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The recent development of experimental methods for measuring chromatin state at single-cell resolution has created a need for
computational tools capable of analyzing these datasets. Here we developed Signac, a framework for the analysis of single-cell
chromatin data, as an extension of the Seurat R toolkit for single-cell multimodal analysis. Signac enables an end-to-end
analysis of single-cell chromatin data, including peak calling, quantification, quality control, dimension reduction, clustering,
integration with single-cell gene expression datasets, DNA motif analysis, and interactive visualization. Furthermore, Signac
facilitates the analysis of multimodal single-cell chromatin data, including datasets that co-assay DNA accessibility with gene
expression, protein abundance, and mitochondrial genotype. We demonstrate scaling of the Signac framework to datasets
containing over 700,000 cells.

Availability: Installation instructions, documentation, and tutorials are available at: https://satijalab.org/signac/

Introduction

Several technologies are now available for measuring as-
pects of chromatin state at single-cell resolution, particularly
single-cell (sc) ATAC-seq and scCUT&Tag [Ai et al., 2019,
Buenrostro et al., 2015, Carter et al., 2019, Cusanovich et al.,
2015, Kaya-Okur et al., 2019, Lareau et al., 2019, Luo et al.,
2018, Satpathy et al., 2019, Smallwood et al., 2014]. The
development of these new technologies has created a need
for computational tools to analyze single-cell chromatin data.
While the analysis of these datasets presents some unique
challenges in comparison to more established single-cell meth-
ods like scRNA-seq, many analysis steps are shared. These
include nonlinear dimension reduction, cell clustering, iden-
tifying differentially active features between groups of cells,
and visualizing cells in reduced dimension space. Alongside
these common tasks, the analysis of single-cell chromatin
data present opportunities for several more specialized analy-
sis tasks. These include identifying DNA sequence features
(motifs or variants) that are enriched in different sets of cells,
specialized feature weighting and linear dimension reduction
methods, and genome browser-style data visualization.

Furthermore, new technologies now enable the co-assay
of multiple cellular modalities in single cells, including DNA
accessibility alongside mRNA abundance [Cao et al., 2018,
Chen et al., 2019, Clark et al., 2018, Ludwig et al., 2019,
Lareau et al., 2020, Zhu et al., 2019, Xing et al., 2020, Liu
et al., 2019, Ma et al., 2020], protein abundance [Mimitou
et al., 2020, Fiskin et al., 2020, Swanson et al., 2020], CRISPR
guide RNAs [Rubin et al., 2019, Pierce et al., 2020], or spa-
tial position [Thornton et al., 2019]. These datasets present
unique opportunities to learn the relationships between cellu-
lar modalities [Stuart and Satija, 2019], and will be especially
powerful in deciphering the regulatory roles of noncoding

DNA sequences. The analysis of these datasets is challenging
without software designed to facilitate a multimodal analysis,
and an ideal computational solution would facilitate an inte-
grative analysis of multimodal single-cell data encompassing
gene expression, chromatin state, and other modalities includ-
ing cell lineage, protein expression, or spatial position in a
single framework. However, existing tools for the analysis of
single-cell chromatin data were designed for the analysis of
unimodal single-cell datasets [Danese et al., 2019, Fang et al.,
2019, Granja et al., 2020].

Here we developed Signac, a framework for the analysis
of single-cell chromatin data, as an extension of the Seurat
toolkit [Satija et al., 2015, Butler et al., 2018, Stuart et al.,
2019]. By building on the existing Seurat package, Signac al-
lows for the analysis of multimodal single-cell data by access-
ing the extensive existing computational methods available in
the Seurat package and in other packages that interface with
the Seurat object. Signac enables the end-to-end analysis of
chromatin data and includes functionality for diverse analy-
sis tasks, including: identifying cells from background non-
cell-containing barcodes, calling peaks, quantifying counts in
genomic regions, quality control filtering of cells, dimension
reduction, clustering, integration with single-cell gene expres-
sion data, interactive genome browser-style data visualization,
finding differentially accessible peaks, finding enriched DNA
sequence motifs, transcription factor footprinting, and linking
peaks to potential regulatory target genes (Figure 1A). Fur-
thermore, Signac provides a framework for the identification
of mitochondrial genome variants from single-cell DNA ac-
cessibility experiments, enabling a joint analysis of clonal
relationships and DNA accessibility in single cells [Lareau
et al., 2020, Ludwig et al., 2019, Xu et al., 2019].
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Figure 1. Single-cell chromatin analysis workflow with Signac.
(A) Overview of the key steps comprising the analysis of a single-cell chromatin data with Signac. All analysis tasks can be completed with
one or multiple fragment files as input. (B) Design of a custom Assay for single-cell chromatin data. We extended the existing Seurat Assay to
add the ability to store data required for the analysis of single-cell chromatin datasets. (C) Extended ChromatinAssay objects can be stored
side-by-side with standard Assay objects in Seurat to enable the analysis of multimodal single-cell data.

