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Abstract 
 
The success of intervention projects in ecological systems depends not only on the 
quality of management technologies, but also patterns of adoption among land 
managers.  Impact network analysis (INA) is a new framework for evaluating the 
likely success of regional interventions before, during, and after projects, for project 
implementers, policy makers, and funders.  INA integrates across three key system 
components in a multilayer network analysis: (a) the quality of a management 
technology and the quality of research supporting it, (b) the socioeconomic networks 
through which managers learn about management technologies and decide whether 
to use them, and (c) the linked biophysical network for target species success or 
failure in the management landscape that results from managers’ decisions.   

The specific objectives of this paper are (1) to introduce the INA framework and 
INA R package, (2) to illustrate identification of key nodes for smart surveillance, for 
networks where the likelihood of invasive species entry into the biophysical network 
at a given node may be based on information available to the corresponding node in 
the socioeconomic network, (3) to illustrate application of the INA framework for 
evaluating the likely degree of success of a project in intervention ecology, before, 
during and after an intervention, and (4) to illustrate the use of INA for evaluating 
adaptation strategies under global change scenarios with pulse and press stressors, 
introducing ‘adaptation functions’ for sustainability and resilience.   

Examples of use of the INA package show one of the key outcomes of analyses: 
identifying when systems may be non-responsive to the system components that are 
readily changed through management decisions, to explore what additional 
adaptations may be necessary for intervention success. 

The broader goal for the development of impact network analysis and the INA 
package is to provide a common framework that integrates across intervention 
ecology, to enhance opportunities for lessons learned across systems and scientific 
disciplines, to support the development of a community of practice, and to create a 
general platform for analysis of sustainability, resilience, and economic viability in 
intervention ecology applications. 
 
KEYWORDS agroecology, disease ecology, decision support, endangered species, 
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INTRODUCTION 
 
Interventions in ecological systems can fail when 
project implementers do not understand which system 
components are limiting factors.  The success of 
interventions depends on how effective the 
management methodologies are, whether a critical 
mass of decision makers adopts the necessary types 
of management, and the resulting efficacy of the 
management landscape.  This is a common challenge 
for management intervention projects across applied 
ecology – including invasive and endangered species 
management, restoration, agricultural development, 
and public health programs, illustrated prominently by 
the COVID-19 pandemic – with opportunities for 
synergies in developing concepts across 
subdisciplines (Ostrom 2009; Chadès et al. 2011; 
Hobbs et al. 2011; Carvajal-Yepes et al. 2019; 
Lenzner et al. 2019; Hulme et al. 2020).   Invasive 
species are key threats to ecological systems, while 
connectivity of reserves is often key to endangered 
species conservation (Hilty, Lidicker Jr & Merenlender 
2012).  Sustainable agricultural development often 
depends on technologies for managing the spread of 
pathogens and arthropod pests, and for supporting 
the spread of improved crop genotypes (Henry & 
Vollan 2014).  Public health is supported by 
technologies for communicating about and using 
methods such as vaccination to slow the spread of 
disease (Manfredi & d'Onofrio 2013), and more 
broadly the One Health approach.  Understanding 
how to optimize the benefits of research and data 
collection for each of these types of systems requires 
integration across three system components: (a) the 
type and quality of management technologies and the 
research underlying them, (b) socioeconomic 
networks that determine communication and influence 
about management technology use, such as networks 
of land managers or farmers, and (c) biophysical 
networks where decisions about use of technologies 
influence ecological outcomes, such as networks of 
pathogen invasion or networks of endangered species 
dispersal.  Here, “impact networks” are defined as 
multilayer networks, composed of linked 
socioeconomic and biophysical networks, through 
which management may have a regional effect.  This 
paper introduces a framework for scenario analysis 
(Garrett et al. 2018), “impact network analysis” (INA; 
Figure 1), and an R package that implements 
common scenarios for intervention ecology in which 
an impact network analysis can provide decision 
support for formulating project strategies. 

