this algorithm UHS_MSP.

Previous studies have shown that k-mers from a small UHS are more evenly distributed along the genome

than lexicographic or random minimizers [12]. Hence, we reasoned that using a small UHS in the MSP

algorithm would lead to a flatter distribution of bin sizes and thus reduce memory usage and runtime.

Since a pseudo-random order was shown to have better properties than lexicographic order when used in

a minimizers scheme [10], we also tested a variant where the lexicographic order of the minimizers scheme

in the original MSP method is replaced by a pseudo-random order. We denote this variant Random_MSP.
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UHS_MSP receives as input a set of reads and generates a corresponding de Bruijn graph by the following

steps. A pseudo-code of the algorithm can be found in Algorithm 1.

1. Partitioning. This step uses a pre-generated UHS UkL. By default, we used a UHS generated by the

DOCKS algorithm [12] with k = 12 and L = 60. We saved UkL in a compressed |Σ|k bit array with

the values ′1′ for the k-mers that are in UkL and ′0′ otherwise. A new order based on UkL is defined

as follows: all k-mers in UkL are smaller than k-mers not in UkL, and the order of k-mers in UkL is

random. By the definition of a UHS, a minimizers scheme based on this order selects only k-mers from

UkL as minimizers for any L-long window, so the order of k-mers not in UkL is immaterial. We call

such an order a UHS-based minimizer order.

Reads are broken into segments (super L-mers) that are placed in bins as follows. For each read, all

L-long windows are scanned and their minimizers are found. The minimizer of the currently scanned

window is denoted as currMin and its start position is denoted as currMinPos. The scanning is done

by sliding an L-long window to the right one symbol at a time, until the end of the read. After each

slide, UHS_MSP checks whether currMinPos is still within the range of the current window. If not, it

re-scans the window to find the current minimizer and updates currMin and currMinPos. Otherwise,

it tests whether the last k-mer in the current window is smaller than currMin based on the UHS-based

minimizer order. If so, the last k-mer is set as currMin and its start position as currMinPos.

To enable fast comparison of k-mers in UkL, the pseudo-random order is implemented using a 2k-long

bit vector x (the seed), with bits selected independently and equiprobably to be 0 or 1. For m ∈ UkL

define β(m) = b(m) ⊕ x, where b(m) is the binary representation of k-mer m and “⊕” is the bit-wise

xor operation. The order o of m is defined as the number whose binary representation is β(m). Hence,

deciding if o(m) < o(m′) is done by two xor operations and one comparison.

Each time a new minimizer is selected, a super L-mer is generated by merging all the L-long windows

sharing the previous minimizer, and the label of that super L-mer is its minimizer (Figure 2). To obtain

the prescribed number nb of bins, a hash function is used to map the labels to a space of size nb.

A unique ID is assigned to each L-mer when scanning the reads. As a result, identical L-mers in different

positions in the data are assigned different IDs. Those will be merged in the next step.

2. Mapping and merging. These steps are the same as in [9]. We briefly outline them here for complete-

ness, since the changes we introduce in the partitioning step affect their efficiency. In the mapping step,

each bin is loaded separately into the memory, and identical L-mers in different positions in the bin are

combined to have the same unique integer vertex ID by generating an ID replacement table per bin.

Since we expected the change in the partitioning step to create bins with sizes that are more uniformly

distributed, we reasoned that the maximum bin size and the maximum memory would decrease as well.

The merging step merges the ID replacement tables of all bins and generates a global ID replacement

table.

The algorithm outputs sequences of IDs. Each ID is a vertex in the graph (L-mer) and two adjacent IDs

represent an edge in the graph. This way, each read is represented by a sequence of the consecutive vertices

of its L-mers in the graph, while identical L-mers have the same ID.
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Algorithm 1 UHS Minimum Substring Partitioning.

Input : A set of strings S = (S0, S1, . . . , Sm−1), where |Si| = readLen, integers k, L, nb,

a UHS-based order o for a UHS UkL.

Output : The partition - nb bins with the set of super L-mers in each one.