Results

Package design

We aimed to create an extensible framework for single-cell
chromatin data analysis that builds on existing tools used
in the single-cell, genomics, and R-language communities.
We developed an R toolkit for the analysis and visualization
of single-cell chromatin data as an extension of our exist-
ing Seurat package, designed for the analysis of multimodal
single-cell data [Butler et al., 2018, Stuart et al., 2019, Hao
et al., 2020]. The Seurat package uses the Seurat object as its
central data structure. The Seurat object is composed of any
number of Assay objects containing data for single cells. The
Assay object was originally designed for the analysis of single-
cell gene expression data, and allows for storage and retrieval
of raw and processed single-cell measurements and metadata
associated with each measured feature. To facilitate the analy-
sis of single-cell chromatin data within the Seurat framework,
we developed an extended ChromatinAssay object class (Fig-
ure 1B). The ChromatinAssay extends the Seurat Assay to
allow for the storage and retrieval of information needed for

the analysis of single-cell chromatin data, including genomic
ranges associated with each feature in the experiment, gene
annotations, genome build information, DNA motif informa-
tion, and on-disk storage of single-cell data as tabix-indexed
fragment files [Li, 2011]. We leveraged existing data struc-
tures used in the Bioconductor community [Gentleman et al.,
2004, Huber et al., 2015] for interacting with genomic ranges
and position-indexed genomic data files [Arora et al., 2020,
Lawrence et al., 2013, Li, 2011, Morgan et al., 2020]. Further-
more, we provide flexible parallelization strategies through
the future R package [Bengtsson, 2020], and extensible plot-
ting with the ggplot2 package [Wickham, 2016]. Crucially,
the extended ChromatinAssay can be stored in a Seurat ob-
ject side-by-side with standard Seurat Assay-class objects to
facilitate the analysis of multimodal single-cell data (Figure
1C).

Analysis of multimodal human PBMC data
To demonstrate the core functionality of the Signac package
we analysed a publicly available dataset that jointly profiled
mRNA abundance and DNA accessibility in single human pe-
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Figure 2. Integrative single-cell analysis of gene expression and DNA accessibility in human PBMCs
(A) Quality control metrics for single-cell chromatin data. Nucleosome signal and transcriptional start site (TSS) enrichment score metrics
can be used to identify low-quality cells for removal prior to downstream analysis. (B) Joint UMAP representation of the multimodal human
PBMC dataset, with cells annotated by predicted cell type. (C) Genome browser visualization of combined DNA accessibility and gene
expression data at the CD8A locus, displaying differential DNA accessibility among naive and effector CD8+ T cells. (D) DNA sequence
motifs for top overrepresented TF motifs between CD8+ effector and naive T cells. (E) chromVAR [Schep et al., 2017] deviations for top
enriched DNA sequence motifs (EOMES, TBX21, TBX2) for CD8+ effector (CD8 TEM) and naive CD8+ (CD8 Naive) T cells. (F) RNA
expression for EOMES, TBX21, and TBX2 genes in CD8+ effector and naive T cells. (G) TF footprinting analysis for EOMES and TBX21
motifs sites. (H) Distances from peak to linked gene TSS, for positive and negative coefficient peak-gene links. (I) Total number of
positive-coefficient and negative-cofficent peak-gene links for each linked gene (top) and peak (bottom). (J) Representative example
peak-gene links for key immune genes.
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ripheral blood mononuclear cells (PBMCs), generated by 10x
Genomics. We computed per-cell quality control (QC) met-
rics using the DNA accessibility assay, including the strength
of the nucleosome banding pattern and transcriptional start
site (TSS) enrichment score (Figure 2A; see Methods) and re-
moved cells that were outliers for these QC metrics. Next, we
processed the gene expression assay by normalizing the RNA
counts with SCTransform and Seurat [Hafemeister and Satija,
2019, Stuart et al., 2019]. Patterns of DNA accessibility can
be difficult to interpret alone, as much less is currently known
about the patterns of cell-type-specific DNA accessibility and
the function of noncoding DNA elements than is known about
the function and cell-type specificity of protein-coding gene
expression. We therefore chose to annotate cell types by map-
ping the cells to an annotated multimodal PBMC reference
dataset, using the gene expression assay [Hao et al., 2020].
This revealed 23 different cell types present in the dataset,
including rare populations such as gamma delta T cells.

The analysis of chromatin datasets can be highly depen-
dent on accurate peak calling, and this challenge is com-
pounded in single-cell assays where peaks specific to rare
populations are sometimes missed when calling peaks on the
whole cell population. To address this problem, we identified
peaks using MACS2 [Zhang et al., 2008] for each annotated
cell type separately and combined the individual peak calls
into a unified peak set using Signac. Indeed, peaks specific to
rare cell populations were often missed when calling peaks
on the whole dataset (Figure S1 A, B). We further compared
the MACS2 cell-type-specific peak calls with the peak calls
produced by 10x Cellranger, commonly used for the anal-
ysis of scATAC-seq data, and found 15,777 cases where a
Cellranger peak merged distinct MACS2 peaks into a single
region, whereas there were no cases where a MACS2 peak
overlapped multiple Cellranger peaks (Figure S1C). This re-
vealed a bias in Cellranger for aberrant merging of multiple
distinct peaks into a single region, and highlights the impor-
tance of accurate cell-type-specific peak calling methods in
the analysis of single-cell chromatin datasets.

We next reduced the dimensionality of the DNA accessi-
bility assay by latent semantic indexing (LSI) [Cusanovich
et al., 2015, Deerwester et al., 1990], and reduced the dimen-
sionality of the gene expression assay by principal component
analysis (PCA). To construct a low-dimensional representa-
tion of the cells that reflected both data modalities we applied
the recently developed weighted nearest neighbor (WNN)
methods to construct a joint neighbor graph representing both
data modalities [Hao et al., 2020], and used this graph to con-
struct a joint UMAP visualization [McInnes and Healy, 2018]
(Figure 2B). This revealed the diversity of cell states present
in the dataset, and highlighted the differing power of the two
modalities to separate the different cell states present in the
dataset. For example, regulatory T cells (Treg) were able to be
better separated using the gene expression data, while CD4+
naive and CD8+ naive T cells were better separated using the
DNA accessibility data (Figure S2).