     The first component in this framework is an 
intervention technology, which might be, for example, 
biocontrol agents, biocides, burning regimens, models 
indicating the best timing of management activities, or 
some combination of such technologies.  These 
intervention technologies are all the products of 
scientific research, and can be thought of in terms of 
the information resulting from scientific experiments, 
with an associated uncertainty (Klerkx, Aarts & 
Leeuwis 2010).  The ‘value of information’ – the 
improvement in outcomes when decision makers take 
into account information, versus not having the 
information – is a useful concept for regional 
management strategies.  Analyses of the ‘value of 
information’ have been incorporated in, for example, 
medical decision making at multiple scales (Bartell et 
al. 2000; Tappenden et al. 2004; Claxton & Sculpher 
2006), management of species (Wiles 2004; Tallis & 
Polasky 2011; Canessa et al. 2015), and adaptive 
resource management (Williams, Eaton & Breininger 
2011).  As the reproducibility of science is critically 
evaluated in multiple disciplines, the quality of 
information is a focus (Ioannidis 2005; Kenett & 
Shmueli 2014; Leek & Peng 2015).  And even if 
information and technologies are of very high quality, 
their influence on system-level outcomes will be 
minimal if decision-makers are unaware of them or 
are not persuaded that they are a good investment of 
resources.  Impact network analysis (INA) can be 
thought of as an evaluation of the realized regional 
value of information (including technologies broadly) 
in landscapes. 
     The second component is the socioeconomic 
network, where nodes are key decision makers such 
as farmers, other land or water resource managers, or 
individuals managing their families’ health (Rebaudo 
& Dangles 2011; Rebaudo & Dangles 2013; Burgess 
et al. 2020) – and potentially also include other agents 
such as scientists (Ekboir 2003), extension agents, 
policy makers, consumers, and related institutions.  
Links between nodes may indicate the spread of 
ideas, influence, and/or money.  Individual decision-
making about whether to adopt new technologies 
plays out in the context of the information available 
through individuals’ networks (Rogers 2003; Garrett 
2012).  Agricultural management is often limited by 
lack of information (Parsa et al. 2014), and in general 
heuristics for decision-making may or may not be well-
developed (Ascough et al. 2008; Gigerenzer & 
Gaissmaier 2011).  The effects of decision-making by 
agents in the socioeconomic network, with or without 
full information about options, creates a management 
landscape that influences the success or failure of 
species in the biophysical network. 
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Figure 1 Impact network analysis is a framework for the analysis of how management technologies influence 
regional outcomes for management of a species or biotype (‘bioentity’) for decision support. Regional 
outcomes are also a function of whether decision makers are influenced to adopt management by their 
socioeconomic networks, and the effects of these decisions on the management landscape and its ability to 
effectively manage the bioentity. Nodes in the socioeconomic network are individual decision makers (such as 
land managers), with links in this network indicating communication and influence regarding the management 
technology. Some decision makers manage land nodes in the biophysical network (such as farms), indicated 
by a dotted line between network layers. The management technology is or is not applied at a land node, 
depending on the corresponding manager’s decision, and links in the biophysical network represent the 
potential for bioentity spread. The cumulative effects of the managers’ decisions create a bioentity 
management landscape, and the effectiveness of this landscape determines regional outcomes.  (Figure 
adapted from Garrett et al. (2018) with permission from Annual Reviews.) 
 
     In the biophysical network, the third component, 
nodes indicate the entities or geographical locations 
where success or failure occurs (Calabrese & Fagan 
2004; Galpern, Manseau & Fall 2011).  Nodes might 
be groups of people (as hosts to human pathogens), 
farms, habitat patches, or other land management 
units.  Links between nodes indicate the potential for 
the spread of undesirable species or genotypes, such 
as antibiotic resistant human or agricultural pathogens 
(Margosian et al. 2009; Epanchin-Niell et al. 2010; 
Sutrave et al. 2012; Xing et al. 2020), or of desirable 
species or genotypes, such as endangered species or 
improved crop varieties (such as orange-fleshed 
sweetpotatoes to support Vitamin A consumption, 
e.g., evaluated in Andersen et al. (2019)).  In some 
cases, the same type of biophysical network model 
may usefully be applied to related abiotic processes, 
such as the spread of pollutants, soil erosion, and 
provisioning of fresh water (Baron et al. 2002).  Nodes 
in the biophysical network are linked to the 

corresponding decision-makers in the socioeconomic 
network layer, such that the probability of successful 
management at a biophysical node is modified by the 
corresponding decisions about management.  
Successful management also depends on the quality 
of information and other technologies that may be 
applied at a given biophysical node. 
     Combining these three components provides a 
systems perspective for decision support in scenario 
analyses to evaluate potential outcomes from 
research investments – before, during, or after 
projects begin.  INA can also be used to evaluate the 
likely degree of success of adaptation strategies to 
pulse (intermittent) or press (continual) system 
stressors, such as the introduction of a new pathogen 
or climate change (Harris et al. 2018), to evaluate 
system sustainability, resilience, or economic viability.  
Some of these system components have been 
considered together more-or-less explicitly in disease 
ecology (Funk et al. 2009; Harwood et al. 2009; Funk, 
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Salathe & Jansen 2010; Garrett 2012; Sahneh, 
Chowdhury & Scoglio 2012; Manfredi & d'Onofrio 
2013) and natural resource management (Epanchin-
Niell & Hastings 2010; Bodin & Prell 2011; Mills et al. 
2011; Rebaudo & Dangles 2011; Hernandez Nopsa et 
al. 2015).  Combining the components in an agent-
based model also provides a new perspective on the 
science of science policy (Fealing et al. 2011) by 
directly evaluating interactions among agents 
engaged in developing scientific results and in 
implementing the new results. 
     The overall goal for the development of impact 
network analysis is to provide a common framework 
that integrates across intervention ecology, to 
enhance opportunities for lessons learned across 
systems and scientific disciplines, to support the 
development of a community of practice, and to create 
a general platform for analysis of sustainability, 
resilience, and economic viability in these types of 
intervention ecology applications. Integrating network 
analyses, as compared to more aggregated models, 
allows consideration of the role of geographic and 
social structures in the likelihood of success of 
technological innovations. INA is designed to provide 
decision support to implementers, funders, and policy 
makers about the prioritizations they must consider, 
as a complement to traditional approaches to 
monitoring and evaluation.   
     The specific objectives of this paper are (1) to 
introduce the INA framework and INA R package, (2) 
to illustrate identification of key nodes for smart 
surveillance, for networks where the likelihood of 
invasive species entry into the biophysical network at 
a given node may be based on information available 
to the corresponding node in the socioeconomic 
network, (3) to illustrate application of the INA 
framework for evaluating the likely degree of success 
of a project in intervention ecology, before, during and 
after an intervention, and (4) to illustrate the use of 
INA for evaluating adaptation strategies under global 
change scenarios with pulse and press stressors, 
introducing adaptation functions for sustainability and 
resilience.  These experiments illustrate how INA can 
be used for analysis of hypothetical systems, 
observed systems, or a blend of hypothetical and 
observed.  Data limitations will always be a challenge 
for scenario analyses, but uncertainty quantification 
methods, as illustrated here, can inform decisions 
about investments in interventions.  Because of the 
complexity of most ecological systems, scenario 
analysis platforms like INA are needed for evaluating 
the likelihood of intervention success before, during, 
and after implementation.     
 

