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Abstract 
The Mendelian Disorders of the Epigenetic Machinery (MDEMs) have emerged as a class of 

Mendelian disorders caused by loss-of-function variants in epigenetic regulators. Although each 

MDEM has a different causative gene, they exhibit several overlapping disease manifestations. 

Here, we hypothesize that this phenotypic convergence is a consequence of common 

abnormalities at the epigenomic level, which directly or indirectly lead to downstream 

convergence at the transcriptomic level. Therefore, we seek to identify abnormalities shared 

across multiple MDEMs, in order to pinpoint locations where epigenetic variation is causally 

related to disease phenotypes. To this end, we perform a comprehensive interrogation of 

chromatin (ATAC-Seq) and expression (RNA-Seq) states in B cells from mouse models of three 

MDEMs (Kabuki types 1&2 and Rubinstein-Taybi syndromes). We build on recent work in 

covariate-powered multiple testing to develop a new approach for the overlap analysis, which 

enables us to find extensive overlap primarily localized in gene promoters. We show that 

disruption of chromatin accessibility at promoters often leads to disruption of downstream gene 

expression, and identify 463 loci and 249 genes with shared disruption across all three MDEMs. 

As an example of how widespread dysregulation leads to specific phenotypes, we show that 

subtle expression alterations of multiple, IgA-relevant genes, collectively contribute to IgA 

deficiency in KS1 and RT1. In contrast, we predict that KS2 does not have IgA deficiency, and 

confirm this observation in vivo. We propose that the joint study of MDEMs offers a principled 

approach for systematically mapping functional epigenetic variation in mammals. 

 

Keywords: histone machinery, immune dysfunction, chromatin, histone modification, 

epigenetics, Mendelian disorders, Kabuki syndrome, Rubinstein-Taybi syndrome 

 
Introduction:  

A long-standing and fundamental problem in epigenetics is the identification of specific 

epigenetic changes that causally mediate phenotypes through the alteration of transcriptional 

states. While statistical associations between many diseases/traits and epigenetic changes have 

been detected, it is typically extremely challenging to rule out the influence of confounders such 

as the environment, and to determine whether these associations are primary causes versus 

secondary consequences1,2. As a result, to date there are surprisingly few examples of causal 

relationships between epigenetic alterations and specific phenotypes; notable exceptions include 

disorders of genomic imprinting3, disorders caused by repeat-expansion-induced aberrant 

promoter hypermethylation4,5, and metastable epialleles6,7. 
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 The recent advent and widespread clinical use of exome sequencing has led to the 

emergence of a novel class of Mendelian disorders, termed the Mendelian Disorders of the 

Epigenetic Machinery (MDEMs)8. MDEMs are caused by coding variants disrupting genes 

encoding for epigenetic regulators, which are generally very intolerant to loss-of-function 

variation9. This implies the following causal chain underlying MDEM pathogenesis: a coding 

variant disrupts an epigenetic regulator, leading to downstream epigenomic abnormalities, which 

in turn give rise to the phenotype, likely by perturbing the transcriptome (Figure 1a). As a result, 

MDEMs may provide a unique lens into the causal relationship between 

epigenetic/transcriptomic variation and disease. Indeed, studies of Kabuki syndrome type 1 - 

one of the most extensively studied MDEMs to date - have begun unraveling the underpinnings 

of the neural10, growth11, cardiac12, and immune defects13–15 seen in this disorder. 

 With studies of individual MDEMs, however, it remains challenging to distinguish the 

causal, disease-driving molecular alterations, from noise or passenger effects. As a 

consequence, it has been difficult to pinpoint specific target genes/loci that contribute to 

pathogenesis. It is also unclear if such targets span a small portion of the genome, or whether 

the disease phenotypes arise through the combined effects of multiple perturbations widely 

distributed across the genome.  

 

Results: 
Joint analysis of multiple MDEMs to identify causally relevant epigenetic and 
transcriptomic variation 

We set out to design an approach that discovers functionally relevant epigenetic 

variation, and overcomes limitations such as confounding effects from the environment and 

reverse causality from the disease process. Our approach leverages a cardinal and thus far 

unexploited feature of MDEMs, namely their overlapping phenotypic features, despite the 

causative genetic variants disrupting distinct genes. Such common MDEM features include 

intellectual disability, growth defects, and immune dysfunction8. We hypothesized that the 

common phenotypes arise because the different primary genetic defects lead to common 

downstream epigenomic alterations, which in turn create common transcriptomic alterations 

(Figure 1b). This hypothesis of a convergent pathogenesis motivates a joint analysis of more 

than one MDEM, and suggests a simple filter to identify the causal variation at the 

epigenetic/transcriptomic level: true, disease-driving signals should be detectable in multiple 

disorders (Figure 1c). 
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With this approach, two central practical considerations arise. First, what biological 

samples are most appropriate to allow for non-ambiguous interpretation of the results? We 

propose the use of MDEM mouse models, which have been shown to closely recapitulate many 

aspects of the human phenotypes13,16,17. Importantly, using mice allows us to: a) eliminate 

multiple confounders such as the environment, genetic background, age, and sex, and b) 

maintain a consistent sampling of disease-relevant cell types between individuals.  

Second, what statistical approach should be employed for detection of the true common 

alterations? The simplest way would be to perform differential accessibility and expression 

analyses separately for each disorder, and obtain a list of the overlapping differential hits. 

However, this suffers from the major shortcoming that in order to be labeled as differential, a 

given locus must exceed an arbitrary significance threshold (or rank). When multiple MDEMs are 

studied, this requirement can lead to severe loss of power and erroneous underestimation of the 

size of the overlap among the differential hits. To avoid this, we recast the problem as testing 

whether evidence that a set of loci/genes are differential in a given MDEM is informative about 

the state (null or differential) of the same loci/genes in another MDEM. We show (Methods) that 

with this formulation, we can use conditional p-value distributions to: a) estimate the size of the 

set of overlapping abnormalities and test if it is greater than expected by chance, b) identify a set 

of genes that belong to this overlap, and c) decouple a) from b), so that only the identification of 

specific genes is affected by the multiple testing burden. 
Here, as proof-of-principle, we implement our proposed approach using mouse models of 

3 MDEMs: two that were clinically indistinguishable prior to the discovery of the underlying 

genes (Kabuki syndrome types 1 and 2; KS1 and 2, caused by haploinsufficiency in histone 

methyltransferases KMT2D and KDM6A, respectively), and one that shares phenotypes but is 

clinically distinct (Rubinstein-Taybi type 1; RT1, caused by haploinsufficiency in histone 

acetyltransferase CREBBP). All three syndromes have been previously found to exhibit immune 

system dysfunction. In KS1, this includes combined variable immunodeficiency with low IgA, as 

well as abnormal cell maturation8,18,19. In RT1, it includes hypogammaglobulinemia with a 

reduction of mature B cells20, while in KS2 the immune phenotype has been less extensively 

studied, with some evidence of mild hypogammaglobulinemia18,21. Given this potential overlap, 

we chose to profile positively selected B cells (CD19+; Methods) from the peripheral blood of 

mutant mice, and that of age- and sex-matched wild-type littermates (Figure 1d).  