To explore the differences in chromatin landscapes be-
tween cell types in the PBMC dataset, we identified ATAC-seq
peaks open in CD8+ effector T cells relative to CD8+ naive
T cells, revealing many regions of open chromatin that were
specific to the CD8+ effector cells (Figure 2C). To identify
transcription factors (TFs) that may be implicated in regu-
lating these cells, we searched for overrepresented DNA se-
quence motifs in the set of CD8+ effector cell-specific peaks
(see Methods). This revealed a strong overrepresentation of
EOMES, TBX21, and TBX2 TF binding motifs. However, the
motifs for each of these TFs are nearly identical (Figure 2D)
and displayed the same patterns of accessibility among the
cells (Figure 2E), making it difficult to correctly identify the
TF involved in binding these motifs in effector T cells. To
identify the putative regulatory TFs, we examined the gene
expression data in these cells. While EOMES and TBX21 were
both expressed in T cells, TBX2 was not detected (Figure 2F).
This indicated that EOMES and TBX21 likely regulate these
sites [Pearce et al., 2003], rather than TBX2, and highlights the
ability of combined gene expression and DNA accessibility
data to improve the identification of TFs involved in regulating
different cell states. We further examined the enrichment of
Tn5 integration events surrounding EOMES and TBX21 mo-
tifs sites by performing TF footprinting [Corces et al., 2018],
revealing a strong enrichment of integration events flanking
the TF motif in CD8+ effector cells compared to CD8+ naive
cells (Figure 2G).

The measurement of both gene expression and DNA ac-
cessibility in the same cell creates an opportunity to link
noncoding DNA elements to their potential regulatory targets
through the correlation between DNA accessibility and the
expression of a nearby gene. Indeed, many past studies that
measured both DNA accessibility and gene expression in the
same cell have performed a peak-to-gene linkage analysis
using regression models [Cao et al., 2018, Zhu et al., 2019,
Ma et al., 2020]. We implemented a peak-to-gene linkage
method in Signac based on recently described methods [Ma
et al., 2020]. Briefly, we computed the Pearson correlation
between the expression of a gene and the accessibility of each
peak within 500 kb of the gene transcriptional start site (TSS),
and compared this value with the expected value given the
GC content, overall accessibility, and length of the peak (see
Methods). Applying this linkage method to all expressed
genes in the PBMC dataset revealed a set of 37,424 peak-gene
links across the genome. The vast majority of these links
displayed a positive relationship between the accessibility of
the peak and expression of the linked gene, with 89% of links
having a positive correlation coefficient. Although links were
enriched in close proximity to the gene TSS, we also observed
a substantial number of long-range putative regulatory rela-
tionships, with 58% of links spanning a distance of >100 kb
from the gene TSS (Figure 2H). Linked genes were on average
linked to ~6 peaks (mean = 6.37, standard deviation = 7.09),
while linked peaks were linked to ~1 gene on average (mean
= 1.57, standard deviation = 1.26) (Figure 2I).
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Figure 3. Impact of different TF-IDF methods on LSI performance.
(A) LSI and UMAP performed on the PBMC dataset at full depth, and downsampled to (B) 60% of the total counts, or (C) 20% total counts.
(D) K-nearest neighbor purity metric for each TF-IDF method and for each downsampled dataset.

Cell-type-specific immune genes appeared to form accu-
rate links with nearby peaks accessible in the same cell types
expressing the genes (Figure 2J). We sought to systemati-
cally assess the accuracy of the peak-gene links identified by
examining a set of expression quantitative trait loci (eQTL)
fine-mapped variants for whole blood, produced by the GTEx
consortium [GTEx Consortium, 2020]. For linked peaks that
overlapped a fine-mapped eQTL variant, the eQTL variant was
associated with the same gene as the peak in 52.6% of cases,
while 13.4% was expected by random chance. The system-
atic identification of putative regulatory targets for any open
chromatin region in the genome using multimodal single-cell
datasets has the potential to enable a more accurate assign-
ment of trait- or disease-associated noncoding variants to a
gene likely to be impacted by the variant. Furthermore, the
identification of distal regulatory elements for each gene in
the genome will enable these sequences to be included in
predictive models of gene expression, enabling the accuracy
of these models to be improved [Agarwal and Shendure, 2020,
Kelley et al., 2018].

Comparison of LSI dimension reduction methods
LSI was originally developed for natural language processing
[Deerwester et al., 1990], and uses a term frequency-inverse
document frequency (TF-IDF) weighting scheme to weight
features according to their frequency in a document and their
frequency across all documents in a text corpus. LSI has since

been applied for the analysis of single-cell chromatin data,
where a cell is analogous to a document and a term analogous
to a peak or genomic region [Cusanovich et al., 2015]. The
most popular TF-IDF method applied to single-cell chromatin
data computes the term frequency as T F =Ci j/Fj where Ci j
is the total number of counts for peak i in cell j and Fj is the
total number of counts for cell j. The inverse document fre-
quency is typically computed as IDF = log(1+N/ni) where
N is the total number of cells in the dataset and ni is the total
number counts for peak i across all cells. The TF-IDF matrix
is then computed as T F × IDF . We found that, when applied
to scATAC-seq data, this implementation often results in non-
zero values in the TF-IDF matrix having low variance and a
mean very close to zero, and a poor ability to discriminate
between cell types. We developed a simple modification to
the TF-IDF weighting scheme that improves the results of LSI
when applied to single-cell chromatin data (Figure 3A). In our
modified method we compute the inverse document frequency
as IDF = N/ni, and TF-IDF as log(1+(T F × IDF)×104).