METHODS 
 
Many applications of impact network analysis would 
include a combination of observed data along with 
simulated data that (a) represents scenarios being 
considered or (b) is part of an uncertainty 
quantification for parameters that are difficult to 
estimate.  Three simulation experiments are 
presented here to illustrate use of impact network 
analysis for both purposes.  The first is simpler, 
drawing on information about a biophysical network 
structure describing potential spread of an invasive 
species, where the socioeconomic network structure 
is implicit through weighting options for where the 
invasive species is likely to enter the biophysical 
network.  This illustrates use of the smartsurv function 
in the INA R package.  The other two experiments use 
the INAscene function and illustrate scenario 
analyses for linked socioeconomic and biophysical 
networks in an agent-based model of regional 
management of the spread of a ‘bioentity’ (a desirable 
bioentity, such as an endangered species or improved 
crop cultivar, or an undesirable bioentity, such as 
pathogens and other invasive species).  More details 
about using the INA R package are available in the 
user guide (S1). 
2.1 Experiment 1. Identifying key sampling 
locations for smart surveillance 
Surveillance strategies can be informed by knowledge 
about the structure of the biophysical network of 
invasive spread.  In the case of disease risk in 
networks for crop seed dispersal, nodes that function 
as hubs (high node degree) and bridges (high 
betweenness) in the biophysical network will tend to 
be important for sampling (Andersen et al. 2019), and 
as networks become more complex other node and 
network traits may become important (Holme 2017; 
Holme 2018).  The relative risk of nodes being the first 
point of introduction of a pathogen in a network may 
also be a function of their role in communication 
networks, and communication status may be useful to 
include as a risk factor even when the structure of the 
communication network is not fully understood 
(Buddenhagen et al. 2017). 
     The smartsurv function in the INA package in R 
can be used to evaluate the importance of each node 
for sampling to detect spread of an invasive (Table 1).  
This function evaluates the invasion network to find, 
for each node considered as a sampling node in turn, 
how many other nodes remain free from the invasive 
by the time it is detected at the sampling node.  The 
more nodes that remain uninvaded at the time of 
detection, the more effective the sampling node is for 
identifying invasive spread while there is still time to  
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Table 1 Questions in simulation experiments evaluating locations to prioritize for sampling in a smart 
surveillance strategy, using INA function smartsurv.   
 
Experiment Component Question 
1A Explicit 

biophysical 
network 

What locations selected for sampling are likely to allow detection of an 
invasive bioentity before many other locations are invaded? 

1B Added implicit 
socioeconomic 
network 

How is the selection of sampling locations likely to change if the probability 
the invasive bioentity enters the region at each location is determined by 
socioeconomic traits of locations? 

 
to manage it.  Sample nodes are evaluated 
considering each node as a potential introduction 
node.  The smartsurv.weight function uses the output 
from smartsurv to evaluate the value of sampling at 
each node if the probability that the invasive is 
introduced the network can vary from one potential 
introduction node to another.  In practice, users of the 
smartsurv function would often want to provide their 
own estimate of the network structure for their system.  
In this illustration, the differences among three 
commonly studied types of networks are evaluated.    
Key nodes for sampling are identified for a set of 
biophysical network types, with details shown in a 
vignette (S2).  The importance of nodes for sampling 
is evaluated in Experiment 1 for nine simple 
scenarios, representing each combination of three 
types of networks and three types of weighting.  The 
three types of networks are random (Erdős & Rényi 
1960), small world (Watts & Strogatz 1998), and 
scale-free (Barabasi & Albert 1999).  The three types 
of weighting are unweighted, weights proportional to 
node degree, and weights inversely proportional to 
node degree. 
2.2 Experiment 2. Evaluating the likelihood of 
management success in a region, including 
uncertainty quantification 
In Experiments 2 and 3, the INA package function 
INAscene was used to perform scenario analyses in 

simulations in the R programming environment, using 
the igraph package (Csárdi & Nepusz 2006) for 
generating network figures.  Details about the agent-
based model used in INAscene are in S3 and a 
vignette showing how the component functions of 
INAscene work is in S4. 
     First, consider a luxurious case for scenario 
analysis where there is a lot of high-confidence 
information available about the system in which a 
management technology is being promoted for 
bioentity management, illustrated in a vignette (S5).  
The impact network analysis evaluates the outcomes 
by which success of an intervention project will be 
judged, such as share of region invaded, health, 
productivity, and profit.  In experiment 2A (Table 2), 
the analysis is performed at the planning stage of a 
project, to determine the probability distribution of 
outcomes from the project. 
     In experiment 2B, project planners ask how the 
results are likely to change if the management effect 
size can be increased, so outcomes are evaluated for 
the range of possible values of the mean 
management effect size.  This analysis is also 
illustrated for cases where the socioeconomic 
networks are based on the same common network 
types as in experiment 1, with the addition of a ring 
network for contrast.   