 

Genome-wide chromatin accessibility profiling reveals extensive overlap between the 
epigenetic aberrations of the three MDEMs 
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We first used ATAC-seq to profile genome-wide chromatin accessibility, employing a 

modified fastATAC protocol (Methods)22,23. Starting with a differential accessibility analysis of 7 

KS1 versus 12 wild-type mice (Methods), we discovered 3,121 ATAC peaks differentially 

accessible at the 10% FDR level. Of these, 824 (26.4%) overlapped promoters (defined as +/- 

2kb from the TSS), and 2,297 (74%) were in distal regulatory elements (defined as ATAC peaks 

outside of promoters).  

We then compared KS1 to KS2, focusing on promoters first. Using our new approach to 

detect overlap between lists of differential features from separate differential analyses 

(Methods), we found that 71.5% of promoter peaks differentially accessible in KS1 are also 

differential in KS2 (Figure 2a; p < 2.2e-16, 5 KS2 vs 12 wild-type mice); at the 10% FDR level, 

we identified 645 such peaks (Supplemental Table 1). For 630 of the 645 (97.7%), accessibility 

is altered in the same direction in the two syndromes (Figure 2b). Out of the 630 promoter 

peaks disrupted in both KS1 and KS2, we discovered that 62.2% are differential in RT1 as well 

(Figure 2c; p = 0.0034, 5 RT1 vs 7 wild-type mice), again with highly concordant effect sizes 

(Figure 2d).  

In total, we identified 313 promoter peaks that show disruption in all 3 disorders at the 

10% FDR level (Supplemental Table 2). This is ~4 times more shared peaks than we find if we 

perform separate differential analyses and compute the intersection of the resulting differential 

hits (78 peaks), highlighting that our new approach provides substantial gain in empirical power. 

A principal component analysis shows that the accessibility signal of these commonly disrupted 

promoter peaks separates each of the three mutant genotypes from their wild-type littermates 

(Figure 2e, f). This is most surprising for the case of KS1 and KS2, patients of which have such 

strong phenotypic overlap that the disorders were not considered distinct prior to discovery of 

the causative genes (Figure 2e).  

Next, we applied the same approach to distal regulatory elements. We saw a similar 

picture, albeit with weaker shared signal (Supplemental Figures 1a-d). Specifically, 55.6% of 

elements differential in KS1 were estimated as differential in KS2 (p < 2.2e-16), with 958 

confidently labeled such elements (10% FDR; Supplemental Table 3). As with promoters, we 

observed agreement in directionality. Of these 958 elements, 35.4% are shared with RT1 (p = 

0.0053), yielding a total of 150 commonly disrupted distal regulatory elements across the 3 

MDEMs (10% FDR; Supplemental Table 4). We note that, collectively, the common hits show a 

5.3-fold enrichment at promoters compared to distal elements (Fisher’s test, p < 2.2e-16).  

Finally, comparing the 3 MDEMs in a pairwise fashion, we observed that KS1 and KS2 

share a greater proportion of their abnormalities than either KS1 or KS2 compared to RT1 
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(Supplemental Figure 1e), and verified that this is not driven by the fact that the KS1 and KS2 

mice were compared against the same wild-type group (Methods). 

 

Shared disrupted promoters, but not distal regulatory elements, show bias towards 
increased accessibility in KS1 and KS2 

We explored the direction in which the accessibility of the disrupted peaks changes in 

mutants compared to wild-type. We found that, at promoters, both the KS1 and KS2 mutants 

exhibit a substantial shift towards increased accessibility (84.6% and 92.7%, respectively, of 

significantly disrupted promoter peaks; Figure 2g). The same shift is observed in the promoter 

peaks commonly disrupted across the MDEMs (Figure 2g), even though in the RT1 mutants the 

majority (65.4%) of differentially accessible promoter peaks show the opposite pattern, with a 

shift towards decreased accessibility (Figure 2g). In contrast to promoters, disrupted distal 

regulatory elements in all cases are split: about half show increased accessibility and half show 

decreased accessibility (Supplemental Figure 1f).  
 

Transcriptome profiling reveals many expression alterations at genes downstream of 
promoters with disrupted accessibility  

We next interrogated the transcriptome using RNA-seq (Methods) to: a) test whether the 

identified epigenetic aberrations in each disorder have direct transcriptional consequences and 

characterize the latter, and b) identify the shared expression aberrations across the three 

disorders, and assess the extent to which these result from shared accessibility aberrations at 

the associated promoters. To better understand the relationship between chromatin accessibility 

and gene expression, we generated the RNA-seq samples in parallel with the samples used for 

ATAC-seq, from a subset of the same individual mice; this allowed us to capture both chromatin 

and transcriptional status at a single time point.  

First, for each disorder, we determined the top differential promoter peaks as ranked by 

p-value, and estimated the percent of genes downstream of these promoters that show 

differential expression; we repeated this by sliding the threshold for inclusion of the top ranked 

peaks from 1000 to 5000. When considering the top 1000 promoter peaks, the percentage of 

differentially expressed downstream genes is 36.2% in KS1, 41.3% in KS2, and in 49.5% in RT1 

(Methods; 5 mice per genotype; Supplemental Table 5 contains such genes detected at the 

10% FDR level). In all three syndromes, this percentage gradually drops substantially as the 

cutoff for labeling a promoter as differentially accessible becomes less stringent (Figure 3a), 
indicating a clear relationship between abnormal promoter accessibility and downstream gene 
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expression dysregulation. Emphasizing this relationship, we discovered strong concordance 

between the direction of abnormal changes at the disrupted promoter-gene pairs: increased or 

decreased promoter accessibility correlates with increased or decreased gene expression, 

respectively (Figure 3b, c, d; Pearson correlation between promoter accessibility logFC and 

gene expression logFC = 0.67 for KS1, 0.79 for KS2, and 0.82 for RT1). 