To test the performance of our modified TF-IDF method,
we downsampled the total counts for the multimodal PBMC
dataset and performed LSI and UMAP using the original
TF-IDF method [Cusanovich et al., 2015] and our modified
method. When using our modified TF-IDF method, cell types
were able to be separated even when using 20% of the counts
of the full dataset, whereas this was not possible when using
the original TF-IDF method (Figure 3B, C). We further as-
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Figure 4. Joint analysis of mitochondrial genotypes and DNA accessibility in single cells.
(A) UMAP plot for cells from a colorectal cancer patient tumor profiled by scATAC-seq, with the major cell types annotated. (B)
Variance-mean ratio versus strand concordance (Pearson correlation between strand coverage) for mitochondrial genome variants.
High-confidence, highly variable mitochondrial genome sites are shown in red. (C) Per-cell allele frequencies (fraction heteroplasmy) for two
representative mitochondrial genome variants used to identify cell clones. (D) Fraction of cells belonging to each clone that were assigned to
each cell type, normalized for the total number of cells beloning to each cell type. (E) Differentially accessible regions of the nuclear genome
between epithelial cell clones.

sessed the preservation of local cell neighborhoods in each
downsampled dataset by computing the fraction of k-nearest
neighbors (k=100) for each cell belonging to the same cell
type as the query cell (KNN purity), with cell types annotated
using the independent gene expression assay. This revealed a
gradual decline in local structure preservation as fewer counts
were retained from the original dataset, with a greater decline
seen when using the original TF-IDF method (Figure 3D).
These results indicate that LSI, when applied with the right
TF-IDF method, can be a powerful dimension reduction tech-
nique for single-cell DNA accessibility data. Furthermore,
LSI is scalable to large numbers of cells as it retains the data
sparsity (zero counts remain as zero after applying TF-IDF).
This is not the case for other methods such as the Jaccard
similarity [Fang et al., 2019]. LSI also uses the singular
value decomposition (SVD), for which there are highly opti-
mized, fast algorithms that are able to run on sparse matrices
[Baglama et al., 2019, Baglama and Reichel, 2005].

Joint analysis of DNA accessibility and mitochon-
drial genotype
New technologies capable of measuring chromatin state along-
side other data modalities at single-cell resolution are now
being rapidly developed. These include the development of

assays that measure DNA accessibility data alongside mi-
tochondrial genome sequence [Lareau et al., 2020, Ludwig
et al., 2019, Xu et al., 2019]. As the mitochondrial genome
mutates at a much higher rate than the nuclear genome, and
mitochondrial mutations are inherited over cell divisions, mea-
suring mitochondrial genome sequences in single cells can be
informative in reconstructing clonal cell relationships [Lud-
wig et al., 2019, Xu et al., 2019, Lareau et al., 2020]. These
experiments therefore provide an opportunity to study DNA
accessibility differences between or within clonal groups of
cells. To facilitate a joint analysis of these datasets, we devel-
oped computational methods to enable the identification of
informative mitochondrial variants, the calculation of mito-
chondrial variant allele frequencies, and clonal cell clustering
within the Signac framework.

We analyzed a recently published single-cell DNA acces-
sibility and mitochondrial genome sequence coassay dataset
from a patient with a colorectal cancer (CRC) tumor [Lareau
et al., 2020]. We first performed QC, dimension reduction,
and clustering on the DNA accessibility assay, and annotated
the major cell types present in the dataset based on the DNA
accessibility at key marker genes (Figure 4A). This revealed
five major clusters present in the dataset encompassing tumor-
derived epithelial cells, basophils, myeloid cells, and T cells,
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as previously reported [Lareau et al., 2020]. To identify the
clonal relationships between cells in the CRC dataset, we
identified highly variable mitochondrial genome positions
among the cells by computing the variance-mean ratio and
the Pearson correlation between strand coverage (Figure 4B).
Visualization of per-cell allele frequencies (fraction hetero-
plasmy) for these variants in the two-dimensional UMAP
space computed using the DNA accessibility assay revealed
the variant 16147C>T present at nearly 100% frequency in
the tumor-derived epithelial cells, while other variants were
shared across different immune cell types (Figure 4C). We
further identified cell clones by clustering the allele frequency
data, revealing 10 distinct clones (Figure 4D). Clones 1, 2,
and 4 were highly specific to the epithelial cells, whereas
other clones were dispersed more evenly across the differ-
ent immune cell types, indicating that those immune cells
likely originated from a common hematopoietic progenitor.
We further identified differential DNA accessibility peaks be-
tween the three different epithelial cell clones, highlighting
the ability of the additional clonotype data to aid in identifying
additional sources of chromatin state heterogeneity within a
cell type (Figure 4E).

Scalable analysis of single-cell chromatin data
Methods are now available that enable the generation of very
large scATAC-seq datasets [Lareau et al., 2019]. This presents
opportunities to deeply characterize the chromatin state of
tissues at single-cell resolution, but also raises the need for
computational tools that similarly scale to large cell numbers.
To demonstrate the scalability of Signac to datasets of this
size, we re-analyzed a recently published scATAC-seq dataset
from several regions of the adult mouse brain generated by
the Brain Initiative Cell Census Network (BICCN) [Li et al.,
2020]. After removing low-quality cells defined by low nu-
cleosome signal and TSS enrichment QC metrics, this dataset
contained 733,526 cells from 45 different brain regions.

We processed the entire dataset using a similar analy-
sis workflow to that shown above for PBMCs, including the
quantification of fragment counts per cell for each peak, com-
puting per-cell QC metrics, and dimension reduction (Figure
5A). This revealed the diversity of cell types present in the
mouse brain, as shown previously [Li et al., 2020]. To ex-
plore how the runtime and memory usage of different analysis
steps scaled with different cell numbers, we downsampled
the total number of cells in the BICCN dataset from 733,526
(the full dataset) down to 50,000 cells and re-ran the quan-
tification (FeatureMatrix function), quality control (Nucleo-
someSignal and TSSEnrichment functions), and dimension
reduction (RunTFIDF and RunSVD functions) steps (Figure
5B-F). For the FeatureMatrix step, which can be run in paral-
lel, we also tested with 1, 2, 4 or 8 cores (Figure 5B). These
results revealed a general trend of approximately linear in-
creases in runtime and memory requirements for increasing
dataset sizes, and provides a valuable benchmark resource
for those planning experiments and estimating the time and

resources required to analyze single-cell chromatin datasets
with the Signac package.

