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Summary

The bacterial pathogen Clostridioides difficile causes a toxin-mediated diarrheal illness and is now the

leading cause of hospital-acquired infection in the US. Due to growing threats of antibiotic resistance and

recurrent infection, targeting components of metabolism presents a novel approach to combat this infection.

Analyses  of  bacterial  genome-scale  metabolic  network  reconstructions  (GENREs)  have  identified  new

therapeutic targets and helped uncover properties that drive cellular behaviors. We sought to leverage this

approach and thus constructed highly-curated C. difficile GENREs for a hyper-virulent isolate (R20291) as well

as a historic strain (630). Growth simulations of carbon source usage revealed significant correlations between

in silico and experimentally measured values (p-values ≤ 0.002, PPV ≈ 95%), and single-gene deletion

analysis showed accuracies of >89% compared with transposon mutant libraries. Contextualizing

these models with in situ omics datasets revealed conserved patterns of elevated proline, leucine, and valine

fermentation that corresponded with significant  increases in expression of multiple virulence factors during

infection.  Collectively,  our  results  support  that  C.  difficile utilizes  distinct  metabolic  programs as  infection

progresses and highlights that GENREs can reveal the underpinnings of bacterial pathogenesis.

Background

Clostridioides  (formerly  Clostridium) difficile is a Gram-positive, sporulating anaerobic bacterium that

remains a critical problem in healthcare facilities across the developed world (Bella et al., 2016; Lessa et al.,

2015). Susceptibility to C. difficile infection (CDI) is most frequently preceded by exposure to antibiotic therapy

(Thomas, 2003). While these drugs are life-saving they also diminish the abundance of other bacteria in the

microbiota,  altering the metabolic  environment  of  the gut,  and leaving it  susceptible to colonization  by  C.

difficile (Antunes et al., 2011b; Fletcher et al., 2018; Theriot et al., 2014). Recently, it was established that C.

difficile adapts transcription of distinct catabolic pathways to the unique conditions found in susceptible gut

environments following different antibiotic pretreatments (Jenior et al., 2017, 2018). These transcriptional shifts

indicated that  C. difficile must coordinate differential metabolic activity in order to effectively compete across

dissimilar  gut  environments  for  successful  infection.  In  spite  of  these  differences,  there  are  known  core

elements  of  C.  difficile metabolism  across  different  environments  including  carbohydrate  and  amino  acid

fermentation  (Hofmann et  al.,  2018).  However,  the relative utility  of  each metabolic  strategy across given
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infections  remains  unknown.  Furthermore,  it  is  also  understood  that  the  availability  of  nutrients  including

fermentable monosaccharides and certain amino acids influences expression of virulence genes in C. difficile

(Dineen et al.,  2010; Hofmann et al.,  2018). Given these findings,  along with the increased prevalence of

antibiotic resistance and hyper-virulence among C. difficile isolates (Merrigan et al., 2010; (u.s.) and Centers

for Disease Control and Prevention (U.S.), 2019), novel therapeutic strategies are desperately needed and

targeting or altering these central nodes of metabolism may be an effective means of targeted therapy without

continued exposure to antibiotics.

Genome-scale  metabolic  network  reconstructions  (GENREs)  are  mechanistic  frameworks  and

mathematical formalizations of metabolic reactions encoded in the genome of a target organism, which are

subsequently constrained by known biological and physical parameters. GENREs can serve as a knowledge

base for metabolic capability of a given organism, as well as a platform for functional simulation and prediction

for the impact of genotype on many observable metabolic phenotypes. These tools have achieved success in

directing genetic engineering efforts (Hao et al., 2018) and accurately predicting auxotrophies and competition/

cooperation between species for growth substrates  (Pacheco et al., 2019; Seif et al., 2020). GENREs also

create improved context for the interpretation of omics data (Hadadi et al., 2020), and have provided powerful

utility for identification of novel drug and gene targets accelerating downstream laboratory testing (Cesur et al.,

2020).  This  concept  is  especially  critical  when  delineating  a  complex  array  of  signals  from communities

organisms like the gut microbiome (Jenior et al., 2020). Leveraging these properties, several recent studies

have found new possible metabolic targets for medically-relevant pathogens including Klebsiella pneumoniae,

Staphylococcus aureus, and Streptococcus mutans (Bosi et al., 2016; Cesur et al., 2020; Jijakli and Jensen,

2019). Taken together, these principles make GENRE-based analyses a strong platform for analysis of and

target identification in C. difficile metabolism. 

A few previous efforts have been made to create GENREs for well characterized strains for C. difficile,

each with varied objectives and corresponding predictive qualities  (Dannheim et al.,  2017a; Kashaf et  al.,

2017; King et al., 2016; Larocque et al., 2014). Analysis of these GENREs reinforced the necessity for carefully

constructed  stoichiometry  and  flux  constraints  to  ensure  that  downstream  predictions  have  the  highest

accuracy. As understanding of genome annotation and metabolic functionality increases, GENREs must be

revisited or remade entirely to improve the quality of the resultant metabolic predictions. As such, we began
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with the updated genome of the highly-characterized laboratory strain C. difficile str. 630 (Monot et al., 2011),

first generating a de novo reconstruction followed by extensive literature-driven manual curation of catabolic

pathways, metabolite transport, and a biomass objective function. We proceeded to use this reconstruction as

a template to also create a curated GENRE for the more recently isolated hyper-virulent strain R20291 (Stabler

et al.,  2009). Predictions from both GENREs were subsequently compared against published  in vitro gene

essentiality and carbon utilization screens which indicated a high degree of agreement across experimental

datasets. 

To  then  assess  the  application  of  our  GENREs  for  in  situ metabolic  prediction,  we  integrated

transcriptomic data collected from both  in  vivo and  in  vitro conditions  into  our  models and assessed the

emergent  metabolic  activities.  Across  states  of  increased  virulence,  both  strains  of  C.  difficile favored

increased  fermentation  of  amino  acids  and  decreased  capacity  for  glycolysis.  These  trends  agreed  with

published phenotypes  (Antunes et al., 2012; Dineen et al., 2010) but indicated that even with availability of

both substrate types, C. difficile differentially focuses catabolic activity across timing of infection. This finding

was reinforced during in vivo gene essentiality analysis which highlighted aspects of glucose utilization as

critical only in the state of lower virulence factor expression. Further essentiality analysis revealed pyrimidine

scavenging as critical for growth across infection conditions and may provide preliminary targets for future

inhibitor discovery with nucleoside analogs. Our results demonstrate that GENREs provide a strong advantage

for delineating complex metabolic networks and patterns of gene expression into more tractable experimental

targets.  Overall, high-quality GENREs can greatly augment the discovery of novel therapeutics to treat CDI

due to the connections between metabolic signals and colonization or virulence induction in C. difficile. Finally,

the current study lays the groundwork for systems-level analyses of CDI-associated metabolism in the context

of complex extracellular environments like the gut microbiome during infection. 

Results

Current State of C. difficile Genome-scale Metabolic Modeling Efforts

We began by collecting and assessing the quality of existing C. difficile GENREs. The primary focus of

curated C. difficile metabolic modeling efforts has been on the first fully sequenced strain of C. difficile, str. 630.

