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Abstract 

The limitations of classical Lotka-Volterra models for analyzing and interpreting 

competitive interactions among plant species have become increasingly clear in 

recent years. Three problems that have been identified are (1) the absence of 

frequency dependence, which is important for long-term coexistence of species, (2) 

the need to take unmeasured (often unmeasurable) variables influencing individual 

performance into account (e.g. spatial variation in soil nutrients or pathogens) and (3) 

the need to separate measurement error from biological variation. We modify the 

classical Lotka-Volterra competition models to address these limitations and we fit 8 

alternative models to pin-point cover data on Festuca ovina and Agrostis capillaris 

over 3 years in a herbaceous plant community in Denmark, applying a Bayesian 

modelling framework to ascertain whether the model amendments improve the 

performance of the models and increase their ability to predict community dynamics 

and therefore to test hypotheses. Inclusion of frequency dependence and 

measurement error improved model performance greatly but taking possible 

unmeasured variables into account did not. Our results emphasize the importance of 

comparing alternative models in quantitative studies of plant community dynamics. 

Only by comparing alternative models can we identify the forces driving community 

assembly and change and improve our ability to predict the behavior of plant 

communities. 
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Introduction 

Plants are sedentary, and neighboring plants affect each other’s growth. The most 

important effect of growing together with neighboring plants is competition for 

resources, e.g. light, water and soil nutrients that are necessary for plant growth 

(Goldberg et al. 1990). However, other mechanisms of plant-plant interactions, such 

as facilitation in harsh environments, physical interference of vegetative parts and the 

modification of the behavior of herbivores, pathogens and pollinators, may also play 

important roles in the assembly of plant communities. Harper (1977) made a 

comprehensive list of possible negative effects of neighboring plants. As a group, 

these different mechanisms of negative plant-plant interactions have been called 

“competition in the broad sense” (Weiner 1993), corresponding to the general 

definition of competition in ecology as an interaction that is negative for both species 

(or individuals).  

 The classical ecological models for exploring the possible effects of competition at 

the level of the plant community are Lotka-Volterra-type competition models, where 

the negative effect of neighbors increases linearly with local density (Barabás et al. 

2018; Chesson 1994). These models have provided insights into the theoretical 

conditions necessary for species coexistence at equilibrium. However, it is widely 

appreciated that frequency-dependent species interaction, in which rare plant 

species are favored over more common species in their reproduction, growth and/or 

mortality, may play an important role in plant species co-existence and community 

dynamics in many plant communities (Chisholm and Fung 2020; Connell et al. 1984). 

The Janzen-Connell pattern of seedling survival, where seedling survival is reduced 

close to the parent tree due to herbivores or pathogens, was originally observed in 
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tropical tree species (Wright 2002). However, species-specific soil-plant interactions 

have received increasing interest as a potentially important and general mechanism 

for regulating plant populations by hindering local establishment and growth of 

conspecific plant species in the next generation (Heinen et al. 2020; Mazzoleni et al. 

2015a; Mazzoleni et al. 2015b; van der Putten et al. 2013). 

 In empirical studies of plant communities, the specific mechanisms of plant-plant 

interactions that influence plant growth and their importance are not known and may 

vary with the season and size of the competing plants (Gurevitch et al. 2006). 

Furthermore, it is often not feasible to collect ecological and plant physiological data 

with sufficient detail to determine the importance of the different mechanisms, let 

alone model the underlying mechanisms that regulate plant growth.  

 Most empirical modelling studies of plant species interaction fit Lotka-Volterra-type 

competition models (e.g Adler et al. 2018; Damgaard 1998; 2005; Law and 

Dieckmann 2000). This choice is in part motivated by the simplicity of a linear effect 

of density, ignoring higher-order interactions (Barabás et al. 2018; Chesson 1994). 