Figure 5. Scalable analysis of scATAC-seq data.
(A) UMAP projection of the full BICCN mouse brain scATAC-seq
dataset, with cells colored by the region of the mouse brain that they
were sampled from. Runtime and peak memory usage for running
(B) FeatureMatrix, (C) NucleosomeSignal, (D) TSSEnrichment, (E)
RunTFIDF, and (F) RunSVD for varying numbers of cells.

Discussion
As experimental methods for measuring aspects of chromatin
state at single-cell resolution continue to be developed and
improved, the parallel development of computational tools
designed to analyse these datasets becomes increasingly im-
portant. Here, we developed Signac for the analysis of single-
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cell chromatin data, building on our existing Seurat toolkit
[Butler et al., 2018, Stuart et al., 2019, Hao et al., 2020], and
demonstrated running key analysis steps using Signac for the
analysis of both unimodal and multimodal single-cell chro-
matin datasets. These analysis steps can be scaled to datasets
containing >700,000 cells, and the scalability of these meth-
ods will become particularly important as large-scale cell atlas
projects are completed [Li et al., 2020]. We further developed
a simple modification to the popular LSI dimension reduction
method that improved the performance of LSI when applied to
single-cell chromatin data, particularly for datasets with low
sensitivity. Furthermore, Signac enables running other tools
developed by the community for the analysis of single-cell
chromatin data, including chromVAR for estimating DNA
motif variability between cells [Schep et al., 2017], Mono-
cle for building pseudotime trajectories [Cao et al., 2019],
Cicero for finding co-accessible networks of peaks [Pliner
et al., 2018], and Harmony for performing dataset integration
[Korsunsky et al., 2019]. As additional experimental methods
for measuring multiple aspects of cell state are developed, a
major challenge is to analyze these diverse datasets together
in a consistent framework to learn how different modalities
influence one another. The Seurat framework, via the exten-
sible Assay class, is an appealing solution for the analysis of
multimodal single-cell data, and we envision future compu-
tation methods will further build on the Seurat and Signac
frameworks to jointly analyze multimodal single-cell datasets.
A major challenge currently facing biology is understanding
how the genome encodes the organism [Brenner, 2010]. De-
veloping a deep understanding of how genes are regulated by
noncoding DNA elements would greatly improve our ability
to predict the effect of mutations, and to predict the target
genes for trait-associated non-coding loci. A joint analysis
multimodal single-cell chromatin and gene expression data
hold great promise in furthering these goals, and the analytical
framework presented here will be a valuable component in
deciphering these gene regulatory relationships.

Code and data availability
Signac is available on CRAN (https://cloud.r-project.org/
package=Signac) and on GitHub (https://github.com/timoast/
signac), with documentation and tutorials available at
https://satijalab.org/signac/. All code used in this paper is
available on GitHub: https://github.com/timoast/signac-paper.
All data used in the paper is publicly available. The PBMC
multiomic dataset is available from 10x Genomics: https:
//support.10xgenomics.com/single-cell-multiome-atac-gex/
datasets/1.0.0/pbmc_granulocyte_sorted_10k. Data from
the Brain Initiative Cell Census Network is available
from the Neuroscience Multi-omic Archive (NeMO): https:
//nemoarchive.org/. Data for the colorectal cancer patient
sample is available on NCBI GEO (GSE148509) and Zenodo
(https://zenodo.org/record/3977808).

Methods
Signac 1.1.0 was used for all analyses and is available
on CRAN (https://cloud.r-project.org/package=Signac) and
GitHub (https://github.com/timoast/signac/). R version 4.0.3
was used for all analyses, with standard BLAS and LAPACK
libraries linked, running on Ubuntu 18.04.4 LTS with Intel
Xeon W-2135 CPUs at 3.70GHz.

Data structures
We extended the Seurat Assay class via the R-language class
inheritance framework to create the ChromatinAssay class for
single-cell chromatin data analysis. We extended the Assay
class to add slots for the storage of genomic ranges, DNA
motifs, genome build information, gene annotations, Tn5 in-
sertion bias, positional enrichment information, genomic links,
and linked on-disk data storage as fragment files.

The fragment file is a data format introduced by 10x Ge-
nomics for the storage of scATAC-seq data. Fragment files are
defined as coordinate-sorted, block gzip-compressed (bgzip)
and indexed browser-extensible data (BED) files with the fol-
lowing five columns: chromosome, start, end, cell barcode,
PCR duplicate count. The start and end fields of the fragment
file correspond to positions of the two Tn5 integration events
that generated the sequenced DNA fragment. As the fragment
file contains a deduplicated and near-complete representation
of a single-cell chromatin experiment, and existing tools are
established to efficiently retrieve subsets of a fragment file
that overlap a given set of genomic regions [Li, 2011, Morgan
et al., 2020], we utilized the fragment file format as the central
disk-based data structure in the Signac framework, and is the
only requirement for running a single-cell data analysis using
Signac.

To facilitate the construction of a fragment file outside
of running the 10x Genomics Cellranger software, we devel-
oped a Python package (Sinto) capable of generating the frag-
ment file from a BAM file. This software is available on the
Python Package Index (PyPI; https://pypi.org/project/sinto/)
and GitHub (https://github.com/timoast/sinto).

Quality control metrics
Nucleosome signal
Nucleosome signal was defined as the ratio of mononucleo-
somal (147-294 bp) to nucleosome-free (<147 bp) fragments
sequenced for the cell. To compute the nucleosome signal per
cell, we sampled the first n fragments from the fragment file,
where n was the total number of cells in the dataset multiplied
by 10,000. We then divide the number of mononucleoso-
mal fragments per cell by the number of nucleosome-free
fragments. This was implemented in the NucleosomeSignal
function in Signac.