Finally, we compared the proportion of differentially expressed genes downstream of the 

shared disrupted promoter peaks, to the same proportion for genes downstream of the top 1000 

disrupted promoter peaks unique for each disorder. We invariably found the genes downstream 

of the shared disrupted peaks to have a higher chance of dysregulated expression (Figure 3e), 
supporting our hypothesis that the chromatin alterations at these peaks are more likely to lead to 

functional effects on transcription. 

 

A substantial proportion of the shared expression aberrations among the three MDEMs 
arise without concomitant disruption of promoter accessibility 

To further dissect the relationship between the common expression and chromatin 

abnormalities in the three MDEMs, we sought to define a set of genes commonly differentially 

expressed, without utilizing prior information about the accessibility of their promoter peaks.  

Utilizing our method, we discovered high overlap between KS1 and KS2, mirroring the 

findings at the chromatin level (Figure 4a, b). Specifically, we found 372 differentially expressed 

genes shared between them with concordant direction of effect (10% FDR; Supplemental Table 
6). We then estimated 70% of these to be differential in RT1 (Figure 4c, d), resulting in 249 

genes shared across the 3 disorders, with a preponderance of downregulated genes (Figure 4e, 
f, g; Supplemental Table 7; 171 downregulated vs 78 upregulated genes). 

While these 249 genes are significantly enriched in the set of genes with shared 

disruption of promoter accessibility (p=3.06e-5), the magnitude of this enrichment is modest (24 

genes in the intersection; odds ratio = 2.79, Table 1). The number of such genes increases to 81 

when we also include those harboring commonly disrupted regulatory elements nearby (+/- 1Mb 

from their promoter peaks). Taken together, these results indicate that there is convergent 

dysregulation at the expression level in these three MDEMs, which is downstream of the shared 

differential epigenetic alterations. Further underscoring this, we found that in KS1 and RT1 – but 

not in KS2 – the top differentially expressed genes are no more likely to have disrupted 

promoters than genes further down the differential list (Figure 4h). 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 1, 2021. ; https://doi.org/10.1101/2020.11.08.373456doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.08.373456


8 
 

Integration of transcription factor motifs with chromatin and expression abnormalities 
highlights some potentially disrupted regulatory connections 
 It is well-appreciated that chromatin accessibility is intimately linked to transcription factor 

binding. Accessibility patterns are often established subsequently to recruitment of epigenetic 

regulators by transcription factors at specific genomic locations24, while other transcription 

factors can only bind their cognate motifs if these reside within pre-accessible sites25,26. We 

therefore investigated the transcription factor motifs encoded within the differentially accessible 

peaks in the three disorders, using a set of 233 non-redundant motifs (Methods). We focused 

on differentially accessible peaks within promoters of differentially expressed genes, reasoning 

that these are more likely to reveal potentially disrupted regulatory connections with functional 

relevance. In all three syndromes, however, no single motif reached significant enrichment at the 

10% FDR level when compared to other peaks. 

 Regulatory wiring disruption can occur not only because of altered motif accessibility, but 

also theoretically because of abnormal expression of the cognate transcription factors 

themselves. We thus also performed a search for motif enrichment in promoter peaks 

corresponding to differentially expressed genes, regardless of whether these peaks are 

differentially accessible or not, and then intersected the resulting motifs with our differentially 

expressed genes. The significant hits (Supplemental Table 8) included Runx1, as well as motifs 

recognized by transcription factors of the NF-kB pathway.  

 

The collective effect of individually subtle aberrations in multiple genes is likely 
responsible for perturbed IgA production and abnormal B-cell maturation 
 Our results establish the existence of widespread epigenetic and transcriptional 

aberrations that are largely shared across the three disorders, suggesting functional relevance. 

We therefore asked whether these aberrations can explain some specific aspects of the immune 

dysfunction. We first performed a pathway analysis of the shared disrupted genes (either at the 

expression or promoter accessibility level; Methods). This yielded several potentially affected 

pathways (Supplemental Tables 9 and 10). However, most of these were of general relevance 

and did not pinpoint very specific pathologies.  

 We then reasoned that we might gain more insight by focusing on two of the specific 

phenotypes seen in KS1: abnormal B-cell maturation, and IgA deficiency13,20. We set out to test 

if these are attributable to the collective dysregulation of multiple genes, or to the abnormal 

expression of a select few. To define relevant gene sets, we first obtained the set of all 

transcription factors encoded in the mouse genome that are expressed in CD19+ B cells 
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(Methods); this choice was motivated by the fact that transcription factors are critical regulators 

of cellular differentiation and maturation. We then examined the ranks of these transcription 

factors in the KS1 p-value distribution, and observed a strong shift indicative of global 

dysregulation (Figure 5a; p < 2.2e-16). For IgA deficiency, we assembled a list of 75 genes 

known to lead to IgA deficiency when individually knocked out in mouse (Methods). Examination 

of the KS1 p-value ranks of these genes also highlighted a collective shift towards lower p-

values (Figure 5b; p=0.02). Together, these results strongly suggest the collective (but often 

subtle) dysregulation of many genes. 

Turning our attention to KS2 and RT1, we observed similar results for transcription 

factors, with substantial contribution from a set of transcription factors dysregulated in all three 

MDEMs (Figure 5a, c). However, when assessing the IgA deficiency genes, we only observed 

the signal in RT1, and not in KS2 (Figure 5b, d). This was surprising, given the high phenotypic 

similarity between KS1 and KS2, and prompted us to measure serum IgA in the KS1/2 and wild-

type mice (Methods). In agreement with the collective behavior of IgA-related genes, we found 

no difference in IgA levels between the KS2 and wild-type, while we recapitulated our previous 

result of IgA deficiency in KS1 mice13 (Figure 5e; p = 0.8 for KS2 vs WT, p = 0.0008 for KS1 vs 

WT).  

Finally, we found no evidence that these collective defects in the expression of 

transcription factors and IgA-deficiency associated genes are driven by similar shifts towards 

abnormal promoter accessibility (p > 0.1 in all cases).  