There has been increasing awareness of the limits of Lotka-Volterra-type competition 

models for understanding inter-specific plant interactions (Mayfield and Stouffer 

2017; Neill et al. 2009). For example, if frequency-dependent effects are common 

and important, they need be included in models of plant community dynamics 

(Berendse 1979). Alternative approaches are needed and are appearing. For 

example, Neill et al.'s (2009) model of consumer-resource dynamics based on simple 

maximum entropy assumptions showed dynamics resembling frequency-dependent 

species interaction models.  

 It may be useful to model observed plant population dynamic patterns with several 
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different species interaction models to determine which type of interaction function 

fits the data best. This would allow us to estimate the relative importance of different 

types of neighbor interaction mechanisms and to make better ecological predictions 

of plant community dynamics. The testing of alternative models, rather than one 

model vs. a null model, is the key to stronger scientific (Platt 1964) and statistical 

(Gelman et al. 2014) inferences. 

 For example, consider an interspecific Lotka-Volterra type competition model of 

population growth in a plant community,  

d xi
dt

= ri xi�Ki − ∑ αij xjS
j=1 �/Ki    (1a), 

where x is a measure of abundance, r is intrinsic growth rate in the absence of 

competition, αij the competitive/facilitative effect of species j on species i (αii = 1) 

and K is the carrying capacity. However, if we want to test for the possible effect of 

frequency-dependency, then this may be modelled by combining the effect of a linear 

Lotka-Volterra type competition model (eqn. 1a) with a term that models the 

additional effect of frequency-dependency. Such combined plant-plant interaction 

effects can be modelled as 

d xi
dt

= ri xi �Ki − ∑ αij xjS
j=1 − βi

xi
∑  xjS
j=1

� /Ki   (1b), 

where β > 0 models the negative effect of being common. 

 The above-mentioned uncertainty about the underlying ecological mechanisms 

that govern plant inter-specific interactions and which species interaction model is 

best suited to model empirical competitive growth data is further complicated by the 

possible role of unmeasured variables that influence individual performance and 

measurement errors. 
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 In a recent study, Rinella et al. (2020) demonstrated the possible role of 

unmeasured variables that are important for plant competitive growth (e.g. small-

scale spatial variation in soil nutrient levels or pathogen pressure) in the analysis of 

inter-specific interactions. Generally, if an unmeasured variable either has an overall 

positive (e.g. more nutrients) or negative effect (e.g. more pathogens) on plant 

performance at both the early and later stages of plant development (Fig 1a), then 

the estimated competitive effect from neighboring plants will be biased (Rinella et al. 

2020). This result has received some attention in the statistical literature, where such 

unmeasured variables are known as instrumental variables or confounding factors 

(Gelman et al. 2014), and has also been discussed in the plant ecological literature 

(e.g. Freckleton and Watkinson 2001). The effect of unmeasured variables has rarely 

been taken into account when fitting data on plant competition in communities.  

 The best way to avoid potential confounding effects of unmeasured variables, is to 

replicate the competition experiments in a relatively homogenous environment. This 

is not always possible or even desirable (e.g. Freckleton and Watkinson 2001). 

Rinella et al. (2020) suggested modelling the possible covariance between the early 

and later growth stages in order to estimate the potential importance of confounding 

factors that influence individual growth. Since the potential instrumental variables 

often are difficult or impossible to measure, and it is impossible a priori to ensure that 

all the relevant variables have been measured, then a practical alternative is to 

model the part of the covariance between the early and later growth stages that is not 

accounted for by the independent factors in the competition model (Fig 1b). This 

covariation will at least partly be due to unmeasured variables that affect both the 

early and later growth stages in the same direction. By including this covariance in 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 9, 2020. ; https://doi.org/10.1101/2020.11.08.373068doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.08.373068
http://creativecommons.org/licenses/by-nc-nd/4.0/


- 7 

the model, the estimated competitive effect of neighboring plants will be less biased.  