1: for j from 0 to m− 1 do

2: currMin = the o-minimum k-mer of Sj [0, L− 1]

3: currMinPos = the start position of currMin in Sj

4: currStart = 0 /* the start position of the current super L-mer */

5: for i from 1 to readLen− L do

6: if i > currMinPos then

7: generate a super L-mer sLmer = Sj [currStart, i+ L− 2]

8: currStart = i

9: write sLmer in bin number hash(currMin)

10: currMin = the o-minimum k-mer of Sj [i, i+ L− 1]

11: currMinPos = the start position of currMin in Sj

12: else

13: if the last k-mer of Sj [i, i+ L− 1] is in UkL and smaller than currMin then

14: generate a super L-mer sLmer = Sj [currStart, i+ L− 2]

15: currStart = i

16: write sLmer in bin number hash(currMin)

17: currMin = the last k-mer of Sj [i, i+ L− 1]

18: currMinPos = the start position of currMin in Sj

4 Results

We compared UHS_MSP to the original MSP method (called here Lexico_MSP) and to MSP with random

k-mer order (Random_MSP) in terms of speed, memory usage, particular density and distribution of bin sizes

on four real-life datasets (Table 1). The human chr14 and bee datasets were downloaded from the GAGE

database (gage.cbcb.umd.edu/data/index.html). The E. coli (PRJNA431139) and the human genome

data (SRX016231) were downloaded from SRA. (The bee dataset was also used in [9], but the other datasets

used in that study were unavailable.) We used the same parameters as in [9] for comparison, i.e., k = 12, L

= 60, and nb = 1000. All the experiments were measured on Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz

server with 44 cores and 792 GB of RAM. To exclude the impact of parallelization, all measurements were

done on a single core.

4.1 Particular density comparison

We calculated the particular density of the MSP algorithms on the four datasets by counting the number of

selected positions (unique minPos in the partitioning step of the algorithm) and dividing it by the number

of all possible positions. UHS_MSP achieved lower density than Lexcio_MSP and Random_MSP on all four

datasets (Table 1), in accordance with the results of Marçias et al. on other genomes [10]. Lexico_MSP had
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Particular density

Dataset Size (GB) Avg. read length Lexico_MSP Random_MSP UHS_MSP

E. coli 2.9 101 0.041 0.034 0.031

Human chr14 9.4 101 0.073 0.065 0.062

Bee 93.8 124 0.059 0.056 0.053

Human 432 100 0.057 0.056 0.055

Table 1: Characteristics of the four benchmark datasets and particular density results.

the highest density. This result reaffirms the potential of UHS_MSP to achieve reduced memory usage and

faster runtimes compared to the other two algorithms.

Figure 3: Performance of the three tested algorithms. (a) Runtime in seconds per GB of input data.

(b) Maximum memory usage in GB. (c) Largest bin size. Numbers are in 100 MB for E. coli and chr14, and

in GB for the human and bee genomes.

4.2 Performance comparison: runtime, largest bin size and memory usage

We compared the three MSP algorithms in terms of three performance criteria: (1) Runtime - the total CPU

time (user time + system time); (2) Maximum memory - the maximum amount of memory the method used;

and (3) Largest bin size - the size of the largest bin that was created in the partitioning step.

Figure 3a presents the runtime of the three algorithms in seconds per GB of input data. In all four

datasets, UHS_MSP was the fastest. Figure 3b displays the maximum memory used by each algorithm.

UHS_MSP used substantially less memory than Lexico_MSP, and achieved comparable results to Random_MSP.
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Runtime (sec) Maximum memory (GB) Largest bin (GB)

Data Lexico Random UHS Lexico Random UHS Lexico Random UHS

E. coli 207 206 ±35.6 148 ±5.54 6.96 6 ±1.3 4 ±0.5 0.13 0.12±0.05 0.025±0.01

Human chr14 1371 1349±38.2 1189 ±68.13 6.66 5.55±0.83 5.12±0.73 0.067 0.036±0.008 0.038±0.0008

Bee 36603 28159±12815 24114±10836 17.2 15.94±1.02 15.63±0.44 2.13 1.149±0.37 0.837±0.086

Table 2: Performance results across different pseudo-random k-mer orders. Average and standard

deviation over five runs with different seeds are shown for the two algorithms that use a random order.

Figure 3c displays the size of the largest bin. UHS_MSP outperformed the original Lexico_MSP on all datasets,

and improved over Random_MSP in three of the four datasets. The results show that UHS_MSP achieved a

substantial improvement over the other algorithms in all three aspects.

As an additional test of the robustness of UHS_MSP, we wished to gauge the effect of the pseudo-random

order of the k-mers on the results. We ran Random_MSP and UHS_MSP,which use randomized orders, on the

E. Coli, chr14 and Bee datasets with five different seeds, corresponding to different pseudo-random orders

(Section 3). (For the human dataset, some of the runs had a technical issue, and thus it is not included).