A high degree of  additional  genomic and phenotypic  characterization was later  performed for  this isolate,
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making it an ideal candidate for representative GENRE creation. The first reconstruction effort (iMLTC806cdf

(Larocque et al., 2014)) and subsequent revision (icdf834 (Kashaf et al., 2017; Larocque et al., 2014)), were

followed by a recent  de novo creation following updated genome curation (iCN900 (Norsigian et al., 2020a))

(Dannheim  et  al.,  2017b).  Another  GENRE  was  developed  for  str.  630Δerm  (iHD992  (Dannheim  et  al.,

2017a)), a strain derived from str. 630 by serial passage until erythromycin resistance was lost (Hussain et al.,

2005). Four additional C. difficile strain GENREs were generated as a part of an effort to generate numerous

new reconstructions  for  members of  the  gut  microbiota  (Magnúsdóttir  et  al.,  2017);  these reconstructions

received only semi-automated curation performed without C. difficile-specific considerations.

To establish a baseline for the metabolic predictions possible with current  C. difficile GENREs, we

selected common criteria with large impacts on the quality of subsequent predictions for model performance

(Fig. S1A). The first of these metrics is the level of consistency in the stoichiometric matrix (Fritzemeier et al.,

2017; Gevorgyan et al., 2008; Schellenberger et al., 2011), which reflects proper conservation of mass and

that no metabolites are incorrectly created or destroyed during simulations. The next metric is a ratio for the

quantity  of  metabolic  reactions  lacking  gene-reaction  rules  to  those  possessing  associated  genes

(Ravikrishnan and Raman, 2015), which may indicate an overall confidence in the annotation of the reactions.

These features reflect the importance of mass conservation and deliberate gene/reaction annotation which

each  drive  confidence  in  downstream  metabolic  predictions,  omics  data  integration,  and  likelihood  for

successful downstream experimentation. We found that each GENRE performed well in some categories, but

unique challenges were found in each which made comparing simulation results across models challenging.

For example, neither iMLTC806cdf  nor iHD994 have any detectable gene annotations associated with the

reactions they contain.  A high degree of  stoichiometric  matrix  inconsistency  was detected across icdf834,

iHD992, and iCN900; with iHD992 many intracellular metabolites were able to be generated without acquiring

necessary  precursors  from  the  environment.  These  findings  reinforced  the  value  of  proper  biochemical

constraints for GENREs to allow for improved fidelity to the target organism’s in situ metabolism.

We went on to determine the cumulative MEMOTE quality score for each C. difficile GENRE (Fig. S1A).

MEMOTE is a recent series of model quality assessment guidelines, agreed upon by the research community,

and developed into a single platform to create an independent  comparable quality metric across GENREs

(Lieven et al.,  2020). These percentages reflect a composite measurement of mass conservation, reaction
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constraint, and standardized component annotation that are necessary for carrying out reliable simulations

(Ravikrishnan and Raman, 2015). The three oldest C. difficile reconstructions each scored <50%; conversely

the most recent GENRE (iCN900) received a 74% cumulative MEMOTE score yet underperformed in the other

metrics.  Furthermore,  the  pre-curation  draft  C.  difficile GENREs generated for  this  study  scored similarly

(~40%)  to  those  automatically  curated  AGORA  models  (Fig.  S1B).  Our  results  from  MEMOTE  analysis

indicated the current C. difficile GENREs do not meet some of the recent established standards which is likely

to reduce the accuracy of downstream metabolic predictions.

Finally,  we assessed  key metabolic  functionalities  and established  general  principles  of  C.  difficile

physiology within each of the existing GENREs. First, we compared imputed doubling times of each GENRE,

derived from the optimal biomass objective flux value simulated in rich media (Oberhardt et al., 2011). While

not  strictly  a  measurement  of  GENRE  quality,  this  value  may  generally  reflect  the  degree  of  functional

predictions possible with a given GENRE based on its deviation from measured values of ~29 minutes under

similar  conditions  (Neumann-Schaal  et  al.,  2015).  This  analysis  uncovered  that  most  GENREs  indicated

doubling times relatively close to the experimental measures, however iMLTC806cdf and iHD992 gave times

under  5  minutes  and  iCN900  was  well  over  500  minutes  (Fig.  S1D).  We  also  detected  structural

inconsistencies across several GENREs. For example, those GENREs acquired from the AGORA database

possessed several intracellular metabolic products not adequately accounted for biologically (Table S1), as

well  as mitochondrial  compartments despite  being bacteria.  Additionally,  several  key  C. difficile metabolic

pathways  either  were  incomplete  or  absent  from  the  curated  models  including  multi-step  Stickland

fermentation,  membrane-dependent  ATP synthase,  dipeptide  and aminoglycan utilization,  and a variety  of

saccharide fermentation pathways  (Neumann-Schaal et al., 2019). Overall, the existing  C. difficile GENREs

possessed numerous mass imbalances and annotation inconsistencies, lacked key functional capacities, and

failed to phenotypically mimic  C. difficile growth. These collective results motivated the generation of a new

reconstruction for our intended analyses.

C. difficile Metabolic Network Scaffold Construction

The existence of hypervirulent strains of C. difficile that have unique metabolism and virulence factors

highlights the importance of equipping future modeling efforts to study and identify novel targets within these
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isolates.  With  this  in  mind,  we  focused on the most  well-characterized hypervirulent  isolate,  str.  R20291.

However, to maximize the utility of the bulk of published C. difficile metabolic research, we elected to generate

a reconstruction for the lab-adapted str. 630 in parallel. This focus afforded the ability to continuously cross-

reference curations between the models and to more readily identify emergent differences that are specifically

due to genomic content. We began the reconstruction process by accessing the re-annotated genome of str.

630 (Dannheim et al., 2017b) and the published str. R20291 genome (Stabler et al., 2009), both available on

the Pathosystems Resource Integration Center database (PATRIC) (Wattam et al., 2017). Following a recent

protocol  for  creating  high-quality  genome-scale  models  (Thiele  and  Palsson,  2010),  and  utilizing  the

ModelSEED  framework  and  reaction  database  (Devoid  et  al.,  2013),  we  generated  gap-filled  scaffold

reconstructions for both strains. Gap-filling refers to the automated process of identifying incomplete metabolic

pathways  due  to  an  apparent  lack  of  genetic  evidence  that  are  also  necessary  for in  silico growth,  and

subsequent addition of the minimal functionality needed to achieve flux through these pathways (Satish Kumar

et al., 2007). The resultant scaffolds were stripped of reactions that were added due to gap-filling in order to be

most reflective of original genomic content and partially reveal pathways in need of manual curation (Table

S2).  Additionally,  to  focus  the  reconstructions  on  bioconversion  of  metabolites,  we  removed  genes  that

encoded enzymes involved in macromolecule synthesis (e.g. ribosomal genes). We subsequently performed

complete  translated proteome alignment  between  str.  630 and str.  R20291,  resulting  in  684  homologous

metabolic gene products and 22 and 33 unique gene products, respectively (Table S3). Among the distinctive

features were additional  genes for  dipeptides import in str.  630 and glycogen import and utilization in str.

R20291, which have both been linked to modulated levels of virulence across strains of C. difficile (Bakker et

al.,  2014;  Girinathan  et  al.,  2016).  After  resolving  the  dissimilarities  between the strains  by  incorporating

corresponding  metabolism  to  each  reconstruction,  we  moved  on  to  extensive  manual  curation  of  both

GENREs.