 It has also been demonstrated that sampling and measurement errors may lead to 

important model and prediction bias, a phenomenon known as regression dilution 

(Carroll et al. 2006; Damgaard 2020; Detto et al. 2019). We address the possible 

effect of regression dilution on conclusions inferred from observed inter-specific 

interactions by fitting the empirical growth data in a hierarchical Bayesian framework 

(Fig. 1c), where measurement errors are separated from process errors (Carroll et al. 

2006; Clark 2007; Muff et al. 2015).  

 In this study, we address the need to consider alternative species interaction 

models by comparing the performance of eight models fit to data on the competitive 

growth of two perennial grass species, Festuca ovina and Agrostis capillaris, using a 

Bayesian framework. We start with the Lotka-Volterra competition model and 

consider three modifications separately and in all combinations:  i) addition of 

frequency dependency, ii) addition of covariance between the early and later growth 

stages, and iii) modelling of sampling- and measurement errors. The eight different 

models are compared by their predictive accuracy using the Watanabe-Akaike 

information criterion. 

 

Material and Methods 

Competitive growth data 

Here, we analyze three years of competitive growth data from ten control plots in a 

field experiment that was designed to measure the effect of nitrogen addition and an 

herbicide (glyphosate) on competitive interactions (Daugaard et al. 2011; 2013; 

2014). The experiment was established on a former agricultural field with dry, 
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nutrient-poor, sandy soil. The field was fallow for several years prior to the start of the 

experiment in 2001. The field is quadrangular, surrounded by forest on two sides 

(south and west) and separated from the neighboring fields by 5-meter broad 

hedgerows on the other two sides. In 2001, the area was ploughed to 60 cm in order 

to minimize establishment from the soil seed bank and was prepared for the 

experiment by harrowing and rolling. Thirty-one grassland plant species covering 

different life form strategies (CRS strategies sensu Grime 2001) were sown in the 

spring 2001 (Bruus Pedersen et al. 2004). After sowing, plant abundance and 

species composition were not controlled, except for the removal of woody species 

(trees and shrubs) every year in the spring. The experiment was set up as a 

completely randomized block design with ten replicates. Each replicate plot was 7 m 

x 7 m with a buffer zone of 1.5 m surrounding the plot. A buffer zone of 10 m 

separated the experiment from the surrounding vegetation. The buffer zones were 

also sown with the seed mixture. All plots received phosphorus (53 kg/ha), potassium 

(141 kg/ha), sulphur (50 kg/ha) and copper (0.7 kg/ha) each year.  

 To study interactions between two perennial grass species, Festuca ovina and 

Agrostis capillaris, one permanent 0.5 m x 0.5 m quadrat was placed within each of 

the plots in June 2007. The quadrat was not placed randomly, but such that both F. 

ovina and A. capillaris were clearly abundant. Plant cover and vertical density of all 

vascular plant species within the quadrats were measured non-destructively by the 

“pin-point” (also called “point intercept”) method (Kent and Coker 1992) using a pin-

point frame with the same dimension as the quadrat and with 25 pin-positions 

regularly placed at a distance of 10 cm. At each position, a pin with a diameter of 0.5 

mm was passed vertically through the vegetation, and the number and species of 
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each contact was recorded. The sampling was performed in the spring and at the 

end of the growing season for the three-year period 2007-2009. 

 The pin-point method provides estimates of two important plant ecological 

variables, plant cover and vertical density, and is well suited for studying the 

competitive interactions among plant species in natural and semi-natural herbaceous 

perennial plant communities, where it is difficult to distinguish individual genets 

(Damgaard 2011; Damgaard et al. 2009). The cover of a specific plant species is 

defined as the proportion of pins in the grid that touch the species; thus, plant cover 

measures the cover of the plant species when it is projected onto the two-

dimensional ground surface. The vertical density is defined as the number of times a 

pin touches a specific species, and this measure has been shown to be highly 

correlated to plant biomass (Jonasson 1983; 1988).  