TSS enrichment
The transcriptional start site (TSS) enrichment score was orig-
inally defined by the ENCODE consortium [ENCODE Project
Consortium, 2012] as a signal-to-noise metric for ATAC-seq
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experiments. The TSS score was defined as the mean number
of Tn5 insertion events centered on the TSS sites (+/- 500 bp
of the TSS) divided by the mean Tn5 insertion count at TSS-
flanking regions, defined as +900 to +1000 and -900 to -1000
bp from the TSS. Calculation of the TSS enrichment score
per-cell was implemented in the TSSEnrichment function in
Signac.

Dimension reduction
Latent semantic indexing
Latent semantic indexing (LSI) involves two steps. First,
we compute the term-frequency (TF) inverse-document-
frequency (IDF) matrix from the count matrix. Term fre-
quency was defined as T F =Ci j/Fj where Ci j was the total
number of counts for peak i in cell j and Fj was the total
number of counts for cell j. Inverse document frequency was
defined as IDF = N/ni, where N was the total number of cells
in the dataset and ni was the total number of counts for peak
i across all cells. The TF-IDF matrix was then computed as
T FIDF = log(1+(T F × IDF)×104). For comparison with
previously-published LSI methods [Cusanovich et al., 2015],
we also computed IDF as IDF = log(1+N/ni) and subse-
quently TF-IDF as T F × IDF . This was implemented in the
RunTFIDF function in Signac, with the "method" argument
used to choose the TF-IDF method used. We decomposed the
resulting TF-IDF matrix via truncated singular value decompo-
sition (SVD) using the irlba R package [Baglama et al., 2019,
Baglama and Reichel, 2005], implemented in the RunSVD
function in Signac.

UMAP
We performed UMAP using the RunUMAP function in the
Seurat package (v3.2.0) using LSI components 2 to 40 for
the PBMC dataset, components 2 to 50 for the CRC tumor
dataset, and 2 to 100 for the BICCN mouse brain dataset. The
first LSI component was excluded from each analysis as it
typically captures sequencing depth (technical variation), and
was highly correlated with the total number of counts for the
cell. The RunUMAP function uses the uwot R package to
compute two-dimensional UMAP coordinates [McInnes and
Healy, 2018, Melville, 2020].

Genome browser visualization
A common analysis task for single-cell chromatin data is
genome browser-style data visualization for different groups
of cells. Signac enables such visualizations with cells dynam-
ically grouped into different pseudo-bulk tracks by reading
Tn5 integration data from a position-indexed fragment file
[Li, 2011]. To visualize pseudo-bulk accessibility tracks for
different groups of cells, we constructed a sparse matrix of
base-resolution Tn5 integration events, where each row was
a cell and each column a DNA base in the requested region.
We then grouped cells and computed the total accessibility
at each site within each group, and scaled the total accessi-
bility within each group by the total number of cells in the
group and the average total counts for cells in each group to

account for differences in overall chromatin signal and cell
number between different groups of cells. We then smoothed
the chromatin signal across small regions by computing a
rolling window sum across the genomic region for each group
of cells (using a window size of 100 bp by default). This
was implemented in the CoveragePlot function in Signac. We
also implemented an interactive version of the CoveragePlot
function using the Shiny Gadgets framework in R [Chang
et al., 2020] as the CoverageBrowser function in Signac. The
interactive CoverageBrowser provides the same functionality
as CoveragePlot, but additionally allows interactive naviga-
tion to different genomic regions and dynamic regrouping of
cells.

One major advantage of genome browser-style visual-
izations is the ability to stack different data visualizations
conveying different information as different browser tracks.
We further built this concept into the CoveragePlot and Cov-
erageBrowser functions in Signac by including the ability to
plot additional tracks displaying gene expression information,
gene annotations, peak coordinates, genomic links, genomic
ranges, or the presence/absence of Tn5 integration events in
individual cells as genomic "tile" plots.

PBMC analysis
We downloaded data for human PBMCs processed using
the 10x Genomics Multiome (ATAC + RNA) method from
the 10x Genomics website (https://support.10xgenomics.
com/single-cell-multiome-atac-gex/datasets/1.0.0/pbmc_
granulocyte_sorted_10k).

Quality control and cell filtering
We computed the nucleosome signal score and TSS enrich-
ment score for each cell as described above. We retained
cells with a TSS enrichment score greater than 1, a nucleo-
some signal score less than 2, between 1,000 and 100,000
total ATAC-seq counts (based on the 10x Cellranger ATAC-
seq count matrix), and between 1,000 and 25,000 total RNA
counts.

Gene expression data preprocessing and cell annotation
We normalized the gene expression UMI count data using
SCTransform [Hafemeister and Satija, 2019] and performed
principal component analysis (PCA) on the SCTransform
Pearson residual matrix using the RunPCA function in Seurat.
We found the 20 nearest neighbors for each cell using the
FindNeighbors function, with dims=1:50 to use the first 50
principal components, and annotated cell types in the PBMC
dataset by label transfer from a publicly available multimodal
PBMC reference dataset [Hao et al., 2020]. We identified an-
chor cells [Stuart et al., 2019] between the query and reference
datasets using the FindTransferAnchors function in Seurat v4,
with reference.reduction=’spca’ to use a precomputed refer-
ence dimensional reduction object. We then computed cell
type predictions for each cell in the query using the Transfer-
Data function in Seurat. As erythrocytes are not nucleated
and the query PBMC dataset was derived from cell nuclei,
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we assigned a small number of cells that were incorrectly
predicted as erythrocytes to the most common predicted class
of those cells’ 20 nearest neighbors.