  
Table 2 Example types of simulation experiments using impact network analysis (INA) to evaluate the likely 
outcomes of general intervention projects for managing a bioentity, using the function INAscene.  The 
outcomes might be defined in terms of factors such as spread of an invasive species, health indicators, 
agricultural productivity, or the success of agricultural livelihoods. 
 
Experiment Timing Question 
2A Before 

intervention 
What is the likely probability distribution of project outcomes?   Over time? 

2B Before 
intervention 

How is the outcome likely to change if the management effect size can be 
increased? 

2C During 
intervention 

If outcomes are lower than desired, what investments to increase adoption 
rates would likely be necessary to compensate? 

2D After 
intervention 

If adoption rates decline after the project, what are the likely effects on the 
outcome over time? 
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     In experiment 2C, during monitoring and 
evaluation of the project, suppose that the 
observations are consistent with the initial 
conceptualization of the project, but the project is 
performing at the low end of the initial frequency 
distribution of likely outcomes.  If efforts are increased 
to enhance the probability of technology adoption, 
perhaps through subsidies or policies to increase 
uptake, what increase in adoption rates would be 
necessary to keep progress in the system on track? 
     In experiment 2D, at the conclusion of the project, 
the success of the project is evaluated in terms of the 
current status of the bioentity, and also evaluated in 
terms of how long the benefits of the project last for 
successful regional management. If adoption rates 
decline without project inputs (such as subsidies or 
educational campaigns), what happens over time? 
Can management effects make up for reductions in 
management adoption? In this example, the mean 
management effect size and the mean probability of 
adoption are varied together across their potential 
ranges. 
Uncertainty quantification.  Suppose there is less 
information available about a system.  Uncertainty 
quantification can clarify the level of confidence in 
outcomes.  For this case study, analyses show how 
system outcomes vary as a key parameter varies.  
Uncertainty quantification and evaluation of the 
outcomes for changes to the system may be 
evaluated similarly, with uncertainty quantification 
most relevant to components of the system for which 
it is difficult to collect data.  For this case study, a 
parameter is varied in the inverse power law model 

used to describe the likelihood of movement as a 
function of distance. 
2.3 Experiment 3. Adaptation to global change 
scenarios, including a science of science 
perspective 
This experiment illustrates an analysis of how to 
modify system components that are potentially under 
managers’ control to compensate for changes outside 
managers’ control, such as changes in the likelihood 
of establishment – due to climate change or changes 
in the functional traits of the bioentity being 
considered.  In this analysis, climate change effects 
are represented by changes in environmental 
conduciveness to establishment of a bioentity, 
reflected in the probability of establishment.  Details of 
these analyses are in a vignette (S6) 
     In experiment 3A (Table 3), the ‘adaptation for 
sustainability’ scenario, conduciveness to 
establishment increases and remains steady over 
time, as a press stressor.  The probability of 
establishment at a baseline of 0.5 is compared to a 
new scenario with the probability of establishment at 
0.9, where this is the probability of establishment 
without management.            
     In experiment 3B, we consider an ‘adaptation 
function for sustainability’, the required change in a 
manageable component of the system to maintain 
system function when an unmanageable component 
of the system is changing.  For the scenario of 
adaptation to higher establishment rates in the 
absence of management (such as due to 
environmental changes or changes in the functional 
traits of the bioentity),  
 

 
Table 3 Example types of simulation experiments using impact network analysis (INA) to evaluate the likely 
outcomes of strategies for adaptation to global change effects on bioentities, using the function INAscene.  
The outcomes might be defined in terms of factors such as spread of an invasive species, health indicators, 
agricultural productivity, or success of agricultural livelihoods. 
 
Experiment Type of 

stressor 
Question 

3A Press To adapt for sustainability in the face of increased establishment risks, what level 
of change is needed in manageable system components? 

3B Press What is the adaptation function for sustainability describing the needed 
system change to keep the system failure rate below a threshold, as 
establishment risks increase? 

3C Pulse To adapt for resilience in the face of a rapid change in bioentity establishment, 
what level of change is needed in manageable system components? 

3D Pulse What is the adaptation function for resilience describing the needed system 
change to keep the failure rate below a threshold, if there is a rapid change in 
establishment? 
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we consider the change in the mean adoption 
probability and the mean management effect 
necessary to compensate and keep the rate of 
‘observed’ establishment at the same level as before.  
In this scenario, the mean probability of establishment 
in the absence of management for an invasive 
increases from a baseline of 0.5 and the goal is to 
keep the ‘observed’ establishment proportion below 
0.2 for sustainable management, i.e., at an 
establishment rate no higher than under baseline 
conditions. 
     In experiment 3C, an ‘adaptation for resilience’ 
scenario with a pulse stressor, a baseline starting 
proportion of nodes infected of 0.05 is compared to a 
new scenario where the starting proportion has leapt 
to 0.50. What increase in the mean probability of 
technology adoption would be needed to bring the 
mean ‘observed’ establishment back down to the level 
for the baseline before the leap occurred? 
     In experiment 3D, the ‘adaptation function for 
resilience’ indicates the adaptation required in terms 
of modifying the system parameters under managers’ 
direct control to bring the ‘observed’ establishment 
rate back to the baseline level before the pulse 
stressor. This pulse stressor results in an unusually 
high proportion of locations with an invasive bioentity, 
and the system must then compensate if it is to be 
resilient. What adaptation is necessary to bring the 
proportion locations with the bioentity established 
below 0.2 during the time steps considered? Suppose 
the management effect mean is brought up to 0.9. 