 In the subsequent analysis of growth under competition, survival and 

establishment of F. ovina and A. capillaris, the data was grouped into three classes: 

F. ovina, A. capillaris and an aggregated group of all other vascular plant species. 

 The data are presented in an electronic supplement (Appendix A). 

 

Models 

The species interactions were analyzed by modelling how the vertical density of F. 

ovina, A. capillaris and the other species at the end of the growing season depended 

on the cover at the beginning of the growing season. The underlying assumption is 

that the measure of vertical density at the end of the growing season may be used as 

a measure of population growth as a function of the cover at the beginning of the 

growing season, growth and competition (Damgaard 2011; Damgaard et al. 2009). 
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 The conceptual competitive growth models for plant communities outlined in eqn. 

(1) are modified so that they are suited for modelling pin-point cover and vertical 

density data, 

fi�xi, xj� = ai xibi  Exp�∑ −cij xjdjS
j=1,j≠i �   (2a), 

fi�xi, xj� = ai xibi  Exp�∑ −cij xjdjS
j=1,j≠i � Exp �−ei  

xi
∑ xjS
j=1

�  (2b), 

where fi�xi, xj� is the expected vertical density of species i at the end of the growing 

season, and xi is the cover of species i at the beginning of the growing season. The 

parameters ai and bi model the expected vertical density as a function of cover in the 

absence of inter-specific interactions, cij and dj model the competitive effect of 

species j on the vertical density of species i (cij > 0), and ei models the frequency-

dependent interaction effect of species i (ei > 0). The parameters bi and di model 

possible non-linearity in the effect of cover on vertical density with a domain in the 

interval (0.5, 2). If ei = 0, there is no evidence of frequency dependence, and model 

2b) reverts to the Lotka-Volterra competition model (eqn. 2a). 

 The measurement errors of cover and vertical density have previously been 

assumed to be binomial distributed and generalized-Poisson distributed, respectively 

(Damgaard et al. 2014). However, since we want to model the covariance between 

the early and later growth stages to account for the possible effect of unmeasured 

variables (Rinella et al. 2020), both distributions are approximated by standard 

normal distributions, where (i) the observed pin-point cover measure, y, in a pin-point 

frame with n pin-positions and an expected cover q is transformed to z1(y; q) =

y−q
�n q(1−q)

, and (ii) the observed pin-point vertical density measure, vd, with an 

expected value λ and with a species-specific scale parameter υi is transformed 
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to z2(vd; λ, υi) = vd−λ
√λ υi

 .  

The measurement error of the standardized cover and vertical density measures is 

then modelled as 

� z1(y; q), z2(vd; λ, υi)�~N2 �(0,0), �1 ρi
ρi 1��   (3), 

where ρi is a species-specific correlation coefficient in the domain (-1, 1). If ρi = 0, 

then the measurement errors of the standardized cover and vertical density 

measures are assumed to be uncorrelated, i.e. the covariance between the early and 

later growth stages is assumed to be accounted for by the competition model and not 

by additional unmeasured variables.   

 The effect of measurement errors on the modelling of the inter-specific interactions 

was investigated by either fixing the latent variables q and λ in eqn. 3 to their 

empirical mean values (i.e. measurement errors are not modelled), or simulate them 

during the Bayesian MCMC and thus treating them as parameters along with υi, as is 

usually done in Bayesian hierarchical modelling (Carroll et al. 2006; Clark 2007; Muff 

et al. 2015). The structural uncertainty of each species interaction model (eqn. 2a 

and eqn. 2b) was assumed to be normally distributed and modelled as 

vdi~N(fi�xi, xj�,σi)     (4), 

where σi is the species-specific process error. 

 In total, 23 = 8 different models were fitted to the data by combing a Lotka-Volterra 

competition model with or without (1) frequency dependency, (2) including the effect 

of confounding factors, and (3) including the effect of measurement errors in all 

possible combinations. 
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Estimation 

We have chosen to treat the three years of competitive growth data from each of the 

ten control plots as independent events because i) the within-plots among-year 

covariation is expected to be minimal since we model plant growth of each year, and 

ii) considering plot as a random effect is not compatible with modelling covariance 

between early and late plant growth.  