 

Discussion: 
 Our study shows that three MDEMs caused by loss-of-function variants in three distinct 

epigenetic regulators, share common abnormalities at the chromatin and gene expression level. 

These abnormalities show evidence of functionality, as illustrated by the fact that: a) many 

chromatin changes at promoters are linked to downstream gene expression changes, and b) 

systematic expression changes affect genes known to contribute to specific, well-characterized 

phenotypic features (IgA deficiency, abnormal B cell maturation) seen in these MDEMs.  

In terms of understanding the pathogenesis of MDEMs, our results clearly point towards 

a generalized, systems-level dysregulation, with a multitude of cellular processes/pathways 

affected. From our present study it is unclear how exactly these combine to ultimately give rise 

to the phenotypic manifestations; elucidating this will be an important challenge going forward. It 

is also worth noting that the emergent picture bears similarities to the molecular basis of 

complex diseases, with many widely distributed, small-effect perturbations, ultimately generating 
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the phenotype27. This is perhaps not unexpected, given that epigenetic regulators are typically 

trans-acting proteins that act at many locations. It also suggests that, even though MDEMs are 

single-gene Mendelian disorders, they might best be conceptualized as effectively complex 

disorders. This may also explain the broadness of the phenotype in MDEMs28, and the 

decreased penetrance of many phenotypes in patients, that are fully penetrant in mouse models. 

It is notable that we find greater molecular overlap between KS1 and KS2 than between 

either of them and RT1, in agreement with the greater similarity between the two KS types at the 

phenotypic level. It should be mentioned, however, that specific sub-phenotypes provide 

exceptions to this rule, as evidenced by the multi-genic abnormalities in IgA deficiency genes, 

which are shared between KS1 and RT1 but are absent in KS2. Together, these results suggest 

that deep phenotyping of MDEMs combined with molecular characterization can yield new 

insights into the pattern of their shared features.   

One unexpected finding was that, at promoters, almost all of the shared disrupted peaks 

exhibit a shift towards a more open chromatin state, even though the causative mutations of all 

three disorders would theoretically be expected to push towards a more closed chromatin state, 

based on the specific histone marks they are thought to affect29. One possible explanation is that 

these shared hits represent indirect effects, arising downstream of the initial effects of the 

mutations. Alternatively, the hypothesis that loss of the epigenetic regulators disrupted in our 

three disorders would lead to closed chromatin may not hold. Finally, there is the possibility that 

the causative mutations lead to a non-specific cellular compensatory response, which causes 

increased chromatin openness at several genomic locations such as the adaptive stress 

response30. The latter is supported by the fact that many of the shared genes uncovered in this 

study are not known to be direct KMT2D, KDM6A or CREBBP target genes. Regardless of the 

exact reason, this observation warrants future exploration. 

We note that our study differs from recent studies of DNA methylation in the peripheral 

blood of MDEM patients. In these studies, the goal is to derive “episignatures” with the capacity 

for robust phenotypic prediction. While the predictive power of these episignatures is evidenced 

by their ability to provide a diagnosis31, their functional relevance is uncertain, for two main 

reasons. First, peripheral blood is a mixture of several cell types, and changes in cell-type 

composition - which often occur in disease - can severely confound the differential DNAm 

analysis32,33. Second, the great majority of these MDEMs are caused by variants in histone 

modifiers or chromatin remodelers. As a result, even if cell-type heterogeneity were to be 

ignored, these DNAm aberrations are by definition secondary events. In contrast, our strategy is 
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specifically designed to yield a catalog of abnormalities with primary functional role in common 

MDEM pathogenesis. 

 In summary, we propose the study of the Mendelian Disorders of the Epigenetic 

Machinery as a principled approach for systematically mapping causally relevant epigenetic 

variation in mammals. The shared hits among the three disorders studied here almost 

exclusively demonstrate an increase in open chromatin at promoters, which is counterintuitive to 

the function of the individual causative genes and may either suggest a previously unexpected 

role for them, or an undescribed systemic compensatory response. Finally, we suggest that 

MDEMs are effectively complex disorders, arising from widely distributed epigenetic 

perturbations across the genome. 

 

Methods: 
Mice 
We performed all mouse experiments in accordance with the National Institutes of Health Guide 

for the Care and Use of Laboratory Animals and all were approved by the Animal Care and Use 

Committee of the Johns Hopkins University. We genotyped mice using standard genotyping and 

PCR methods. For all comparisons, we used wild type littermates.  

KS1. Kmt2d+/βGeo mice are fully backcrossed to C57BL/6J and this backcrossing is verified by 

SNP genotyping17. These mice are also known as Mll2Gt(RRt024)Byg , and originally obtained from 

BayGenomics and fully backcrossed in the Bjornsson laboratory.  

Primers:  

βGeo F-CAAATGGCGATTACCGTTGA, R-TGCCCAGTCATAGCCGAATA;  

Tcrd (control) F-CAAATGTTGCTTGTCTGGTG, R-GTCAGTCGAGTGCACAGTTT 

KS2. Kdm6a+/- mice were acquired from European Mouse Mutant Archive (EMMA) but this 

model has also been called: Kdm6atm1a(EUCOMM)Wtsi. Mice were crossed with flippase expressing 

mice (B6.Cg-Tg(ACTFLPe)9205Dym/J) (Jackson Laboratories) to remove the third exon of 

Kdm6a, and then progeny were crossed with Cre expressing mice driven by CMV (B6.C-

Tg(CMV-cre)1Cgn/J) (Jackson Laboratories), to generate the Kdm6atm1d(EUCOMM)Wtsi allele. Mice 

were backcrossed on C57BL/6J to maintain the Kdm6atm1d(EUCOMM)Wtsi allele.  

Primers:  

Kdm6aTm1c F-AAGGCGCATAACGATACCAC, Floxed LR-ACTGATGGCGAGCTCAGACC; 

Tcrd (control) F-CAAATGTTGCTTGTCTGGTG, R-GTCAGTCGAGTGCACAGTTT 
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RT1. Crebbp+/- mice also known as Crebbptm1Dli, were acquired from Jackson laboratories but 

established by Kung et al16. These mice were maintained on a C57BL/6J background in the 

Bjornsson laboratory.  