Metabolic Network Curation and Ensemble Gap-filling

Manual curation is required in order to ultimately produce high-quality GENREs and make meaningful

biological  predictions  (Mendoza  et  al.,  2019).  As  such,  we  proceeded  to  manually  incorporate  259  new

reactions (with associated genes and metabolites) and altered the conditions of an additional 312 reactions
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already present within each GENRE prior to gap-filling (Table S2). Primary targets and considerations for the

manual curation of the C. difficile GENREs included:

 Anaerobic glycolysis, fragmented TCA-cycle, and known molecular oxygen detoxification (Janoir et al.,

2013; Neumann-Schaal et al., 2019)

 Minimal  media components and known auxotrophies  (Haslam et  al.,  1986;  Karasawa et  al.,  1995;

Karlsson et al., 1999)

 Aminoglycan and dipeptide catabolism (Engevik et al., 2015; Olson et al., 2013; Stiemsma et al., 2014)

 Many Stickland fermentation oxidative and reductive pathways (Table S2) (Bouillaut et al., 2013; Britz

and Wilkinson,  1982;  Jackson et  al.,  2006;  Kim et  al.,  2004,  2005,  2006;  Nakamura et  al.,  1982;

Neumann-Schaal et al., 2015; Selmer and Andrei, 2001; de Vladar, 2012; Yu et al., 2006) 

 Carbohydrate fermentation and SCFA metabolism (Esquivel-Elizondo et al., 2017; Ferreyra et al., 2014;

Louis and Flint, 2017; Nakamura et al., 1982)

 Energy metabolite reversibility (e.g. ATP, GTP, FAD, etc. (Fritzemeier et al., 2017))

 Periplasmic-associated H+ gradient and ATP synthase

 Additional  pathogenicity-associated  metabolites  (e.g.  p-cresol  (Selmer  and  Andrei,  2001) and

ethanolamine (Nawrocki et al., 2018))

Following  the outlined manual  additions,  we created a customized biomass objective  function  with

certain elements tailored to each strain of C. difficile. Our biomass objective function formulation was initially

adapted from the well-curated GENRE of the close phylogenetic relative Clostridium acetobutylicum (Senger

and  Papoutsakis,  2008) with  additional  considerations  for  tRNA  synthesis  and  formation  of  cell  wall

macromolecules, including teichoic acid and peptidoglycan (Table S2). Coefficients within the formulations of

DNA  replication,  RNA replication,  and  protein  synthesis  component  reactions  were  adjusted  by  genomic

nucleotide  abundances and codon frequencies in order to yield strain-specific  biomass objective functions

(Lachance et al., 2019). To successfully simulate growth, we next performed an ensemble-based pFBA gap-

filling approach (Biggs and Papin, 2017; Medlock et al., 2020), utilizing the ModelSEED reaction bag modified

to focus on Gram-positive anaerobic bacterial metabolism (see Materials & Methods). We performed gap-filling
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across six distinct and progressively more limited media conditions; complete medium, Brain-Heart Infusion

(BHI (Atlas and Ronald Atlas, 2010)), C. difficile Defined Medium +/- glucose (CDM (Haslam et al., 1986)), No

Carbohydrate Minimal Medium (NCMM (Theriot et al., 2014)), and Basal Defined Medium (BDM (Karasawa et

al., 1995)) (Table S2). With each step new reactions found across an ensemble were collected and integrated

into the draft reconstruction. A total of 68 new reactions allowed for robust growth across all conditions.

Final steps of the curation process were focused on limiting the directionality of reactions known to be

irreversible,  extensive balancing of the remaining incorrect reaction stoichiometries,  and adding annotation

data  for  all  network  components.  We  repeated  the  assessments  that  were  performed  for  the  earlier

reconstructions and found that our GENREs had substantial improvements in all metrics including few, if any,

flux or mass inconsistencies and now each received a cumulative MEMOTE score of 86% (Fig. S1C). The new

reconstructions were designated iCdG709 (str. 630) and iCdR703 (str. R20291). For a precise recounting of

computational steps refer to Materials & Methods. We then set out to validate model behaviors against actual

experimental data.

Gene essentiality results from new GENREs closely match experimental transposon screens

A standard measurement of GENRE performance is the comparison of predicted essential genes for

growth in silico and those found to be essential experimentally through forward genetic screens (Blazier and

Papin, 2019). This form of analysis moves past strict network quality criteria and into biologically tractable

predictions. Many C. difficile strains have been historically difficult to manipulate genetically (Heap et al., 2010);

however, methods were recently developed and a large-scale transposon mutagenesis screen was published

for str. R20291  (Dembek et al., 2015). As such, we first utilized the proteomic alignment from the previous

section to determine those genes in str. 630 that possessed homologs within the str. R20291 dataset. We

simulated single gene knockouts for all genes and evaluated for >1% optimal biomass objective flux in BHI

medium after growth simulation (O’Brien et al., 2015) for both iCdR703 (Fig. 1A) and iCdG709 (Fig. 1B), cross-

referencing the results with those in the published study. These comparisons revealed overall accuracies of

89.1% and 88.9%, with negative-predictive values as high as 90.0% for iCdR703 and 89.9% for iCdG709.

These  results  demonstrated  that  our  GENREs  correctly  predicted  with  high  accuracy  the  same  genes

determined to be essential for laboratory growth.
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Predicted growth substrate utilization profiles mirror in vitro screening results

To  assess  if  GENRE  requirements  reflected  the  components  of  minimal  medium  derived

experimentally,  we identified the minimum subset of metabolites that our model required as an exogenous

supply for growth. Importantly, the specific metabolite composition of  C. difficile minimal medium has been

defined across three separate laboratory studies (Haslam et al., 1986; Karasawa et al., 1995; Karlsson et al.,

1999).  Through  in  silico limitation  of  extracellular  metabolites  to  only  the  experimentally  determined

requirements, followed by growth simulations with systematic omission of each component individually,  we

were able to determine the impact of each component on achieving some level of biomass flux (Fig. 1C). This

analysis revealed that the majority of metabolites found to be essential during growth simulation have also

been shown experimentally  to  be required for  in  vitro growth.  In  disagreement  with  two of  the published

studies, simulations indicated that neither iCdG709 (str. 630) nor iCdR703 (str. R20291) is auxotrophic for

methionine. However, the published formulation of BDM where methionine is present found the amino acid to

be largely growth-enhancing and not essential for small levels of growth (Karlsson et al., 1999). Additionally, it

has been demonstrated in the laboratory that  C. difficile is able to harvest sufficient bioavailable sulfur from

excess cysteine instead of methionine  (Dubois et al., 2016; Haslam et al., 1986), further supporting a non-

essential status for this metabolite. In a similar fashion, pantothenate (vitamin B5) only appears to enhance

growth rate  in vitro and is  not  necessarily  required to support  slow growth rates.  Finally,  our results also

indicated that iCdR703 was not auxotrophic for isoleucine relative to iCdG709, and indeed contained additional

genes coding for synthesis of a precursor (3S)-3-methyl-2-oxopentanoate (ilvC, a ketol-acid reductoisomerase)

which  were  not  present  in  its  counterpart  GENRE  (Table  S3).  Interestingly,  increases  in  isoleucine

consumption are associated with greater pathogenicity in some C. difficile strains (Ikeda et al., 1998), which

may  contribute  to  the  hypervirulence  of  str.  R20291.  In  summary,  the  in  silico minimal  requirements  for

iCdG709  and  iCdR703  closely  mirrored  experimental  results  for  both  strains  of  C.  difficile in  addition  to

reconciling partially conflicting reports on experimentally-determined auxotrophies.

Metabolite-specific growth enhancement strongly correlates with in vitro results
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We next assessed additional carbon sources that impact the growth yield predictions for both GENREs.

Utilizing previously published results for both C. difficile strains in a Carbon Source Utilization Screen (Scaria et

al.,  2014), we simulated the degree to which each metabolite influenced growth yield in minimal medium.