 The joint Bayesian posterior probability distribution of the parameters in the eight 

models was calculated using Bayesian Markov Chain Monte Carlo (MCMC; 

Metropolis-Hastings) simulations of 100,000 iterations with a burn-in period of 70,000 

iterations and normal candidate distributions (Carlin and Louis 1996). The prior 

probability distributions of all parameters and latent variables were assumed to be 

uniformly distributed in their specified domains under the additional constraints 

that cij < 5, ei < 5, 0.5 < υi < 5, except for iσ , which was assumed to be inverse 

gamma distributed with parameters (0.1, 0.1).  

 Plots of the deviance and trace plots of all parameters were inspected in order to 

check the fitting and mixing properties of the used sampling procedure. Residual 

plots of the vertical density for each species were inspected to check the fitting 

properties of the different models. The statistical inferences were assessed using the 

calculated credible intervals, i.e. the 95% percentiles of the marginal posterior 

distribution of the parameters. 

 The eight different models were compared by their predictive accuracy using the 

Watanabe-Akaike information criterion (WAIC, Gelman et al. 2014; McElreath 2016; 

Watanabe 2010). Using WAIC, the effective number of parameters, a measure of 

how many hypothetical independent (uncorrelated and unbounded) parameters the 
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model uses, was also estimated for each model.  

 All calculations were done using Mathematica (Wolfram 2019). The software code 

and all results are given as an electronic supplement (Appendix B). 

 

Results 

The MCMC iterations of all eight models converged with acceptable mixing 

properties (Appendix B). Based on the residual plots (Fig. S1), the fit of all models 

was judged to be acceptable. A summary of the marginal posterior probability 

distributions of all parameters are shown in Table S1. The predictive accuracy of the 

eight models using WAIC (Table 1) was very similar to that calculated by the closely-

related Deviance Information Criterion (Spiegelhalter et al. 2002; Appendix B). 

Agreement between predictive accuracy and relatively low structural uncertainty of 

the models (Table S1, σi) was satisfactory.  

 Based on predictive accuracy, the model that best fit the competitive growth data 

was one in which frequency dependency was added to the Lotka-Volterra 

competition model (eqn. 2b) and where the measurement error was included, but not 

a potential effect of unmeasured variables (Table 1, WAIC = 594,80). This was also 

the model with lowest structural uncertainty (Table S1, σi).    

 The four models with the highest predictive accuracy were those that included the 

effect of measurement errors, even though they also had the highest number of 

effective parameters (Table 1, the four models with lowest WAIC). However, if 

measurement errors were ignored, then the model with the highest predictive 

accuracy was again one in which frequency-dependence was added to the Lotka-

Volterra competition model, but then the predictive accuracy was increased when the 
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effect of unmeasured variables was included (Table 1, WAIC = 849.88). 

Consequently, the result that the predictive accuracy was increased when frequency-

dependency was added to the Lotka-Volterra competition seemed robust in this case 

of competitive growth between two grass species.  

 As explained above, the effect of not taking unmeasured variables into account is 

that the competitive effect may be biased, but this was only significant in one out of 

24 cases (Table S1; 𝑐𝑐23 figures in bold), which is in agreement with random 

expectations. However, the credibility intervals of the competition coefficients were 

relatively wide, so the statistical power is correspondingly low.   

 The predicted effect of interspecific competition differed significantly among the   

eight different models even though they were fitted to the same data (Fig. 2). The 

mean expected vertical density of F. ovina as a function of the cover of itself and A. 

capillaris when fitted with the eight different models was consistently lower in the four 

models where the measurement error was included in a hierarchical model (Fig. 2), 

and these were also the models that received most support from the data (Table 1).  