What is the adaptation function for resilience, based 
on adaptation through modifying the mean technology 
adoption probability? 
Science of science experiment. In a science of 
science scenario analysis, the ability of a technology 
to improve regional management is also influenced by 
the outcome of an initial experiment. This could 
represent a scenario where a research group is 
testing management technologies and deciding 
whether to promote them or not. Depending on the 
effort invested by the scientists in the scenario, the 
management effect size is estimated with greater or 
lesser precision. When the management effect size 
estimate generated by the research group is below a 
threshold, information about the management is not 
communicated, so some share of scenario 
realizations does not include use of the management 
technology. In this case study, the threshold for 
communication about management ranges from 0 
(communication occurs regardless of the estimated 
management effect) to 1 (communication cannot 
occur unless there is not uncertainty about the 
complete effectiveness of management). In the first 
scenario analyzed here, the management effect mean 
is 0.5 and the management effect standard deviation 
is fairly high, also 0.5, while the sampling effort is low 
(1).  Additional examples are in S6.  Note that these 
analyses explore the potential costs of not  
 
      

 

   
 
Figure 2 Identifying key nodes for sampling for an invasive ‘bioentity’ as part of a smart surveillance strategy 
(Experiment 1).  This analysis identifies the nodes where sampling can detect the bioentity before it has spread 
further through the network.  In these simple examples based on commonly-studied networks, darker nodes 
would detect the epidemic sooner, while detection at lighter nodes would occur when there were fewer 
opportunities for managing the epidemic. (Left) In a random network, nodes at the periphery of the network 
will be less important for sampling. (Center) In a small world network, nodes may be of similar value for 
sampling, but those that link across sections of the network may be more useful. (Right) In a scale-free 
network, nodes with high degree are more useful for sampling.  As real networks diverge from these simpler 
structures, and become too large for simple visualization, this method for identifying key nodes for sampling 
can be used to find important nodes. 
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communicating about a technology.  There are other 
types of costs of communicating about a technology 
for which the benefits have been overestimated, 
where both underestimation and overestimation of 
technology effects may be part of a reproducibility 
problem in science. 
 

RESULTS 
 
These results illustrate some of the types of analyses 
that can be implemented with the INA package, where 
Experiment 1 used the smartsurv function and 
Experiments 2 and 3 used the INAscene function. 
 

 

 
Figure 3 Evaluating the likelihood that management is successful in a set of scenario analyses (Experiment 2, 
with more details in S5)  (Upper left) At the outset of a project, the analysis focuses on the likely distribution of 
the ‘observed’ proportion of nodes with the ‘bioentity’ established.  (Upper right) If the project must be adjusted 
when performance needs to be improved, the analysis focuses on the response of the system to changes in 
the mean management effect size, illustrated here for four different types of socioeconomic networks in what is 
otherwise the same system.  (Lower left) If the performance of the system is weak, the analysis focuses on 
whether the results can be improved by boosting performance in a feature such as the mean probability of 
adoption (where dotted lines indicate the 5th and 95th percentile of simulation results).  (Lower right) In 
consideration of how project benefits can persist over time, the analysis focuses on what combinations of 
‘manageable’ components are needed – in this case, the mean management effect size and the mean 
adoption rate – to  keep the ‘observed’ establishment rate acceptably low for an unwanted bioentity (e.g., the 
dark red range). 
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3.1 Experiment 1. Identifying key sampling 
locations for smart surveillance 
For the simple random network example, nodes more 
important for sampling for detection occur in several 
parts of the network, but not in the periphery (Figure 
2).When weighting is proportional or inversely 
proportional to node degree, the relative importance 
of nodes shifts, as illustrated in a vignette (S3).  For 
the small world network example, nodes are of similar 
importance, though some nodes that link across 
different parts of the network are somewhat more 
important (Figure 2).  When weighting is proportional 
or inversely proportional to node degree, there is little 
change because of the similar roles of nodes (S2).  
For the simple scale-free network example, the high 
degree nodes are clearly more important for sampling 
(Figure 2).  When weighting is proportional or 
inversely proportional to node degree, there is again 
only a slight change because the role of high degree 
nodes in driving the invasion network is so important 
(S2).  When stochastic networks are considered, the 
clear importance of some nodes for sampling in 
deterministic networks is decreased (S2). 
3.2 Experiment 2. Evaluating the likelihood of 
management success in a region, including 
uncertainty quantification 
In Experiment 2A, at the planning stage of a project, 
analysis of the probability distribution of outcomes 
from the project indicates that the bioentity would 
become established in less than half the nodes 
(Figure 3, with more details in S5).   
     In Experiment 2B, network types are compared in 
terms of how responsive the system is to changes in 
the management effect size. The small world network 
generally has a greater benefit from increasing the 
management effect, while the ring network generally 
has the least benefit of the systems considered 
(Figure 3). 
     In Experiment 2C, the system has a weak 
response to changing the mean probability of 
adoption (Figure 3), so that even when adoption is 
certain (for nodes with information about the 
management technology), other changes in the 
system would be necessary to keep the ‘observed’ 
establishment rate below 0.2. 
     In Experiment 2D, evaluating how benefits of a 
project intervention can persist over time, a 
combination of higher mean management effect size 
and higher mean adoption rate can push the 
‘observed’ establishment rate below 0.2 (Figure 3). 
 