The results are presented in Table 2. While both algorithms showed substantial performance variance across

orders, overall, the results are in line with those presented in Figure 3.

4.3 The effect of parameters k, L and nb

We tested the three algorithms on the bee data in a range of values for the parameters k, L and nb. In

each run, we kept two of the three parameters at their default values and varied the third. The results are

summarized in Figure 4. Changing the number of bins shows consistent advantage to UHS_MSP with a minor

improvement as the number of bins increases (a-c). Changing L shows a similar effect (d-f). Changing k

has a less consistent effect (g-i).

Li et al. also tested the impact of changing k and L on Lexico_MSP [9]. The impact of varying k was

consistent with what we observed here for that algorithm (Figure 4a-c) with reduction of resources needed

as k increases. They also reported a similar reduction when L increases unlike a less consistent picture

observed here (Figure 4d-f). Note however that they tested the range of L = 31 − 63 while we tested a

broader range of higher values L = 60− 120. While varying the number of bins was not tested before, our

tests here (Figure 4g-h) show improved performance with increasing nb and in a similar trend (with leveling

off at high values) by the two other algorithms as well.

4.4 Resource usage in each step of the algorithm

To appreciate where the saving is achieved, we measured the resources consumed by each of the three MSP

steps: partitioning, mapping or merging. Figure 5 summarizes the results on the bee genome. In terms of

memory, the mapping step required most memory, taking an order of magnitude more memory than the

partitioning and 3-5 fold more than the merging step. In all three algorithms, the mapping step was also the

most time-demanding one, taking on average 89% of the time. The merging step required 7% of the time,

on average, and the partitioning step was the least demanding one, taking 4% of the time. Remarkably,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: The effect of changing the number of bins, the window size and the k-mer size on

performance. Results are for the bee genome. (a-c) Effect of the number of bins. (d-f) Effect of the

window size L. (g-i) Effect of k. For each parameter, the runtime (sec/GB of input data), the maximum

memory (GB) and the largest bin size (GB) are shown.
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even though we explicitly changed only the partitioning step of the algorithm, that change led to substantial

reduction in the time and memory of the mapping step. The merging step was less affected. In comparison

to the original MSP algorithm, UHS_MSP required 4% more time in the partitioning step, due to the extra

work required for UHS-related computations, but was 20% faster in the mapping step. Note that for the

sake of our tests, we did not utilize the possibility of parallelizing the mapping step. Future work can thus

focus on improvements to the mapping step.

Figure 5: Resources taken by each algorithm and each step of the algorithm on the bee genome.

(a) Maximum Memory (GB). (b) Runtime (1000 sec).

5 Discussion

In this study, we incorporated a UHS-based minimizers scheme in a fundamental HTS task: de Bruijn

graph construction. By creating partitions based on fewer k-mers and with better statistical properties, we

achieved speedups and reduced memory usage in genomic assembly. To the best of our knowledge, this is

the first demonstration of the practical advantage of using UHSs in a genomic application.

Our study raises several open questions: To what extent can further improvements in the generation of

smaller UHSs improve the de Bruijn graph construction? Currently the complexity of minimum size UHS still

remains an open problem, though closely-related problems were shown to be computationally hard [10, 12].

Can one express the expected amount of resources needed by the UHS_MSP algorithm (and by its separate

steps), as a function of the key parameters k, L and nb? Obtaining such an estimate, even under a simple

model such as the random string model [9], can guide one to optimize the combination of parameter values,

which as we have seen tend to interact in a rather complex way (Figure 4). What is the relation between the

largest bin size and the maximum memory usage? Li et al. argued that the maximum memory usage in MSP

grows with the largest partition generated in the partitioning step [9]. Our results show a less consistent

picture, at least for the human dataset (Figure 3). One reason to the difference can be the fact that the

10

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2020. ; https://doi.org/10.1101/2020.11.08.373050doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.08.373050
http://creativecommons.org/licenses/by-nd/4.0/


largest partition size is defined in [9] as the number of k-mers in it, while we use the total memory size in

GB.

Given the improvement achieved by a UHS in this sequencing application, it is tempting to believe that

similar or even better practical improvements can be achieved in other applications that utilize minimizers.

These include applications that perform partitioning of sequences as a preprocessing step for efficient parallel

processing and storage [17, 2, 3, 8], applications in sequence similarity estimation [6, 11], and many others.
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