Importantly,  C. difficile  is  auxotrophic  for  specific amino acids (e.g.  proline;  Fig 1C) that  it  is  also able to

catabolize through Stickland fermentation (Battaglioli et al., 2018), so the diluting background medium must be

supplemented with small concentrations of these metabolites. As such, the values are reported as the ratio of

the final  optical  density  for  growth with  the given metabolite  versus low levels  of  growth observed in  the

background medium alone. Despite this calculation not being a direct comparison of utilization capability as in

traditional Biolog analyses (Oh et al., 2007), it provides insight into an organism’s metabolic preferences. We

similarly calculated the influence of each metabolite on the optimal biomass flux at quasi-steady state of each

model provided with the same background media conditions as the Biolog analysis (Fig. 2A). Across all of the

116 total metabolites that were in both the in vitro screen as well as the  C. difficile GENREs, we identified

significant predictive correlations in the amount of growth enhancement for iCdG709 (p-value < 0.001) and

iCdR703 (p-value = 0.002) (Fig. 2B & 2C). This relationship was even more pronounced for carbohydrates and

amino acids, primary carbon sources for C. difficile (Fig. S2). When these predictions were reduced to binary

interpretations of either enhancement or non-enhancement of growth, we found that iCdG709 predicted 92.8%

and iCdR703 predicted 96.6% true-positive enhancement calls (Fig. 2D). Importantly, this metric is the most

valuable measure in this instance as it indicates that each GENRE possesses the machinery for catabolizing a

given metabolite. Collectively, these data strongly indicated that both GENREs were well-suited for prediction

of growth substrate utilization in either strain of C. difficile.

Context-specific metabolism reveals inverse metabolic patterns relating to virulence in vitro

Following GENRE validation, we sought to qualify the ability of each GENRE to predict in situ metabolic

phenotypes  across  diverse  experimental  settings.  As  previously  stated,  GENREs  have  provided  powerful

platforms for the integration of transcriptomic data, creating greater context for the shifts observed between

conditions  and capturing  the potential  influence of  pathways not  obviously  connected  (Blazier  and Papin,

2012). With this application in mind, we chose to generate context-specific models for both in vitro and in vivo

experimental  conditions  characterized  with  RNA-Seq  analysis  utilizing  a  recently  published  unsupervised
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transcriptomic data integration method  (Jenior et al., 2020). Briefly, this approach calculates the most cost-

efficient usage of the metabolic network in order to achieve growth given the pathway investments indicated by

the transcriptomic data. This process is in line with the concept that natural selection generally selects against

wasteful production of cellular machinery and affords the ability to make much more fine-scale predictions of

metabolic changes that C. difficile undergoes as it activates pathogenicity. The resultant patterns also reveal

central  elements  within  context-specific  metabolism  that  could  lead  to  targeted  strategies  for  intentional

downregulation of virulence factors through metabolic circuitry.

A recent study determined that phase variation, a reversible mechanism employed by many bacterial

pathogens to generate phenotypic heterogeneity and maximize overall fitness of the population, also occurs in

C. difficile str. R20291 and influences virulence expression (Anjuwon-Foster and Tamayo, 2017). One aspect

of  this  phase  variation  manifests  as  a  rough  or  smooth-edged  colony  morphology  on  solid  agar;  the

morphologies can be propagated via subculture and are associated with distinct motility behaviors and altered

virulence (Garrett et al., 2019). The colony morphology variants are generated through the phase variable (on/

off) expression of the  cmrRST genes. With this in mind, we sequenced transcriptomes from experimentally

grown rough and smooth phase variants of  C. difficile str. R20291 grown on solid BHI rich medium for 48

hours.  Utilizing  these  data,  we  generated  context-specific  versions  of  iCdR703  in  simulated  rich  media

conditions. It has been previously shown that mutation of cmr-family genes does not significantly alter growth

rate  in  vitro (Garrett  et  al.,  2019).  Growth simulation  results  predicted no significant  difference in  optimal

biomass flux values between phase variants (Fig. 3A), which agrees with previously published experimental

growth rate measurements for C. difficile (Neumann-Schaal et al., 2015). We then calculated essential genes

in each variant model similar to the earlier analysis which identified 81 core genes essential in both contexts

(Table  S4),  another  13 genes essential  to  growth for  both  variants,  and 5  genes  that  were conditionally

essential  between  the  morphologies  in  BHI  rich  medium  (Fig.  3C).  The  conditionally  essential  gene  set

restricted to the smooth variant included an N-acetylglucosamine PTS system as well as pyruvate kinase,

which mediates the last step of glycolysis and a bulk of the ATP generation. Notably, at the transcriptional

level, reads mapped to pyruvate kinase were detected at nearly identical levels between the rough and smooth

isolates (Table S4). These results indicate that glycolytic enzymes may be more active in the smooth colony

variants. The essentiality of N-acetylglucosamine transport in the context-specific model for the smooth phase
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was of interest as this variant has been previously shown to generate biofilms (Garrett et al., 2019), in which N-

acetylglucosamine is often a component (Dubois et al., 2019). We found that predicted exchange efflux of N-

acetylglucosamine in the smooth variant was significantly greater than in rough (Fig. S3C). Conversely, in the

rough context-specific model were multiple essential genes involved in Stickland fermentation (Fig. 3B). As

with the pyruvate kinase gene, similar levels of transcription for these genes were also observed between

smooth and rough variants (Table S4). These data were indicative of a potential trade-off between glycolysis

and amino acid (Stickland) fermentation between smooth and rough phases respectively. In addition to genes

that were critical for growth, we also identified those that were only required to achieve high growth yields in

each context. This gene set included additional carbohydrate transporters in the smooth variant and multiple

amino acid transporters in the rough variant (Table S4), further supporting differential utilization of glycolysis

and Stickland fermentation across phases with highly dissimilar flux distributions of core metabolic pathways

(Fig. S3), in spite of largely similar optimal growth rates (Fig. 3A).

The trends for the opposing metabolic strategies were reinforced when we compared sampled flux

distributions  for  the  associated  exchange  reactions  for  the  most  common  substrates  of  each  respective

pathway, glucose and proline. We found not only that the model predicted that glucose was imported in the

smooth  variant,  but  that  this  functionality  was  entirely  inactive  in  the  rough-associated  model  (Fig.  3C).

Alternatively, proline was utilized significantly more in the rough variant-specific model (Fig. 3D), and unlike

glucose import could not be entirely pruned from the opposing model as C. difficile is a proline auxotroph. It

has been previously reported that this relationship between colony morphology phase variant and metabolism

may occur  in  C.  difficile (Passmore et  al.,  2018),  and our  collective  results  from contextualized  iCdR703

analysis support discordant utilization of glycolysis or Stickland fermentation that may relate to phase variation.

Based on these data,  we hypothesized that  access to easily  catabolized carbohydrates influences colony

morphology due to phase variation in  C. difficile. To test this hypothesis, single colonies of either rough or

smooth, grown anaerobically for 48 hours on BHIS agar (Fig. S4A), were subcultured onto BDM (Materials &

Methods) agar plates both with and without 2 mg/ml glucose (Fig. 3E & S4B). Following anaerobic incubation

for 48 hours we found that rough variants maintained their morphology across both media, with the rough

phenotype even exacerbated on the minimal medium. However, while the smooth variant largely maintained its

colony morphology upon subculture onto BDM + glucose, the colonies became much more analogous to their
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rough counterparts when glucose was absent. Further subculture of each altered morphology from minimal

media back onto rich BHI  medium also appeared to support  consistent  switching between the respective

morphologies  (Fig.  S4C).  Our data suggest  that  the absence of  glucose provided a fitness advantage for

variants that preferentially use Stickland metabolism, selecting for the rough variant. Furthermore, these results

are  consistent  with  the  hypothesis  that  carbohydrates  availability  impacts  phase  variation  in  C.  difficile,

influencing the virulence-associated metabolic state and that environmental stress due to limited nutrients may

be a key factor in driving the shift between phases.