 
 
Figure 4 An uncertainty quantification to evaluate the 
effect of changing am unknown power law parameter 
describing the dispersal gradient for a bioentity. 
 
     In an uncertainty quantification, the effect of 
changing a power law parameter (determining the 
dispersal gradient for the bioentity) was evaluated, 
representing the types of parameters that may often 
be difficult to estimate.  For the scenario considered, 
the ‘observed’ rate of establishment is similar across 
ranges of the parameter between 0 and 0.7 and 
between 1.2 and 2.0 (Figure 4).  However, if the true 
parameter value is between 0.7 and 1.2, obtaining a 
more precise estimate of the parameter may be 
important for understanding system outcomes. 
 
3.3 Experiment 3. Adaptation to global change 
scenarios, including a science of science 
perspective 
In Experiment 3A, the probability of establishment 
increases from a baseline of 0.5 to a new scenario of 
0.9, and both the probability of adoption and the 
management effect size must change to compensate 
(Figure 5, with more details in S6). 
     In Experiment 3B, the adaptation function for 
sustainability is evaluated.  This function indicates the 
required change in a manageable component of the 
system to maintain system function when an 
unmanageable component of the system changes.      
The adaptation function for sustainability shows how 
the mean adoption rate must change (given also an 
increase in the management effect size) to 
compensate for changes in the mean probability of 
establishment (Figure 5, S6). 
     In Experiment 3C, adaptation for resilience is 
evaluated in response to a pulse stressor that pushes 
the baseline proportion of nodes with the bioentity 
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from 0.05 to 0.50.  Increasing the mean probability of 
adoption can keep the ‘observed’ establishment 
proportion down about to 0.2 (Figure 5), but more 
adaptation would likely be necessary to keep the 
establishment proportion reliability lower. 
     In Experiment 3D, the adaptation function for 
resilience is evaluated.  This system recovers from the 

pulse stress of 0.50 nodes with the bioentity.  The 
adaptation function for resilience when responding to 
the pulse stressor evaluates the technology adoption 
rates required to compensate for an increasing initial 
number of nodes with the bioentity established (Figure 
5 and S6). 

 

 
Figure 5 Sustainable or resilient adaptation requirements in global change scenarios (Experiment 3).  (Top 
left) The sustainability of a system – in terms of its ability to keep bioentity establishment (‘Estab’) below a 
threshold even as a press stressor increases the probability of establishment –  is evaluated as the probability 
of establishment moves from a baseline of 0.5 to a new level of 0.9 and both the mean management effect size 
and the mean probability of adoption increase to compensate.  (Top right) The ‘adaptation function for 
sustainability’ indicates the required change in a manageable component of the system (mean probability of 
adoption of a management technology) to keep the ‘observed’ establishment rate at the baseline level as the 
mean probability of establishment (in the absence of management) increases.  (Bottom left) The resilience of a 
system – in terms of its ability to return bioentity establishment to a baseline level after a pulse stressor 
elevates establishment – is evaluated in terms of how well adjusting the mean probability of adoption can 
compensate.  (Bottom right) The ‘adaptation function for resilience’ indicates the required change in a 
manageable component of the system (mean probability of adoption of a management technology) to return 
the ‘observed’ establishment rate to the baseline level after a pulse stressor boosts the establishment. 
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In science of science experiments, as the 
management effect size threshold for communication 
about the management technology increases, the 
‘observed’ rate of establishment increases, as 
expected (S6).  For the second case in which the 
probability of establishment and the probability of 
adoption are both 0.9, when the threshold is between 
0.2 and 0.8, the uncertainty in the outcome is high, as 
the simulated experiment to evaluate the technology 
may or may not be adequate to ascertain that the 
technology is worthy of communication (Figure 6). 
 

 
Figure 6 A science of science experiment to evaluate 
the effects of changes in a communication threshold, 
where a simulated experiment may result in estimates 
of the management effect size above or below the 
threshold, as a function of the true management effect 
size, the variance in the effect, and the research effort 
invested.  Dotted lines indicate the 5th and 95th 
percentile of simulation results. 
 