 

Discussion 

This case study provides a compelling example of the need to consider somewhat 

more complex competition models than the standard Lotka-Volterra model in 

empirical studies of species interactions in plant communities. While the use of 

hierarchical models to account for measurement errors is becoming the new 

standard for statistical modelling, most empirical species interaction studies are still 

modelled without considering frequency-dependency or the effects of unmeasured 

variables.  
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 The use of the classical Lotka-Volterra model for species interactions has been 

criticized by several authors. Some researchers have argued that the neutral model 

(Hubbell 2001) is a more relevant null-model for species interaction, but neutrality or 

the absence of species interactions can be considered a degenerate case of the 

Lotka-Volterra model when 𝛼𝛼𝑖𝑖𝑖𝑖 (eqn. 1a) is zero, and this null-hypothesis is in 

practice tested indirectly. Interestingly, Neill et al. (2009) constructed a “null-model” 

that resembles the dynamics of frequency-dependent species interaction models 

using only maximum entropy assumptions. The approach chosen here is to assume 

that the simplest hypothesis, or null-hypothesis (H0), is neutrality, which is tested 

indirectly using the Lotka-Volterra model. The next hypothesis (H1) is the linear effect 

of density on plant growth, which is modelled by Lotka-Volterra type models. This 

hypothesis is followed by more complicated species interactions models with higher 

order terms (H2), in which frequency-dependent species interaction models are a 

special case. There are a number of possible species interaction models with higher 

order terms or other modifications of the standard species interaction approach, e.g. 

(i) if the outcome of competitive interactions depends on the local spatial distribution, 

i.e. whether the species are randomly distributed or aggregated (Bolker and Pacala 

1999; Damgaard 2004; Stoll and Prati 2001), or (ii) when more species interact, e.g. 

in a rock -paper - scissors type of interaction (Levine et al. 2017) or (iii) when 

intraspecific genetic variation may play a role in the outcome of species interactions 

(Ehlers et al. 2016). 

 In the present case study of interspecific interactions between two grass species, 

we found that species interaction models that included frequency-dependency were 

better supported by the data and improved the prediction accuracy. This finding is in 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 9, 2020. ; https://doi.org/10.1101/2020.11.08.373068doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.08.373068
http://creativecommons.org/licenses/by-nc-nd/4.0/


- 16 

agreement with the study of Harpole and Suding (2007), who found relatively strong 

frequency-dependency among four annual plant species. These findings are relevant 

to the recent emphasis on species-specific soil-plant interactions as a potentially 

important and general mechanism for regulating plant populations (Heinen et al. 

2020; Mazzoleni et al. 2015a; Mazzoleni et al. 2015b; van der Putten et al. 2013).  

 There was only limited correlation between early and later growth stages, which 

may indicate that the observed growth was not influenced by unmeasured variables 

that affected both early and later growth stages or because the experiment was 

replicated (Rinella et al. 2020).  In other empirical competition studies, unmeasured 

variables have been shown to influence the estimated competition coefficients 

(Rinella et al. 2020).   

 Although the effective number of parameters was relatively high when 

measurement errors were included, the four models with the highest predictive 

accuracy were those that included the effect of measurement errors. These 

additional effective parameters were probably mainly used in describing 

measurement uncertainty and not in the modelling of the competitive interactions. It 

has been demonstrated that if the effects of measurement errors are ignored, model 

predictions may be biased (Carroll et al. 2006; Damgaard 2020; Detto et al. 2019) so 

it is therefore advisable to consider the possible effect of measurement errors when 

modelling species interactions.  

 If the aim of an empirical study is to make predictions of plant community 

dynamics, it is possible to increase the overall predictive performance of models by 

using the calculated WAIC for model averaging (McElreath 2016). 

 In the present study, there were only two-yearly sampling times, but if there had 
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been more, it would have been interesting to analyze whether the growth stage of the 

plant species had an effect on which species interaction model was best supported 

by the growth data.  