Predicted metabolism during infection also supports differential strategies relating to altered virulence

Given laboratory media conditions (as used in  the results described above)  are much more easily

defined, we also wanted to examine GENRE performance and prediction quality under more complex in vivo

infection conditions. Another previously published study assessed the differential transcriptional activity of  C.

difficile str. 630 in the gut during infection in a mouse model pretreated with either streptomycin or clindamycin

to induce sensitivity to colonization. These distinct treatments have different impacts on the structure of the gut

microbiota  (Schubert et al., 2015) and allow for identical levels of pathogen colonization and vegetative cell

load in the cecum. However, these different treatments result in highly dissimilar levels of sporulation (another

phenotype linked to C. difficile virulence) where streptomycin is associated with undetectable spore CFUs and

clindamycin with significantly higher levels (Jenior et al.). The authors of this study also detected no significant

difference in toxin activity between the groups. These experiments included paired, untargeted metabolomic

analysis of intestinal content to correlate the transcriptional activity of metabolic pathways with changes in the

abundance of their respective substrates and byproducts following infection. This analysis was performed for

each antibiotic with both mock-infected and  C. difficile-colonized groups to extract the specific impact of the

infection on the gut  metabolome, making this dataset  extremely valuable  for  our purposes.  Similar  to the

previous analysis,  we overlaid these data onto our GENRE of str. 630 (iCdG709) and compared predicted

doubling  times,  which  were  calculated  from  biomass  objective  flux  in  the  sampled  context-specific  flux

distributions (Fig. 4A). This comparison revealed a significantly faster growth rate in the slower sporulation

context (p-value << 0.001), reflecting a potential focus on continued growth instead of spore formation and

egress  possibly  due  to  preferred  environmental  conditions.  To  then  quantify  differential  use  of  core

27

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

28

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.11.09.373480doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.373480
http://creativecommons.org/licenses/by/4.0/


metabolism, we compared the activity of those reactions conserved between conditions. We accomplished this

analysis  through  unsupervised  machine  learning  (Non-Metric  Multidimensional  Scaling)  of  Bray-Curtis

dissimilarity for sampled flux distributions of all  shared reactions (Fig. 4B). In agreement with the previous

findings that  C. difficile is able to adapt to distinct growth substrates  (Jenior et al.), we found a significant

difference (p-value = 0.001) between the activity of core metabolism between high and low sporulation states.

Additionally,  within-group  dissimilarities  indicated  that  much  more  variation  was  found  within  the  low

sporulation group, potentially  indicating that conditions favoring increased sporulation also support a lower

diversity of potential metabolic strategies. 

To support the unsupervised findings we implemented a supervised machine learning approach where

we identified those reactions which most readily separate flux distributions from low and high spore context-

specific models, and reported the importance of each reaction to the overall classification success (Fig. 4C).

The most prominent signals highlighted by this approach were differences in the catabolism of the host-derived

mucus-associated aminoglycans N-acetylmannosamine, N-acetylneuraminate, and N-acetylglucosamine which

have  been  shown  to  be  readily  fermented  by  C.  difficile and  play  a  role  in  determining  virulence  factor

expression  (Antunes et  al.,  2012;  Wilson and Perini,  1988).  Additionally,  multiple  nucleoside phosphatase

reactions which both contribute to maintenance of intracellular phosphorylated guanosine which has also been

associated with determining virulence phenotype expression  (Bordeleau et al.,  2011; Purcell  et  al.,  2012).

Taken together, these results support that environmental conditions that favor increased glycolytic activity in C.

difficile are inversely associated with virulence expression which agrees with previous reports for the control of

glucose over toxin expression (Antunes et al., 2011a).

We next cross-referenced exchange reactions that were differentially active across the high sporulation

and  low  sporulation  context-specific  models  (Fig.  4D),  and  compared  changes  in  the  concentration  of

associated  metabolites  from a  paired  untargeted  metabolomics  screen  (Fig.  4E).  This  analysis  predicted

multiple Stickland fermentation substrates to be utilized at similar rates across both contexts. We found that

proline was imported at higher rates in low spore-associated simulations (Table 4C; Table S5). This amino acid

was also detected in significantly higher concentrations only in mock infection, supporting consumption by C.

difficile (Jenior  et  al.,  2017).  These  data  agreed  with  findings  from the previous  section  that  amino  acid

catabolism may be associated with higher expression of certain virulence factors, despite previous reports that
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extracellular proline concentrations inversely correlated with expression of C. difficile toxin in vitro (Hofmann et

al.,  2018).  Leucine  was also  predicted to  be imported at  higher  rates in  this  context,  and its  associated

Stickland byproduct isovalerate was predicted to be produced only in the high spore model (Table S5). This

trend agreed with  in  vivo metabolomic  measurements  where  isovalerate  concentrations  were significantly

increased only in the context of higher spores (Fig 4E). Similarly, valine was predicted to be imported more in

the same context  and its  fermentation product  isobutyrate was also  increased when measured (Fig.  4F).

Collectively these results further support that while Stickland fermentation is a core metabolic strategy in  C.

difficile, this pathway is differentially utilized under conditions that favor altered virulence factor expression.

We also identified N-acetylneuraminate (NEu5Ac) as highly utilized in the lower sporulation context, a

host-derived glycolysis substrate that  C. difficile readily uses as a carbon source for growth  (Jenior  et al.,

2017). This consumption was supported in the metabolomics screen where concentrations of this metabolite

were significantly decreased following infection only in the lower spore condition (Fig. 4G). Our results also

predicted both glucosamine and N-acetylmannosamine (ManNAc) to be secreted at much larger rates from the

low spore context-specific model (Fig. 4D, S5A, & S5B). These metabolites are integral components of biofilms

(Zhang and Powers, 2012), and  C. difficile has been previously shown to generate these structures under

certain circumstances (Dubois et al., 2019). Interestingly, a related metabolite N-acetylglucosamine (GlcNAc)

was predicted to be produced more in the high spore context (Fig. 4D) concordantly with in vivo concentrations

(Fig. 4H). This metabolite has been previously shown to negatively regulate biofilm formation in other gut

bacterial species (Sicard et al., 2018). Finally, while not predicted to be utilized in either context here, but in

reference  to  our  findings  from  the  previous  section,  we  then  found  that  concentrations  of  D-glucose

significantly increased only in the higher spore group (Fig. S5C). This finding indicated a lack of consumption

by  C. difficile and that the metabolism used under these conditions focused on alternative carbon sources.

These combined results may indicate that increased reliance on glycolysis may be associated with reduced

sporulation but increased biofilm formation, supporting a complex metabolic regulation of distinct aspects of C.

difficile virulence.

To then examine the utility of the str. R20291 GENRE for identifying potential gene targets that may be

exploited to inhibit metabolism of the pathogen in vivo, we performed a similar in silico gene essentiality screen

as in the preceding section. We subsequently cross-referenced our results to limit our focus to those genes
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that are only essential  in vivo and shared across high and low sporulation-favoring conditions. This analysis

uncovered 35 genes that are essential only during infection (Table S5). Among the genes highlighted were

many  components  of  nucleotide  metabolism  including  pyrimidine  synthesis  regulator  PyrR and  adenylate

kinase.  These  genes  are  highly  expressed  during  infection  and  inhibition  of  specific  enzymes  within  this

pathway has been shown to downregulate toxin production  (Fletcher et  al.,  2018;  Maegawa et  al.,  2002).