Primers:  

R-T F: TAAGCAGCAGCATCCTTTGG, R-T_WT R: CCTGACAATGTGTCATGTGAT, R_T_MUT 

R: ATGCTCCAGACTGCCTTGGGA; 

 

 

Sex disaggregation 
We performed all experiments in female mice to enable comparison between all three disease 

models as KDM6A (KS2 model) is present on the X chromosome and is lethal in male mice 

when knocked out. Therefore, we are unable to present sex-disaggregated data. 

 
Blood cell isolation 
We obtained peripheral blood from 2.5-3.5 month old female mice by facial vein bleed. 150-250 

µl blood was collected in K2EDTA blood collection tubes (BD Microtainer 365974) and red blood 

cells were lysed for 7-15 minutes at room temperature in 2mL red blood cell lysis solution 

(15.5mM NH4Cl, 1mM KHCO3, 0.01mM EDTA). We diluted lysed blood with excess balanced 

salt solution (Gey’s or 1xPBS), manually removed large clots using pipet tip, and spun at 500g 

for 10 minutes 4’. Second lysis at room temperature was performed for samples with large 

amounts of remaining red blood cells then spun. We isolated CD19+ B cells by positive selection 

using CD19+ microbeads for mouse (Miltenyi 130-052-201) following manufacturer protocols, 

then counted and aliquoted samples on ice to further process for ATAC-seq and RNA-seq. 

 
ATAC-seq 
We performed ATAC-seq using a modified FastATAC protocol22,23. Specifically, we resuspended 

5k cells per reaction in 1xPBS and quickly spun to remove residual EDTA from isolation steps, 

and then resuspended in tagmentation reaction mix for 30 min (2.5uL TD1, 1X TD Buffer, 

Illumina Nextera DNA, FC-121-1030; .25uL 1% digitonin, Promega G9441; 1xPBS;) gently 

shaking (300rpm on Eppendorf thermomixer) at 37’. We purified reactions using Zymo DNA 

Clean and Concentrator-5 kit (Zymo D4013) following manufacturer protocols and eluted with 

10.5µL water to recover 10µL. Each reaction was then amplified and indexed as described22, 

total sample amplification cycles range from 6-10 cycles. After indexing and amplification, we 

purified samples using Select-A-Size purification columns (Zymo D4080) with a cutoff of 150bp 
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to remove adapter dimers to allow for efficient sequencing on patterned flow cells, checked 

library size on BioAnalyzer using DNA High Sensitivity reagents (Agilent 5067-4626) and 

determined concentration using Qubit dsDNA HS Assay Kit (ThermoFisher Q32851). We pooled 

and sequenced on Illumina HiSeq4000 using PE flow cells with 100-8-8-100 read length using 

standard manufacturer protocols. Samples were clustered to aim for 60M reads per sample 

Samples were demultiplexed using Illumina pipeline bcl2fastq2 v2.20 with all defaults except --

use-bases-mask Y100n, I8, I8, Y100n. 

 
ATAC-seq mapping and peak calling 
We mapped the ATAC-seq reads to the mm10 mouse assembly using bowtie234, with default 

parameters. We removed duplicate reads with the “MarkDuplicates” function from Picard 

(http://broadinstitute.github.io/picard/), and subsequently also removed mitochondrial reads 

using samtools35. We then created genotype-specific meta-samples, by merging all the 

individual bam files corresponding to samples from mice of a given genotype. This yielded one 

meta-sample for KS1, one for KS2, and one for RT1. For wild-type mice, we created two such 

meta-samples, one from the wild-type littermates of the KS1 and KS2 cohorts (to which the KS1 

and KS2 mutant mice were compared to), and one for the wild-type littermates of the RT1 cohort 

(to which the RT1 mutant mice were compared to). For each of the 5 resulting meta-samples, we 

then called peaks using MACS236, with the “keep-dup” parameter equal to “all”.  

 
ATAC-seq differential analysis 
We first defined the set of features to be tested as differential, by unionizing the peaks from all 

meta-samples. After excluding intervals overlapping ENCODE blacklisted regions51, we obtained 

78,193 genomic intervals (median size = 690bp, 95th percentile = 1,774, range = 151 - 11363). 

To verify that these intervals are not likely to be false positives, we compared them to publicly 

available DNase Hypersensitivity Sites in B cells (CD19+) from the ENCODE project 

(https://www.encodeproject.org/experiments/ENCSR000CMM/). We converted the DHS 

coordinates from mm9 to mm10 using liftOver. We then unionized the intervals from the two 

DHS replicates to create a common set of 112,728 DHS’s. We found that 78,101 of our 78,193 

regions (99.88%) overlapped DHS’s, providing strong orthogonal evidence that they represent 

true B cell regulatory regions.  

We then counted the number of reads from each sample that map to each of the 78,193 

features, using the featureCounts function from the Rsubread R package37, with the following 

parameters: requireBothEndsMapped = TRUE, countChimericFragments = FALSE, 
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countMultiMappingReads = FALSE, minOverlap = 3. This resulted in a count matrix with rows 

corresponding to features (the aforementioned genomic intervals), and columns to samples. This 

count matrix served as input for the differential analysis, which we performed using DESeq238, 

retaining only features with a median (across samples) count greater than 10. We used 

Surrogate Variable Analysis39 to estimate unobserved confounding variables, and adjusted for 

those in the differential analysis (without explicitly including other covariates in the model).  

To derive the list of features overlapping promoters, we first obtained promoter coordinates with 

the “promoters” function from the EnsDb.Mmusculus.v79 R package, with the parameters 

“upstream” and “downstream” both equal to 2000. We subsequently restricted to protein-coding 

transcripts, using the “tx_biotype” filter. The overlapping features were then obtained using the 

findOverlaps function from the GenomicRanges R package. 