 Theoretical studies of plant community dynamics and the question of how many 

plant species may coexist in plant communities have been dominated by Lotka-

Volterra type competition models (Barabás et al. 2018; Chesson 2000; Damgaard 

2005). These models are characterized by a relatively low number of species at 

ecological equilibrium, and much theoretical research has been motivated by the 

need to explain the apparent paradox of the relatively many observed plant species 

compared to the number that is expected according to Lotka-Volterra type 

competition models (Hutchinson 1961). If frequency-dependent mechanisms play an 

important role in the regulation of plant populations, then the expected number of 

species at ecological equilibrium will be higher and may explain the observed 

relatively high frequency of rare species (Enquist et al. 2019). Consequently, 

frequency-dependence needs to be integrated into theoretical, as well as empirical, 

plant competition models.  

 Spatial dynamics have also been used to explain the high number of apparently 

coexisting plant species. Theoretical studies (e.g. May and Nowak 1994; Tilman 

1994) have suggested that if there is a trade-off between density-independent fitness 

components (ex. viability, fecundity, colonizing ability) and competitiveness, then an 

infinite number of species could coexist at equilibrium. However, Adler and Mosquera 

(2000) have challenged this conclusion by generalizing the competitiveness function. 

They showed that with a biologically realistic, smooth competitiveness function, only 

a few species would be able to coexist at equilibrium despite such a trade-off. 
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 To paraphrase Einstein "The model should be as simple as possible and as 

complex as necessary". Alternative models evaluated with Bayesian statistical 

methods allow us to apply Einstein's dictum to plant community dynamics. Our 

results suggest that in ecology, more complexity than we might wish for is necessary 

if we are to understand and predict competitive processes in plant communities.  
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Tables 

Table 1. Predictive accuracy and the estimated number of effective parameters using 

the Watanabe-Akaike information criterion (WAIC). 23 = 8 different models were fitted 

to the data by combining a Lotka-Volterra competition model without frequency 

dependency (eqn. 2a) or with frequency dependency (eqn. 2b), including the effect of 

unmeasured variables, and including the effect of measurement errors in all possible 

combinations. The best predictive models are the ones with the lowest WAIC value.   

 

Model 

number 

Frequency 

dependence 

Unmeasured 

variables 

Measurement 

errors 

WAIC Effective number 

of parameters 

1 – – – 935.89 13.86 

2 + – – 925.99 13.25 

3 – + – 851.05 11.23 

4 + + – 849.88 14.00 

5 – – + 705.20 83.39 

6 + – + 594.80 92.01 

7 – + + 692.06 83.84 

8 + + + 700.73 90.44 
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Figures 
Fig. 1. : The effect of an unmeasured variable (𝑧𝑧𝑢𝑢) on individual plant performance at 

both an early (𝑥𝑥𝑖𝑖) and later growth stage (𝑦𝑦𝑖𝑖) of plant species 𝑖𝑖. The competitive 

growth process is modelled by the function, 𝑓𝑓𝑖𝑖, which depends on 𝑥𝑥𝑖𝑖 and possibly on 

some measured environmental variables (𝑧𝑧𝑚𝑚). B: The effect of the unmeasured 

variable is modelled as the part of the covariance between the early and later growth 

stages that is not explained by the independent factors in the competition model. C: 

Hierarchical model in which true but unknown factors affecting plant performance are 

modelled by latent variables (squares) and measurement errors are separated from 

process errors. Data are denoted by circles. 
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Fig. 2. The mean expected vertical density (per frame) of species 1 (Festuca ovina) 

as a function of the cover of species 1 and species 2 (Agrostis capillaris) when fitted 

with the eight different models (the model number corresponds to the model # in 

Table 1). The combined cover of species 1 and species 2 is set to one; eqn. 

2: 𝑓𝑓1(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3) = 𝑓𝑓1(𝑥𝑥1, 1 − 𝑥𝑥1, 0). 
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