Furthermore, proline racemase, which is an important part of Stickland fermentation in C. difficile and has been

previously linked to virulence expression in vitro (Wu and Hurdle, 2014), was also essential in both infection

conditions.  Alternatively,  when  we  identified  those  genes  that  were  discordantly  essential  between  the

conditions we found that additional genes in the higher sporulation context related to Stickland fermentation of

glycine and proline;  including glycine reductase and L-aspartate oxidase (Table S5).  These results further

highlight the relationship between Stickland fermentation and increased  C. difficile sporulation. Additionally,

these  findings  support  that  the  GENREs  were  effective  mechanisms  for  identifying  targetable  metabolic

components in C. difficile to limit colonization or pathogenicity.

Discussion

The control  for  much  of  C.  difficile’s  physiology  and  pathogenicity  is  subject  to  a  coalescence  of

metabolic signals from both inside and outside of the cell. Historically, C. difficile research has suffered from a

shortage of molecular tools and high-quality predictive models for highlighting new potential therapies. Over

the previous decade,  GENREs have become powerful  tools for  connecting genotype with phenotype,  and

provided platforms for defining novel metabolic targets in biotechnology and improving interpretability of high-

dimensional omics data. These factors make GENRE-based analyses extremely promising for directing and

accelerating identification of possible therapeutic targets as well as a deeper understanding of the connections

between C. difficile virulence and metabolism. Furthermore, as much of bacterial pathogenicity is now being

attributed to shifts in metabolism the analyses described here may provide large benefits to the identification of

possible treatment targets in  C. difficile and other recalcitrant pathogens  (Raškevičius et al.,  2018). In the

current study, we develop and validate two highly-curated genome-scale metabolic network reconstructions for

a well-described laboratory strain (str. 630) in addition to a more recently characterized hyper-virulent strain

(str. R20291) of C. difficile. Both iCdG709 (str. 630) and iCdR703 (str. R20291) draw from numerous molecular
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and metabolic studies of C. difficile and Clostridial metabolism in order to accurately incorporate a large array

of metabolic subsystems known to be present across strains of the pathogen. We further improved the quality

of the models through careful curation of core metabolic strategies, including amino acid and carbohydrate

fermentation, to ensure growth in all major defined growth conditions for C. difficile.

After  the  curation  process  was  complete,  we  found  a  high  degree  of  agreement  between  model

predictions  and validating  experimental  datasets.  Both  iCdG709 and iCdR703 indicate  that  the respective

strains are able  to catabolize  amino acids  as the sole  carbon source through Stickland fermentation and

require only those metabolites present in the experimentally determined minimal media to achieve growth.

Additionally, close correlations of in silico predictions with both gene essentiality and carbon source utilization

screens supported that the GENREs accurately recapitulate C. difficile physiology and reconcile some previous

inconsistencies in C. difficile metabolism literature. Following contextualization using in situ transcriptomic data,

both GENREs were also able to demonstrate established complex metabolic phenotypes for both laboratory

and infection  conditions.  Our  analyses  collectively  indicated  a  shift  away  from glycolytic  metabolism,  and

toward  amino  acid  fermentation,  during  periods  of  increased  pathogenicity.  Moreover,  this  tendency  was

present  even when availability  of  the both substrate families  remained high.  These findings could lay the

groundwork for novel approaches to curbing the expression of virulence factors by influencing environmental

conditions to favor certain forms of metabolism over others.  In vivo context-specific gene essentiality also

predicted  proline  racemase  to  be  critical  for  growth  during  infection,  yet  it  was  previously  found  to  be

dispensable in an animal model using a forward genetic screen (Wu and Hurdle, 2014). While this result may

indicate necessary future curation, it may also be attributable to the specific conditions of that infection and

may vary across distinct host gut environments, leading to possible implications in personalized medicine.

While  the majority  of  validation  data did  agree with GENRE predictions,  several  areas of  possible

expansion and curation are present in both GENREs. First, the scope of total genes included in iCdG709 and

iCdR703 may be more limited than previous reconstructions; however, we elected to focus on those gene sets

where  the  greatest  amount  of  evidence  and  annotation  data  could  be  found  to  maximize  confidence  in

functionality included here. Future efforts could be directed at increasing the genomic coverage each GENRE

contains.  Concordantly,  both  GENREs  consistently  underpredict  the  impact  of  some  metabolite  groups,

primarily  nucleotides  and carboxylic  acids  (Fig.  S2),  which  could  be due to  the absent  annotation  of  the
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relevant  cellular  machinery.  Furthermore,  more  complex  regulatory  networks  ultimately  determine  final

expression  of  virulence  factors  and these may be needed additions  in  the  future  to  truly  understand the

interplay of metabolism and pathogenicity in C. difficile. In spite of these potential shortcomings, both iCdG709

and  iCdR703  produced  highly  accurate  metabolic  predictions  for  their  respective  strains,  and  are  strong

candidate  platforms  for  directing  future  studies  of  C.  difficile metabolic  pathways.  Additionally,  the

contextualized growth simulation results indicated an inverse relationship between glycolysis and Stickland

fermentation with respect to expression of pathogenicity.  Our results indicated that fermentation of specific

amino acids may be more associated with increased expression of C. difficile virulence factors. These changes

also seem to be predicated on a degree of environmental nutrient stress as the switch in phase was only

induced across formulations of minimal medium.

Systems-biology approaches have enabled the assessment of fine-scale changes to metabolism of

single species within complex environments that may have downstream implications on health and disease.

Overall,  the  combined  in  vitro-  and  in  vivo-based  results  demonstrated  that  our  GENREs  are  effective

platforms for gleaning additional understanding from omics datasets, outside of the standard analyses. Both

GENREs were able to accurately predict complex metabolic phenotypes when provided context-specific omic

data, and ultimately underscores the metabolic plasticity of  C. difficile. The reciprocal utilization of glycolysis

and amino acid fermentation indeed support regimes of distinct metabolic programming associated with  C.

difficile pathogenicity. With this in mind, finding core metabolic properties in C. difficile strains may be key in

identifying potential  probiotic competitor strains or even molecular  inhibitors of metabolic components. The

current study is an example of the strength that systems-level analyses have in contributing to more rapid

advancements in biological understanding, and in the future the metabolic network reconstructions presented

here are well-suited to accelerate research efforts toward the discovery of more targeted therapies.

Methods

C. difficile   GENRE Construction  

We utilized PATRIC reference genomes from Clostridioides difficile str. 630 and Clostridioides difficile

str.  R20291 as initial  reconstruction templates for  the automated ModelSEED pipeline  (Faria et  al.,  2018;

Wattam  et  al.,  2014,  2017).  The  automated  ModelSEED  draft  reconstruction  was  converted  utilizing  the
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Mackinac pipeline  (https://github.com/mmundy42/mackinac)  into  a  form more compatible  with  the COBRA

toolbox (Heirendt et al., 2019). Upon removal of GENRE components lacking genetic evidence (i.e. gap-filled),

extensive manual curation was performed in accordance with best practices agreed upon by the community

(Gu  et  al.,  2019).  We  subsequently  performed  ensemble  gap-filling  as  previously  described,  utilizing  a

stoichiometrically consistent anaerobic, Gram-positive ModelSEED universal reaction collection curated for this

purpose and available alongside code associated with this study. Next, we corrected reaction inconsistencies

and incorrect physiological properties (e.g. ensured free water diffusion across compartments). Final transport

reactions  were  then  validated  with  TransportDB  (Ren  et  al.,  2007).  All  formulas  are  mass  and  charged

balanced at an assumed pH of 7.0 using the ModelSEED database in order to maintain a consistent and

supported  namespace  to  augment  GENRE  interpretability  and  future  curation  efforts.  We  then  collected

annotation data for all model components (genes, reactions, and metabolites) from SEED  (Gu et al., 2019;

Seaver et al.), KEGG (Kanehisa, 2000), PATRIC, RefSeq (Pruitt et al., 2007), EMBL (Baker, 2000), and BiGG

(Norsigian et al., 2020b) databases and integrated it into the annotation field dictionary now supported in the

most  recent  SBML version  (Hucka  et  al.,  2019).  Complete  MEMOTE quality  reports  for  both  C.  difficile

GENREs are also available in the GitHub repository associated with this study, and full pipelines for model

generation are explicitly outlined in Jupyter notebooks hosted there as well. Download of either iCdG709 (str.