DNA accessibility data processing
ATAC-seq peaks in the PBMC dataset were identified using
MACS2 [Zhang et al., 2008] with the following arguments:
-g 2.7e9 -f BED –nomodel –extsize 200 –shift -100 –max-gap
50. We used the fragment file as input to the peak calling algo-
rithm, as this contained the deduplicated Tn5 insertion sites for
each cell. Peak calling was performed for each cell type using
the CallPeaks function in Signac, with group.by="celltype" to
call peaks on each predicted cell type separately and combine
the resulting peak calls across all cell types. We removed any
peaks overlapping annotated genomic blacklist regions for the
hg38 genome [Amemiya et al., 2019]. We quantified counts
for the resulting peak set for each cell using the FeatureMatrix
function in Signac.

Dimension reduction was performed on the DNA accessi-
bility assay dataset using LSI and UMAP as described above.
We performed graph-based clustering on the LSI components
2 to 40 using the Smart Local Moving algorithm (function
FindNeighbors with dimensions=2:40 and reduction="lsi" fol-
lowed by FindClusters with algorithm=3 in Seurat v3.2.0)
[Waltman and van Eck, 2013].

Joint data visualization
We computed a weighted nearest neighbor (WNN) graph for
the DNA accessibility and gene expression assays using the
FindMultiModalNeighbors function in Seurat v4, with reduc-
tion.list=list("pca", "lsi") and dims.list=list(1:50, 2:40) to use
the PCA dimension reduction with dimensions 1 to 50 for
the gene expression assay and the LSI dimension reduction
with dimensions 2 to 40 for the DNA accessibility assay [Hao
et al., 2020]. This produced a neighbor graph encompassing
information from both data modalities. We then computed a
2-dimensional UMAP visualization using this WNN graph, us-
ing the RunUMAP function in Seurat, with nn.name="wknn"
to use the multimodal WNN graph.

Differential accessibility
Differentially accessibility between features was computed
using the FindMarkers function in Seurat v3.2.0, using the
logistic regression method [Ntranos et al., 2019] with the
total number of counts in each group of cells added as a la-
tent variable in the logistic regression models (method="LR",
latent.vars="nCount_ATAC"). We classified peaks with an ad-
justed p-value (Bonferroni corrected) less than 0.05 as being
differentially accessible between the cell groups.

Motif enrichment
A hypergeometric test was used to test for overrepresenta-
tion of each DNA motif in the set of differentially accessible
peaks compared to a background set of peaks. We tested
motifs present in the JASPAR database [Fornes et al., 2020]
for human (species code 9606) by first identifying which
peaks contained each motif using the motifmatchr R package

[Schep, 2020]. We computed the GC content (percentage of
G and C nucleotides) for each differentially accessible peak
and sampled a background set of 40,000 peaks such that the
background set was matched for overall GC content, accessi-
bility, and peak width. This was performed using the FindMo-
tifs function in Signac, with features.match=c("GC.percent",
"count", "sequence.length").

Motif footprinting
We performed transcription factor motif footprinting follow-
ing previously described methods [Corces et al., 2018]. To
account for Tn5 sequence insertion bias, we first computed
the observed Tn5 insertion frequency at each DNA hexamer
using all Tn5 insertions on chromosome 1. This was done
by extracting the base-resolution Tn5 insertion positions for
each fragment mapped to chromosome 1, and extending the
insertion coordinate 3 bp upstream and 2 bp downstream.
We then extracted the DNA sequence corresponding to these
coordinates using the getSeq function from the Biostrings
R package [Pagès et al., 2020] and counted the frequency of
each hexamer using the table function in R. We next computed
the expected Tn5 hexamer insertion frequencies based on the
frequency of each hexamer on chromosome 1. We counted
the frequency of each hexamer using the oligonucleotideFre-
quency function in the Biostrings package with width=6 and
names="chr1", using the hg38 genome via the BSgenome
R package [Pagès, 2020]. Finally, we computed the Tn5 in-
sertion bias as the observed Tn5 insertions divided by the
expected insertions at each hexamer. This was performed
using the InsertionBias function in Signac.

To perform motif footprinting, we first identified the coor-
dinates of each instance of the motif to be footprinted using
the matchMotifs function from the motifmatchr package with
out="positions" to return the genomic coordinates of each
motif instance [Schep, 2020]. Motif coordinates were then
resized to include the +/-250 bp sequence. The Tn5 inser-
tion frequency was counted at each position in the region for
each motif instance to produce a matrix containing the total
observed Tn5 insertion events at each position relative to the
motif center for each cell. We then found the expected Tn5 in-
sertion frequency matrix by computing the hexamer frequency
matrix, M. The hexamer frequency matrix M was defined as a
matrix with i rows corresponding to i different DNA hexamers
and j columns corresponding to j positions centered on the
motif, and each entry Mi j corresponded to the hexamer count
for hexamer i at position j. To find the expected Tn5 insertion
frequency at each position relative to the motif given the Tn5
insertion bias (see above), we computed the matrix cross prod-
uct between the hexamer frequency matrix M and the Tn5
insertion bias vector. Finally, the expected Tn5 insertion fre-
quencies were normalized by dividing by the mean expected
frequency in the 50 bp flanking regions (the regions 200 to
250 bp from the motif). To correct for Tn5 insertion bias we
subtracted the expected Tn5 insertion frequencies from the
observed Tn5 insertion frequencies at each position. This was
performed using the Footprint function in Signac.
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Peak-to-gene linkage
We estimated a linkage score for each peak-gene pair using
linear regression models, based on recent work described in
the SHARE-seq method [Ma et al., 2020]. For each gene,
we computed the Pearson correlation coefficient r between
the gene expression and the accessibility of each peak within
500 kb of the gene TSS. For each peak, we then computed
a background set of expected correlation coefficients given
properties of the peak by randomly sampling 200 peaks lo-
cated on a different chromosome to the gene, matched for
GC content, accessibility, and sequence length (MatchRegion-
Stats function in Signac). We then computed the Pearson
correlation between the expression of the gene and the set of
background peaks. A z-score was computed for each peak
as z = (r − µ)/σ , where µ was the background mean cor-
relation coefficient and σ was the standard deviation of the
background correlation coefficients for the peak. We com-
puted a p-value for each peak using a one-sided z-test, and
retained peak-gene links with a p-value < 0.05 and a Pearson
correlation coefficient > 0.05 or < -0.05. This was performed
using the LinkPeaks function in Signac.