DISCUSSION 
 
These case studies illustrate some of the potential 
applications of INA, in general, and how to use the INA 
R package.  In the examples, all components such as 
initial distributions and networks are simulated 
following ideas about their structures in hypothetical 
scenarios, while many INA applications would use a 
mixture of observed and simulated data.  The 
Discussion presents ideas for expanding on these 
types of experiments with observed data and a 
mixture of scenario analyses and uncertainty 
quantification to address missing information.  The 
INA R package is intended to expand in future 
versions to incorporate new types of related analyses, 
and some ideas follow about useful future 
applications.  Even the simple scenarios above 
illustrate a couple general points that these types of 

analyses can reveal.  One point is the potential for 
thresholds in response to stressors, a problem often 
discussed.  Another point is the potential for flat 
responses to adaptation strategies, which is less 
commonly considered but can be an important 
challenge for wicked problems in regional 
management.  Projects may stall until the components 
of the system that are limiting factors are understood, 
as a system may be insensitive to changes in readily 
managed components.  Use of INA to identify limiting 
factors and necessary adaptations can be expanded 
by integrating relevant data layers, such as maps of 
environmental conduciveness or satellite images with 
information about the locations of species, in a more 
detailed decision support system.  There is often a 
critical window of opportunity for management in 
impact networks, and efficient INA applications have 
the potential to generated automated updates about 
likely outcomes from the regional management 
strategies being considered.  
     In analyses of the potential roles of nodes in a 
smart surveillance strategy (using the function 
smartsurv from the INA package) in Experiment 1, the 
results for the hypothetical cases illustrate patterns of 
node importance for surveillance in typical random, 
small world, and scale-free networks (Figure 2).  In 
analyses of the value of locations for surveillance, the 
socioeconomic network may only be implicit, in terms 
of likely entry points into the biophysical network, as 
in Buddenhagen et al. (2017) where nodes with less 
reliable information sources may be more likely 
pathogen entry points.  Other reasons for higher risk 
of being the starting node might result from a node's 
role as a port, weather conditions associated with a 
node, or lack of resources for management at the 
node.  In new applications of smart surveillance 
analyses, specific networks representing systems 
may have unique properties (Holme 2017; Holme 
2018).  Users can evaluate the importance of nodes 
in their specific biophysical networks, and potentially 
include new analyses such as evaluating whether 
node demographic or other traits are associated with 
higher or lower importance for surveillance.  Analyses 
such as evaluating the connectivity of host 
populations (Xing et al. 2020), can be used to 
characterize landscapes for application with 
smartsurv.  In on-going surveillance analyses, the 
importance of nodes could be updated as more 
information about the system becomes available. 
     Analyses of how well an intervention project is 
likely to succeed at regional management of a 
bioentity (using the function INAscene from the INA 
package) are illustrated in Experiment 2. The results 
for hypothetical cases show how management 
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options singly or in combination may be adjusted to 
make projects more likely to succeed, and how 
network structures may modify system 
responsiveness to management effect size (Figure 3).  
Changes in the management effect size might be 
attainable through further experimentation, and the 
probability of technology adoption might be modified 
through policies such as subsidies.  In applications 
using INAscene, users could provide a combination of 
observed and hypothetical components to evaluate 
the likelihood of project success, updating as new 
information becomes available.  Analyses might 
evaluate the likely outcomes for categories of nodes, 
perhaps testing hypotheses about how well systems 
perform as a function of manager traits such as 
gender or wealth, or as a function of node traits such 
as environmental factors.  Similarly, scenario 
analyses might evaluate potential new impact network 
structures and how these structures benefit different 
types of nodes.  The results of analyses can help to 
inform project corrections.  The illustration of 
uncertainty quantification shows how the effect of 
parameters that may be challenging to estimate with 
precision, such as parameters describing dispersal 
gradients, can be evaluated (Figure 4).  It is 
convenient when the results of scenario analyses are 
similar across parameter values in uncertainty 
quantification (e.g., in Andersen et al. (2019)), but if 
not, it is still helpful to know what new data would be 
particularly valuable to collect for understanding the 
system better. 
     Achieving sustainability and resilience of systems 
and their ecosystem services is a key challenge, and 
often operationalizing these concepts is an additional 
challenge for interventions to try to achieve these 
goals (Howden et al. 2007; Clark et al. 2011; Biggs et 
al. 2012; Standish et al. 2014).  In analyses of 
potential adaptation strategies to maintain 
sustainability or resilience, with regard to regional 
management of a bioentity (using the function 
INAscene from the INA package) in Experiment 3, the 
results for hypothetical cases introduce evaluation of 
adaptation functions.  Adaptation functions are 
defined here to represent the change in one (or more) 
system parameters necessary to achieve desired 
system outcomes.  Adaptation functions for 
sustainability indicate the changes in manageable 
parameters necessary to return a system to the 
outcomes before a press stressor; adaptation 
functions for resilience indicate the changes in 
manageable parameters necessary to return a system 
to the outcomes before a pulse stressor (Figure 5).  
For new use of the INAscene function to study 
adaptation strategies, a combination of observed and 