630)  or  iCdR703  (str.  R20291)  is  possible  from  the  studies’  Github  or  the  Papin  lab  website

(https://bme.virginia.edu/csbl/Downloads1.html).

Growth simulations, flux-based analyses, and GENRE quality assessment

All modeling analyses were carried out using the COBRA toolbox implemented in python (Ebrahim et

al., 2013). The techniques utilized included: flux-balance analysis, flux-variability analysis (Gudmundsson and

Thiele, 2010), gapsplit flux-sampler (Keaty and Jensen), and minimal_medium on exhaustive search settings.

GENRE quality assessment tools were also developed in python and are fully available in the project Github

repository.  MEMOTE  quality  reports  were  generated  using  the  web-based  implementation  found  at

https://memote.io/.

C. difficile   str. R20291   in vitro   growth and microscopy  
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C.  difficile str. R20291 growth was maintained in an anaerobic environment of 85% N2, 5% CO2, and

10% H2. The strain was grown on BHI-agar (37 g/L Bacto brain heart infusion, 1.5% agar) medium at 37 °C for

48 hours to obtain isolated colonies. Rough and smooth colonies were chosen for propagation on BHI-agar to

ensure colony morphology maintenance (Garrett et al., 2019). Basal Defined Medium (BDM) was formulated

as previously published (Karasawa et al., 1995) with the addition of 1.5% agar for plates, and incubated for 48

hours at  37 °C to generate isolated colonies.  Microscopy images were taken on an EVOS XL Core Cell

Imaging System at 4x magnification.

RNA isolation, and transcriptome sequencing

For RNA isolation, rough and smooth isolates were subcultured in BHIS broth (37 g/L Bacto brain heart

infusion, 5 g/L yeast extract) overnight (16-18 h) at 37 °C, then 5 µL of the cultures were spotted on BHIS agar

(1.5% agar). After 24 h, the growth was collected and suspended in 1:1 ethanol:acetone for storage at -20 °C

until subsequent RNA isolation. Cells stored in ethanol:acetone were pelleted by centrifugation and washed in

TE (10 mM Tris, 1 mM EDTA, pH 7.6) buffer. Cell pellets were suspended in 1 mL Trisure reagent. Silica ‐glass

beads (0.1 mm) were added and cells were disrupted using bead beating (3800 rpm) for 1.5 minutes. Nucleic

acids were extracted using chloroform, purified by precipitation in isopropanol followed by washing the cold

70% ethanol,  and  suspended  in  nuclease-free  water.  Samples  were  submitted  to  Genewiz,  LLC (South

Plainfield,  NJ,  USA)  for  quality  control  analysis,  DNA removal,  library  preparation,  and sequencing.  RNA

sample  quantification  was  done  using  a  Qubit  2.0  fluorometer  (Life  Technologies),  and  RNA quality  was

assessed with a 4200 TapeStation (Agilent Technologies). The Ribo Zero rRNA Removal Kit (Illumina) was

used to deplete rRNA from the samples. RNA sequencing library preparation was done using the NEBNext

Ultra RNA Library Prep Kit for Illumina (NEB) according to the manufacturer’s protocol. Sequencing libraries

were checked using the Qubit 2.0 Fluorometer. The libraries were multiplexed for clustering on one lane of the

Illumina HiSeq flow cell. The samples were sequenced using a 2 x 150 Paired End configuration on an Illumina

HiSeq 2500 instrument. Image analyses and base calling were done using the HiSeq Control Software. The

resulting raw sequence data files (.bcl) were converted to the FASTQ format and de-multiplexed with bcl2fastq

2.17 software (Illumina). One mismatch was permitted for index sequence identification.  Data were analyzed

using CLC Genomics Workbench v. 20 (Qiagen). Reads were mapped to the  C. difficile  R20291 genome
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(FN545816.1) using the software’s default scoring penalties for mismatch, deletion, and insertion differences.

All samples yielded over 22 million total reads, with over 20 million mapped to the reference (> 93% of total

reads, and > 90% reads in pairs). Transcript reads for each gene were normalized to the total number of reads

and gene length (expressed as reads per kilobase of transcript per million mapped reads [RPKM]). Raw and

processed sequence files are available at the NCBI GEO database under (Accession number Pending)

Genomic and transcriptomic data processing

Alignment of C. difficile str. 630 and str. R20291 peptide sequences was performed using bidirectional

BLASTp.  RNA-Seq reads were first quality-trimmed with Sickle with a cutoff ≧Q30  ([CSL STYLE

ERROR: reference with no printed form.]). Mapping curated reads to the respective  C. difficile genome was

then performed with  Bowtie2  (Langmead and  Salzberg,  2012).  MarkDuplicates  then  removed optica/PCR

duplicates (broadinstitute.github.io/picard/), and mappings were converted to idxstats format using SAMtools

(Li et al., 2009). Abundances were then normalized to both read and target lengths. Transcriptomic integration

and context-specific model generation were performed with RIPTiDe and maxfit_contextualize() on the default

settings (Jenior et al., 2020).

Statistical Methods

All statistical analysis was performed in R v3.2.0. Non-metric multidimensional scaling  of Bray-Curtis

dissimilarity  and perMANOVA analyses accomplished using the vegan R package (Dixon, 2003).  Significant

differences for single reaction flux distributions and metabolite concentrations were determined by Wilcoxon

signed-rank test.. Supervised machine-learning was accomplished with the implementation of AUC-Random

Forest also in R (Janitza et al., 2013). All code associated with this study is available in the study-associated

GitHub repository.

Data availability

Genomic and proteomic data for the strains Clostridioides difficile str. 630 (PATRIC ref. 272563.8) and

Clostridioides  difficile str.  R20291  (PATRIC  ref.  645463.3)  was  downloaded  from  the  PATRIC  database

(Wattam et al., 2014). Transcriptomic data was downloaded in raw FASTQ format from the NCBI Sequence
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Read Archive  (PRJNA415307 and  PRJNA354635) and Gene Expression Omnibus (GSE158225)  . Github

repository  for  this  study,  with  all  programmatic  code  and  GENREs  described  here,  can  be  found  at:

https://github.com/mjenior/Jenior_CdifficileGENRE_2020.
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Figure  1)  Gene and minimal  growth  substrate  essentiality  predictions  closely  match experimental

results. (A) Gene essentiality results for iCdR703 (str. R20291) using the transposon mutagenesis screen

results published in Dembek et al. 2015, and (B) gene essentiality for iCdG709 (str. 630) utilizing homologs

from  the  genome  of  str.  R20291.  (C)  Computationally  determined  minimum  growth  substrates  for  both

GENREs compared with  experimentally  determined  C.  difficile minimal  medium components  across  three

previously published studies. Essentiality was determined for those genes and metabolites that when absent

resulted in  a yield  of  <1.0% of  optimal  biomass flux during growth simulation  utilizing  components of  the

corresponding media used experimentally. Additional trace minerals required for bacterial growth can be found

in Table S2.
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Figure  2)  Carbon  source  growth  enhancement  predictions  reflect  laboratory  measurements.