 
RNA-seq 
We spun approximately 100k-500k cells at 300-500g for 5 min at 4’, homogenized in Trizol 

(Invitrogen 15596018) and stored at -80 until extraction. We extracted and isolated RNA by 

phase separation using standard protocols followed by purification using the Direct-zol RNA 

microprep kit (Zymo R2060) with an on-column DNAse step per manufacturer directions. Once 

purified, we quantified RNA using Quant-iT RiboGreen RNA Assay Kit  (ThermoFisher R11490) 

or Qubit RNA HS Assay Kit (ThermoFisher Q32852), and checked quality by Bioanalyzer with 

RNA 6000 Pico Kit (Agilent 5067-1513). All samples show high quality RNA with RIN greater 

than 9. We used 20ng RNA per KS1 & KS2 & matched wild-type sample and 100ng per RT & 

matched wild-type sample as input to capture mRNA (NEBNext Poly(A) mRNA Magnetic 

Isolation Module; NEB #E7490) followed by library generation using NEBNext Ultra II Directional 

RNA Library Prep Kit for Illumina (NEB E7760/E7765) per manufacturer protocols. We 

determined library size and quality using BioAnalyzer with DNA High Sensitivity reagents 

(Agilent 5067-4626), and determined concentration using Qubit dsDNA HS Assay Kit 

(ThermoFisher Q32851) and KAPA Library Quantification Kit for qPCR (KAPA KK4824). We 

pooled samples and sequenced on Illumina HiSeq4000 using PE flow cells with 100-8-8-100 

read length using standard manufacturer protocols. Samples were clustered to aim for 60M 

reads per sample. Samples were demultiplexed using Illumina pipeline bcl2fastq2 v2.20. 

 

RNA-seq mapping and differential analysis 

We first obtained a fasta file (Mus_musculus.GRCm38.cdna.all.fa.gz) 
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containing all mouse cDNA sequences from Ensembl 

(http://uswest.ensembl.org/Mus_musculus/Info/Index, version 91, downloaded January 2018). 

We used this file to build an index and pseudo-map the RNA-seq reads with Salmon (v0.10)40. 

We subsequently imported the resulting transcript quantifications into R to get gene-level counts, 

using the tximport R package41. The differential analysis was then performed with DESeq2, 

following the same steps as with ATAC-seq. 

 

Principal Component Analysis 
All PCA plots were generated as follows. We first applied a variance stabilizing transformation to 

the count matrices (either genes-by-samples or genomic-intervals-by-samples), as implemented 

in the vst function from DESeq2. We then used the resulting matrix to perform the PCA with the 

plotPCA function.  

 

Testing for statistically significant overlap between two lists of differential features and 
identifying the common hits 
Our problem is cast in the following setting. Assume we have performed two experiments, each 

of which involves measuring multiple features (e.g. genes or peaks) in two conditions and 

performing a differential analysis. The two experiments measure the same set of features. 

Because the two experiments investigate different biological systems, we don’t expect the set of 

(true) differential features to be identical. But we are interested in the extent of the overlap 

between the two sets of features, specifically 

a) Is there statistically significant overlap between the two sets of differential features and 

how big is it? 

b) Which features are differential in both lists? 
Our approach to these questions is a conditional approach: we ask, does information about the 

result in experiment 1 affect our interpretation of experiment 2?  

 

We first (arbitrarily) designate one of the two experiments as experiment 1. We test 𝑚 features, 

and for each feature 𝑖, we let 𝑋! be a factor with values in {0,1} expressing whether the feature 

was significantly differential in experiment 1 (𝑋! = 1), or not (𝑋! = 0). We are interested in 

whether the variable 𝑋 = (𝑋", … , 𝑋#) is an informative covariate for experiment 2, using 

terminology from recent work in covariate-powered multiple hypothesis testing42,43. 
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We now consider experiment 2. We split the features into two groups, conditional on the results 

in experiment 1. Group 1 consists of the features which were found to be differential in 

experiment 1 (the size of group 1 is 𝑛)  and group 0 consists of the features which were not 

differential in experiment 1 (of which we have 𝑚− 𝑛). We let each group have its own proportion 

of differential features, that is we introduce parameters 𝜋" | & and 𝜋" | ". Let 𝑌! be the indicator 

whether the 𝑖'th feature is differential in experiment 2 or not. Then 

𝑃(𝑌! = 1) = 𝑃(𝑌! = 1	|	𝑋! = 0)𝑃(𝑋! = 0) + 𝑃(𝑌! = 1	|	𝑋! = 1)𝑃(𝑋! = 1)	
= 𝜋"	|	&𝑃(𝑋! = 0) + 𝜋"	|	"𝑃(𝑋! = 1)	

Our null hypothesis is that experiment 1 is not informative about experiment 2, or in other words 

𝐻&: 𝜋"	|	& =	𝜋"|	" 	
Under this null hypothesis 𝑃(𝑌! = 1) = 𝜋"	|	". Furthermore, 𝜋" | " should have the same 

distribution as the proportion of significant features in a random sample of 𝑛 features from 

experiment 2, which we term 𝜋"
()). 

This gives us the following method for testing 𝐻&: 

1. Analyze experiment 1 and decide which features are significantly differential or not. 

2. Analyze experiment 2, but only the features which were called differential in experiment 1 

to estimate 𝜋7" | ". 

3. Repeatedly, draw 𝑛 features and estimate 𝜋7"
()) to get a null distribution. 

In practice we can estimate 𝜋7" | " and 𝜋7"
())	using a number of different methods that produce 

estimates of the proportion of true null hypotheses (and thus, of the proportion of false null 

hypotheses, our statistic of interest here) among a set of hypotheses tested. We here used 

Storey's method as implemented in the qvalue package in R44,45, with the “pi0.method” 

parameter set to "bootstrap". This tells us the size of the overlap and the extent to which it is 

significantly greater than what expected by chance. To estimate which features are in the 

overlap, we use the "qvalue" function on the features which are significant in the analysis of 

experiment 1, with the FDR level set to 10%. 

 

Pairwise comparisons between the disorders 
We identified greater overlap between the differentially accessible regions identified in KS1 and 

KS2, than between the differentially accessible regions identified in either of KS1 or KS2 and 

RT1. To verify that this is not driven by the fact that KS1 and KS2 were compared against the 

same wild-type group, we re-estimated the overlap, after first conducting differential analyses 

where KS1 and KS2 mice were compared to separate wild-type cohorts (8 wild-type mice for the 

KS1 cohort, and 4 mice for the KS2 cohort, respectively). This again revealed the same picture: 
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69.5% of differentially accessible regions in KS1 were estimated to be differential in KS2 as well, 

whereas only 22.8% of differentially accessible regions in RT1 were estimated as differential in 

KS2. 

 
Identification of differentially expressed genes with differentially accessible promoter 
peaks 
For Figure 3b, we first selected the genes downstream of the top 1000 differentially accessible 

promoter peaks, the latter being ranked based on their p-values in each disorder. Out of these 

genes, we retained those differentially expressed using the “qvalue” function from the qvalue R 

package, with the gene p-values as input and the “fdr.level” parameter set to 0.1. In cases where 

there were more than one peaks in the same promoter, we calculated the median logFC across 

these peaks. For Figure 3a, we slid the threshold for the top differentially accessible promoter 

peaks in each disorder from 1000 to 5000, and estimated the proportion of differentially 

expressed downstream genes used the “pi0est” function from the qvalue R package with the 

“pi0.method” parameter set to “bootstrap”.  