hypothetical data could be input.  Uncertainty 
quantification might include uncertainty about the 
magnitude of global change factors, with an emphasis 
on minimizing the lag time in response to stressors.  
Other types of global change, such as increased 
trade, might lead to other types of system change, 
such as biophysical networks with more links.  The 
science of science experiment illustrates the effects of 
decision-making about communication based on 
research results (Figure 6).  Variations in the science 
of science experiments can address issues in the 
reproducibility of research, and can be integrated with 
ideas about the ‘theory of applied statistics’ and how 
to optimize statistical design for regional management 
benefits. 
     The priorities for defining scenarios will differ from 
one study to another.  When evaluating the likely 
success of interventions that are under immediate 
consideration, analyses will often try to achieve the 
greatest level of precision possible given the data 
available.  When considering the potential for specific 
types of future interventions, or the theory of effective 
interventions, other priorities may be at least as 
important.  There are often trade-offs in the ability of a 
model to achieve precision, realism, and generality 
(Levins 1966; Gross 2013).  Other applications of 
impact network analysis could focus on developing 
general theories for the development of future 
intervention strategies (Figure 7).  Agroecological 
seed systems are an important example of multilayer 
networks supporting agricultural sustainability and 
resilience.  Layers include the network of seed 
movement in formal and informal systems, the 
network of pathogen or pest movement through seed, 
and the network of information and influence related 
to integrated seed health strategies (Thomas-Sharma 
et al. 2016; Thomas-Sharma et al. 2017).  Successful 
seed systems will optimize the maintenance and 
spread of desirable crop varieties (Pautasso et al. 
2013; Pautasso 2015; Labeyrie et al. 2016) while 
minimizing the spread of pathogens through seed or 
grain movement (Hernandez Nopsa et al. 2015; 
Buddenhagen et al. 2017; Andersen et al. 2019).  
Additional linked networks include the global network 
of crop breeders who exchange genetic material 
(Garrett et al. 2017).  Hypothetical networks could be 
generated using methods such as exponential 
random graph models (ERGMs) to test hypotheses 
about system outcomes for different ERGMs (Lusher, 
Koskinen & Robins 2013).  Another type of research 
could focus on the effects of combining different 
commonly studied network models for socioeconomic 
networks and biophysical networks.  For example, a 
socioeconomic network might start with a distance-
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based probability of link existence as for the 
corresponding biophysical network, but then have a 
given probability of re-wiring.  Theories about the 
likelihood of regional management could be 
developed in terms of the relationship between the 
socioeconomic and biophysical networks, with 
applications for new regional management scenarios. 
 

 
 
Figure 7 Three potential priorities in impact network 
analysis, and examples of the types of questions that 
might be asked in each context.  As more information 
about a system is available, questions can address 
greater realism and precision. 
 
     The INA package is designed to be the basis for 
future expansions to better address specific types of 
systems.  For smart surveillance strategies using the 
smartsurv function, next steps will include explicit 
analyses of specific types of sampling strategies and 
their relative performance for sets of specified starting 
locations for the bioentity.  For scenario analyses 
using the INAscene function, next steps will include 
options for tracking population sizes at nodes.  
Another focus will be generation and evaluation of 
observations of management success in a 
heterogeneous landscape, addressing ‘big data’ in the 
form of information that is generated throughout, and 
potentially spread throughout, a network, such that 
managers may evaluate this information (Cui et al. 
2016).  For global change scenarios, new 
components will include the potential for temporal or 
spatial trends in parameters.  For science of science 
scenarios, new components are planned to address 
the costs of research and the cost of management 
implementation, and to address technology upscaling 
and the formation and dissolution of links.  Another 
useful extension will be consideration of multiple 
bioentities. 

     Operationalizing the concepts of sustainability and 
resilience are ongoing challenges (Standish et al. 
2014) and INA is an option for evaluating the limits of 
responsiveness of a system and what is likely to be 
feasible within those limits for management 
adaptation.   Major challenges remain for 
management of biodiversity while meeting needs for 
food production (Leclère et al. 2020), where 
communities addressing these problems have 
additional scientific commonalities in intervention 
ecology addressed by methods such as INA.  
Intervention ecology can also draw on advances in 
physics and the potential to integrate across many 
different types of socioeconomic and biophysical 
networks (Harwood et al. 2009; De Domenico et al. 
2016).  The broader goal of the INA framework is to 
support a community of practice through application 
across a wide range of system contexts and 
questions, providing research spill-over and cross-
disciplinary lessons learned.  As regional 
management strategies incorporate new approaches, 
including artificial intelligence for decision support, 
INA can be applied to integrate data layers rapidly to 
aim for effective management during critical periods 
when success is more likely. 
 
ACKNOWLEDGEMENTS 
 
Development of the INA package was undertaken as 
part of, and funded by, the CGIAR Research Program 
on Roots, Tubers and Bananas (RTB), supported by 
CGIAR Trust Fund contributors, and by USDA NIFA 
grant 2015-51181-24257.  I also appreciate support 
for concept development from US NSF Grant EF-
0525712 as part of the joint NSF-NIH Ecology of 
Infectious Disease program; US NSF Grant DEB-
0516046; the CGIAR Research Program on Climate 
Change and Food Security (CCAFS); USDA APHIS 
grant 11–8453–1483-CA; the USAID Feed the Future 
Haiti Appui à la Recherche et au Développement 
Agricole (AREA) project AID-OAA-A-15-00039; The 
Ceres Trust; NCR SARE Research and Education 
Grant LNC13-355; and the University of Florida. The 
contents are the responsibility of the author and do not 
necessarily reflect the views of these funders, or the 
United States Government.  Thanks to Y. Xing, K. F. 
Andersen, R. A. Choudhury, and P. Garfinkel for 
helpful input.  This work is dedicated to the memory of 
C. R. Garrett, B. B. Garrett, and J. B. Garrett. 
 
 

 
  

Realism Questions like:
How do changes in network traits, such as 
changes in mechanisms for interpersonal 
influence, affect system outcomes?

Precision Questions like:
Which particular communication or 
land nodes are key control points for 
transmission through the landscape?

Generality Questions like:
How can a change in impact network 
components compensate for increased 
risk to maintain system sustainability?
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