Experimental  analysis  was  performed for  both  str.  630  and  str.  R20291  in  Scaria  et  al.  2014.,  and  115

metabolites  were  shared  between  the  GENREs  and  the  Biolog  carbon  source  phenotypic  screen.  (A)

Schematic of specific  in vitro and in silico measurements being utilized. The arrow indicates the correlations

made in subsequent panels. Ratios of overall in vitro growth enhancement by each metabolite were correlated

with the corresponding results from growth simulations in the same media for (B) iCdG709 (str. 630) and (C)

iCdR703 (str. R20291). Points are colored by their biochemical grouping, and significant relationships were

determined by Spearman correlation. (D) Binary quantification for predictions in B & C respectively.
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Figure 3) iCdR703 predicts concerted metabolic shifts during phase variation in str. R20291 grown in

vitro. Transcriptomes were collected from rough or smooth colony morphology clones grown on BHI agar for

48 hours, and subsequently used to generate context-specific models.  (A) Doubling times calculated from

sampled biomass objective fluxes in each context-specific mode (p-value = 0.221).  (B)  Cross-referenced

gene  essentiality  results  between  the  context-specific  models  with  ≧80%  optimal  biomass

generation. Importing exchange reaction absolute flux between phase variants for (C) D-glucose

and  (D) proline (**  p-value = 0.007). Inactive label denotes reactions pruned during RIPTiDe transcriptome

contextualization. All significant differences determined by Wilcoxon rank-sum test.  (E) Colony morphologies

resulting from smooth and rough variants of C. difficile str. R20291 grown on either BHI or BDM +/- glucose (2

mg/ml) after 48 hours of growth (Phase contrast 20/40, 4X magnification). Defined medium colonies were then

subcultured onto BHI medium for an additional 24 hours as indicated.
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Figure 4) iCdG709 predicts distinct metabolic patterns associated with pathogenicity across in vivo str.

630 infections. Transcriptomic integration and predictions with iCdG709, 18 hours post-infection with str. 630

across infections with either high or low levels of sporulation were detected in the cecum. (A) Doubling times

calculated  from  sampled  biomass  objective  fluxes  in  each  context-specific  model.  Significant  differences

determined by Wilcoxon rank-sum test (* p-value << 0.001). (B) NMDS ordination of Bray-Curtis dissimilarities

for  flux  distributions  shared reactions  following  sampling  of  context-specific  models.  Significant  difference

calculated by PERMANOVA.  (C) Mean decrease accuracy for most discerning reactions from AUC Random

Forest supervised machine learning results using sampled flux distributions from both groups (Out of bag error
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= 0%).  (D) A subset of context-specific metabolite consumption or production predictions. Asterisks indicate

those metabolites  that  appear  in  both  context-specific  models,  but  flux  through  the associated  exchange

reaction  is  significantly  greater  in  the  context  shown  (Table  S5).  (E  -  F) Liquid-chromatography  mass

spectrometry analysis from cecal content of mice with and without  C. difficile str. 630 infection in antibiotic

pretreatment groups that resulted in either high or low cecal spore CFUs for metabolites highlighted by growth

simulation analysis: (E) Isovalerate, (F) Isobutyrate, (G) N-Acetylneuraminate, and (H) N-Acetylglucosamine.

Significant differences determined by Wilcoxon rank-sum test with Benjamini-Hochberg correction (* p-values

≤ 0.05).

Figure  S1)  Selected  quality  metrics  for  C.  difficile GENREs. Stoichiometric  inconsistency  describes

consistent  mass conservation across metabolic  reactions.  Assessing for  metabolic  reactions without  gene-
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reaction rules (GPRs) excludes exchange reactions, transport reactions, and those reactions associated with

biomass generation. Cumulative MEMOTE quality scores for each GENRE in default media settings, reflecting

overall GENRE integrity and annotation completeness. (A) Quality assessments for previously published and

manually curated  C. difficile GENREs,  (B) C. difficile strain GENREs contained in the AGORA database of

auto-curated reconstructions, or (C) the two new GENREs described in the current study. (D) Imputed doubling

time in complete media, calculated as the reciprocal optimal biomass flux per unit time for all GENREs. Bars

for previous GENREs are colored gray and bars for the new GENREs (iCdG709 and iCdR703) are colored red.
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Figure S2) Specific  shifts  in simulated versus measured growth enhancement  for  each metabolite

measured in the carbon source utilization screen. Metabolites are separated into groups by metabolite

superfamily designation. Fold change for both in vitro and in silico measurements reflects growth enhancement

for  each metabolite  relative  to background (Fig.  2A).  Results  for  both  (A) iCdG709 and  (B) iCdR703 are

shown, and discrete Spearman correlation coefficients are listed for each category.
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Figure S3) Change in growth simulations using in vitro transcriptomic data from naturally occurring or

mutant phase-locked str. R20291 colony variants integrated into iCdR703. Rough versus Smooth variant

transcriptomes  integrated  with  RIPTiDe  into  iCdR703.  (A) NMDS  ordination  of  Bray-Curtis  dissimilarities

between  flux  sampled  distributions  of  shared  reactions  of  context-specific  models.  Significant  difference

calculated by PERMANOVA (***  p-value < 0.001). Transcriptomic data from cmr operon mutants (described

previously) was also utilized to generate context-specific models for phase-locked isolates. (B) Following the

same trend as phase-favoring colony variants, optimal biomass objective flux from each context-specific model

was not significantly different. (C) Exchange reaction flux associated with N-acetylglucosamine export for both

context-specific models (* p-value = 0.015). Significant difference determined by Wilcoxon rank-sum test. 
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Figure S4)  Additional  microscopy of phase variant colony morphologies. (A) C. difficile str.  R20291

phase variants progenitor colonies generated on solid BHIS agar following 48 hours of growth at 37° C under

anaerobic conditions. These colonies were subcultured and utilized for all subsequent defined minimal medium

experiments.  (B) Additional phase contrast (4/10) microscopy images of identical colonies from Fig. 3C (4X

magnification).  (C) Subcultured colonies from the indicated conditions in Fig. 3C onto BHI rich agar medium,

incubated at 37° C for 48 hours anaerobically.
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Figure  S5)  Context-specific  growth  simulation  with  iCdR698  predicts  discordant  carbohydrate-

associated metabolism which agrees with in vivo measurements. (A) Exchange reaction flux associated

with  N-acetylglucosamine  export  for  both  high  and  low  spore  context-specific  models  (p-value  =  0.067).

Significant difference determined by Wilcoxon rank-sum test.  (B)  Exchange reaction flux associated with N-

mannosamine export for the low spore context-specific models, this reaction was pruned in the high spore

context. Cecal concentrations of (C) D-glucose and (D) adenosine across measured contexts. Matched LC-MS
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metabolomic analysis  of relative adenosine concentrations from cecal content of mice with and without  C.

difficile str. 630 infection in antibiotic pretreatment groups that resulted in either high or low cecal spore CFUs.

Significant differences determined by Wilcoxon rank-sum test with Benjamini-Hochberg correction (* p-values

≤ 0.05).

Table S1) Topology summary statistics for C. difficile GENREs from AGORA and those generated here.

Table S2) GENRE creation steps, Biomass formulation, Gap-filling media compositions, and GENRE statistics.

Table S3) C. difficile 630 and R20291 PATRIC protein sequence alignment results.

Table S4) Differential transcription and exchange fluxes for iCdR703 (str. R20291) with in vitro transcriptome.

Table S5) Differential gene essentiality and exchange fluxes for iCdG709 (str. 630) with in vivo transcriptome.
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