Finally, for Figure 4h we employed the analogous procedure to Figure 3a in order to estimate 

the proportion of differentially accessible peaks in promoters of differentially expressed genes for 

different thresholds.  

 

Reactome pathway analysis 
We used the goseq R package46 to perform pathway analyses for the commonly disrupted 

genes, based on Reactome pathways47. As our assayed gene set, we used the set of all genes 

included in all three differential expression analyses, or the set of all genes that had at least one 

promoter peak included in all three differential accessibility analysis. As our differential gene set, 

we used the set of genes commonly differentially expressed across the three MDEMs, or the set 

of genes with at least one commonly differentially accessible promoter peak. The top 20 

enriched pathways are provided in Supplemental Tables 9 and 10, respectively.  

 
Transcription Factor motifs 
We obtained a bed file (mm10.archetype_motifs.v1.0.bed) containing the genomic positions of 

233 non-redundant TF motifs, from https://www.vierstra.org/resources/motif_clustering48. We 

then restricted to motifs that had at least 1 base overlapping our set of unionized B cell peaks 

(see sections ATAC-seq mapping and peak calling and ATAC-seq differential analysis). 
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Subsequently, we tested each motif for enrichment as described in the results section using the 

fisher.test function in R. 
 

Gene catalogs 
Transcription Factors: 

We obtained a list of 1,254 genes encoding for human TFs from Barrera et al., 2016.49 We the 

used the biomaRt R package to obtain the mouse orthologs of these TF genes, with the 

ENSEMBL ids as our filter. We only retained high-confidence orthologs 

(“mmusculus_homolog_orthology_confidence” equal to 1). Finally, we restricted to TFs included 

in all three differential analyses (KS1 vs WT, KS2 vs WT, and RT1 vs WT). 

IgA deficiency genes: 
We used the Mammalian Phenotype Browser on the Mouse Genome Informatics database50 to 

obtain a catalog of genes known to lead to IgA deficiency when individually knocked-out. 

Specifically, we used “decreased IgA level” as the phenotype term and then obtained all the 

resulting genes, regardless of the genetic background. In cases of double knockouts, we 

included both genes. 

 

ELISA for serum IgA levels 
We performed ELISAs on serum IgA from peripheral blood samples as previously described13. 

 

Code availability 
All code for the analyses in this manuscript is available at 

https://github.com/hansenlab/mdem_overlap 

 

Data availability 
The ATAC- and RNA-seq data generated for this study are available in GEO (accession 

GSE162181). 
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Figure 1. The theoretical framework for the present study.  
a) The causal chain of MDEM pathogenesis: the genetic disruption of an epigenetic regulator 
leads to epigenetic and transcriptomic consequences, which ultimately determine the phenotype.  
b) We hypothesize that the shared phenotypic features between MDEMs occur because of 
shared epigenetic and transcriptomic abnormalities downstream of the genetic disruption of 
distinct genes. The Venn diagram depicts two MDEMs for convenience, but our approach can be 
applied to an arbitrary number of MDEMs with shared phenotypes. 
c) Our approach is designed to derive a list of abnormalities with high probability of causal 
relevance, by jointly comparing multiple MDEMs. Shown for two MDEMs for convenience. 
d) Experimental design and workflow for sample generation in our present study. Created with 
BioRender.com 
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Figure 2. Evaluating the overlap between the differentially accessible promoter peaks in B 
cells in Kabuki type 1, Kabuki type 2, and Rubinstein-Taybi syndromes. 
a) The distribution of p-values from the KS2 vs wild-type differential accessibility analysis for 
promoter peaks, stratified according to whether the same promoter peaks are significantly 
differentially accessible in the KS1 vs wild-type analysis (FDR < 0.1; red curve), or not (FDR >= 
0.1; blue curve).  
b) Scatterplot of log2(fold changes) from the KS1 vs wild-type (x-axis) promoter peak differential 
accessibility analysis against the corresponding log2(fold changes) from the KS2 vs wild-type 
analysis (y-axis). Each point corresponds to a peak. Shown are only peaks that are differentially 
accessible in KS1 (FDR < 0.1).  
c) The distribution of p-values from the RT1 vs wild-type differential accessibility analysis for 
promoter peaks, stratified according to whether the same promoter peaks are commonly 
differentially accessible in KS1 and KS2 (FDR < 0.1, see Methods; red curve), or not (blue 
curve). 
d) Scatterplot of log2(fold changes) from the RT1 vs WT (x-axis) differential accessibility 
analysis, against the mean log2(fold change) from the KS1 vs wild-type and KS2 vs wild-type 
analyses. Each point corresponds to a peak. Shown are only peaks that are commonly 
differentially accessible in KS1 and KS2 (FDR < 0.1). 
e) and f) Principal component analysis plots using only the 313 promoter peaks identified as 
commonly differentially accessible between the three MDEMs. Each point corresponds to a 
mouse. 
g) The proportion of differentially accessible promoter peaks that show increased accessibility in 
the mutants vs the wild-type mice. 
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Figure 3. The relationship between differential accessibility of promoter peaks and 
differential expression of downstream genes in the three MDEMs. 
a) The proportion of promoters with differentially expressed downstream genes in KS1, KS2, and 
RT, estimated for the top ranked differentially accessible promoter peaks. The estimation was 
repeated for different thresholds for inclusion into the top ranked list. For each MDEM, each 
point corresponds to a different threshold. Thresholds were slid from 1000 to 5000, in steps of 
250. 
b) Scatterplot of the accessibility log2(fold changes) of differentially accessible promoter peaks, 
against the expression log2(fold changes) of differentially expressed downstream genes, for 
each of the three MDEMs. Shown are only pairs where the promoter peak was within the top 
1000 differentially accessible promoter peaks (ranked based on p-value), and the downstream 
gene was differentially expressed (10% FDR; methods). Each point corresponds to a gene-
promoter pair. In cases where more than 1 peak in the same promoter was within the top 1000 
differentially accessible peaks, the median(log2(fold change)) across all such peaks was 
calculated. 
c) and d) An example locus (Pard3b) with concordant changes in promoter peak accessibility 
and downstream gene expression in all three MDEMs. 
e) The proportion of promoters with differentially expressed downstream genes in KS1, KS2, and 
RT1, estimated separately for the top 1000 uniquely differentially accessible promoters in each 
MDEM, versus the same proportion estimated for the genes downstream of the 313 commonly 
differentially accessible promoter peaks. 
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Figure 4. Evaluating the overlap between the differentially expressed genes in B cells in 
Kabuki type 1, Kabuki type 2, and Rubinstein-Taybi syndromes.  
a) The distribution of p-values from the KS2 vs wild-type differential expression analysis, 
stratified according to whether the same genes are significantly differentially expressed in KS1 
(FDR < 0.1; red curve), or not (FDR >= 0.1; blue curve). 
b) Scatterplot of log2(fold changes) from the KS1 vs wild-type differential expression analysis (x-
axis), against the corresponding log2(fold changes) from the KS2 vs wild-type analysis (y-axis). 
Each point corresponds to a gene. Shown are only genes that are differentially expressed in 
KS1 (FDR < 0.1).  
c) The distribution of p-values from the RT1 vs wild-type differential expression analysis, 
stratified according to whether the same genes are commonly differentially expressed in KS1 
and KS2 (FDR < 0.1, see Methods; red curve), or not (blue curve). 
d) Scatterplot of log2(fold changes) from the RT1 vs WT (x-axis) differential expression analysis, 
against the mean log2(fold change) from the KS1 vs wild-type and KS2 vs wild-type analyses. 
Each point corresponds to a gene. Shown are only genes that are commonly differentially 
expressed in KS1 and KS2 (FDR < 0.1). 
e) and f) Principal component analysis plots using only the 249 genes identified as commonly 
differentially expressed between the three MDEMs. Each point corresponds to a mouse. 
g) The proportion of differentially expressed genes that show increased expression in the mutant 
vs the wild-type mice. 
h) The proportion of genes with differentially accessible promoter peaks in KS1, KS2, and RT, 
estimated for the top ranked differentially expressed genes. The estimation was repeated for 
different thresholds for inclusion into the top ranked list. For each MDEM, each point 
corresponds to a different threshold. Thresholds were varied from 1000 to 5000, in steps of 250. 
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Figure 5. Evaluating genes known to encode for transcription factors, or individually 
contribute to IgA deficiency, for collective expression dysregulation. 
a) The Wilcoxon rank-sum test statistic (red vertical line) computed after assembling a list of 
genes encoding transcription factors expressed in B cells (Methods), and comparing the 
distribution of their differential expression p-values to the p-value distribution of the rest of the 
genes included in the differential expression analysis. The blue distribution corresponds to the 
same statistic computed after randomly sampling gene sets of the same size as transcription 
factors, and comparing their p-value distribution to the p-values for the rest of the genes. The 
resampling was performed 10,000 times. 
b) Same as a), but for genes known to individually contribute to IgA deficiency (Methods). 
c) The percentage of TF genes that belong to the top 25% differentially expressed TFs in KS1 
(orange dots), and KS2 (green dots), stratified according to their p-value quartile in RT. 
d) Same as c), but for IgA deficiency genes compared in KS1 and RT. 
e) Serum IgA levels in KS1, KS2 and wild-type mice. 
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Supplemental Figures 
 

