Summary
Multisystem Inflammatory Syndrome in Children (MIS-C), a hyperinflammatory syndrome associated with SARS-CoV-2 infection, shares many clinical features with toxic shock syndrome, which is triggered by bacterial superantigens. The superantigen specificity for binding different Vβ-chains results in Vβ-skewing, whereby T cells with specific Vβ-chains and diverse antigen specificity are overrepresented in the TCR repertoire. Here, we characterized the TCR repertoire of MIS-C patients and found a profound expansion of TCR Beta Variable gene (TRBV)11-2. Furthermore, TRBV11-2 skewing was remarkably correlated with MIS-C severity and serum cytokine levels. Further analysis of TRBJ gene usage and CDR3 length distribution of MIS-C expanding TRBV11-2 clones revealed extensive junctional diversity, indicating a superantigen-mediated selection process for TRBV expansion. In silico modelling indicates that polyacidic residues in TCR Vβ11-2 engage in strong interactions with the superantigen-like motif of SARS-CoV-2 spike glycoprotein. Overall, our data indicate that the immune response in MIS-C is consistent with superantigenic activation.
Highlights
Multisystem Inflammatory Disease in Children (MIS-C) patients exhibit T cell receptor (TCR) repertoire skewing, with expansion of T cell Receptor Beta Variable gene (TRBV)11-2
TRBV11-2 skewing correlates with MIS-C severity and cytokine storm
J gene/CDR3 diversity in MIS-C patients is compatible with a superantigen selection process
In silico modelling indicates TCR Vβ11-2 engages in CDR3-independent interactions with the polybasic insert P681RRAR in the SAg-like motif of SARS-CoV-2 spike
Competing Interest Statement
The authors have declared no competing interest.