 
 

 
 
Supplemental Figure 1. Evaluating the overlap between the differentially accessible distal 
regulatory elements in B cells in Kabuki type 1, Kabuki type 2, and Rubinstein-Taybi 
syndromes. 
a) The distribution of p-values from the KS2 vs wild-type differential accessibility analysis for 
peaks at distal regulatory elements (defined as peaks not within +/- 2kb from the TSS), stratified 
according to whether the same elements are significantly differentially accessible in KS1 (FDR < 
0.1; red curve), or not (FDR >= 0.1; blue curve).  
b) Scatterplot of log2(fold changes) from the KS1 vs wild-type (x-axis) distal regulatory element 
differential accessibility analysis against the corresponding log2(fold changes) from the KS2 vs 
wild-type analysis (y-axis). Each point corresponds to a peak. Shown are only peaks that are 
differentially accessible in KS1 (FDR < 0.1).  
c) The distribution of p-values from the RT1 vs wild-type differential accessibility analysis for 
distal regulatory element peaks, stratified according to whether the same peaks are commonly 
differentially accessible in KS1 and KS2 (FDR < 0.1, see Methods; red curve), or not (blue 
curve). 
d) Scatterplot of log2(fold changes) from the RT1 vs wild-type (x-axis) differential accessibility 
analysis, against the mean log2(fold change) from the KS1 vs wild-type and KS2 vs wild-type 
analyses. Each point corresponds to a peak. Shown are only peaks that are commonly 
differentially accessible in KS1 and KS2 (FDR < 0.1). 
e) The pairwise overlap between the differentially accessible peaks (promoters or distal 
regulatory elements) in the three MDEMs. 
f) The proportion of differentially accessible distal regulatory elements that show increased 
accessibility in the mutant vs the wild-type mice. 
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Supplemental Tables 
 
We provide the following Supplemental Tables: 

 
1. Coordinates of promoter peaks commonly differentially accessible in KS1 and KS2, along 

with the corresponding logFC changes. 
2. Coordinates of promoter peaks commonly differentially accessible in KS1, KS2, and RT1, 

along with the corresponding logFC changes. 
3. Coordinates of distal regulatory element peaks commonly differentially accessible in KS1 

and KS2, along with the corresponding logFC changes. 
4. Coordinates of distal regulatory element peaks commonly differentially accessible in 

KS1, KS2, and RT1, along with the corresponding logFC changes. 
5. Differentially expressed genes downstream of differentially accessible promoter peaks, 

along with the corresponding p-values and logFC changes. 
6. Genes commonly differentially expressed in KS1 and KS2, along with the corresponding 

logFC changes. 
7. Genes commonly differentially expressed in KS1, KS2, and RT1, along with the 

corresponding logFC changes. 
8. Transcription factor motifs enriched in peaks found in promoters of differentially 

expressed genes. 
9. Top 20 Reactome enriched pathways, using genes commonly differentially expressed in 

KS1, KS2, and RT1. 
10. Top 20 Reactome enriched pathways, using genes with commonly differentially 

accessible promoters in KS1, KS2, and RT1. 
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