Fine-mapped eQTL analysis
eQTL variants for whole blood that were fine-mapped using
CAVIAR [Hormozdiari et al., 2014] were downloaded from
the GTEx v8 website (https://storage.googleapis.com/gtex_
analysis_v8/single_tissue_qtl_data/GTEx_v8_finemapping_
CAVIAR.tar) [GTEx Consortium, 2020]. For each fine-
mapped eQTL overlapping a peak that was linked to a gene
in our analysis we counted the number of times the eQTL-
associated gene was the same as the linked gene. Cases where
multiple fine-mapped eQTLs associated with the same gene
overlapped the same peak were treated as a single variant.
To find the expected overlap based on random chance, we
selected a set of peaks for each gene at random from the peaks
within 500 kb of the gene TSS, with the number of peaks
selected equal to the number of linked peaks for that gene.
We then repeated the same eQTL overlap analysis using the
randomized link set, as described above.

Count downsampling analysis
To test the impact of sequencing depth and assay sensitivity
on the performance of different TF-IDF methods, we down-
sampled the total number of counts per cell from 100% (the
full dataset) down to 80%, 60%, 40%, and 20% using the
downsampleMatrix function from the DropletUtils R package
[Griffiths et al., 2018, Lun et al., 2019]. For each downsam-
pling, we re-ran TF-IDF using the Signac RunTFIDF func-
tion with either method=1 or method=2 to compare TF-IDF
methods, followed by SVD and UMAP using the RunSVD
and RunUMAP functions in Signac and Seurat. For each
downsampling, we estimated how well the data structure was
preserved compared to the full dataset by computing the k-
nearest neighbor purity. This was defined as the fraction of
k neighbors (where k=100) for each cell i that belonged to
the same annotated cell type as cell i, where cell types were

predicted as described above using the gene expression assay.
We computed nearest neighbors using LSI components 2 to
40, using the RANN R package [Arya et al., 2019].

Colorectal cancer analysis
scATAC-seq data processing
We downloaded processed scATAC-seq counts from Zen-
odo (https://zenodo.org/record/3977808) and the fragment
file from NCBI GEO (GSE148509) and computed the nucleo-
some signal and TSS enrichment score per-cell as described
above, and retained cells with over 1,000 counts and less than
50,000 counts, less than 5% of counts in genomic blacklist
regions, TSS enrichment score over 3, and a nucleosome sig-
nal score less than 4, and a mitochondrial genome sequencing
depth of equal or greater than 10. We performed dimension
reduction using LSI and UMAP as described above, and iden-
tified clusters using the Smart Local Moving algorithm using
the FindClusters function in Seurat with resolution=0.5 and
algorithm=3 [Waltman and van Eck, 2013].

Mitochondrial variant detection
Single-cell mitochondrial variant data processed using mgatk
[Lareau et al., 2020] was downloaded from Zenodo (https:
//zenodo.org/record/3977808), read into R using the Signac
function ReadMGATK, and used to create a Seurat assay. In-
formative mitochondrial variants were identified using the
IdentifyVariants function, which computes the strand concor-
dance in variant counts (Pearson correlation) and the variance-
mean ratio (VMR) for each variant, as previously described
[Lareau et al., 2020]. Informative mitochondrial variants were
selected with a VMR > 0.01 and strand concordance >= 0.65,
provided the variant was confidently detected in >=5 cells. We
then computed per-cell mitochondrial allele frequencies for
informative variants using the AlleleFreq function in Signac.

Clonal clustering
We identified cell clones by performing graph-based cluster-
ing on the square-root-transformed allele frequency matrix
by first creating a neighbor graph using the FindNeighbors
function in Seurat with annoy.metric="cosine" to use the co-
sine distance to define nearest neighbors, and with k=10. We
then performed community detection using the Smart Local
Moving algorithm [Waltman and van Eck, 2013] using the
shared nearest-neighbor graph computed using Seurat. This
was implemented in the FindClonotypes function in Signac.

BICCN analysis and benchmarking
Raw data processing
We downloaded FASTQ files for the BICCN dataset from
NeMO (https://nemoarchive.org/) and mapped the reads to
the mm10 genome using BWA-MEM [Li, 2013]. We cre-
ated a fragment file from the aligned BAM file using sinto
(https://github.com/timoast/sinto) and tabix [Li, 2011]. We
then identified peaks for each brain region using Genrich
(https://github.com/jsh58/Genrich) with the -j parameter for
ATAC-seq data. We retained peaks with a score over 950 and
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unified peaks across brain regions using the reduce function in
the GenomicRanges R package [Lawrence et al., 2013]. After
reducing peaks, we removed outlier peaks larger than 3,000
bp in length. This resulted in a total of 315,334 peaks. Code
to produce the BICCN fragment file and unified peak set is
available at https://github.com/timoast/BICCN.

Cell detection and region quantification
The total number of fragments per cell barcode was computed
using the CountFragments function in Signac. This function
was implemented using C++ and the Rcpp R package [Eddel-
buettel and Balamuta, 2018]. The total fragment counts for
each barcode was then used to determine which barcodes cor-
respond to cells and which correspond to background DNA.
We retained all barcodes with greater than 1,500 total frag-
ment counts for initial peak quantification. We then quantified
the number of fragments overlapping each peak for each cell
using the Signac FeatureMatrix function. This function was
parallelized via the future R package, allowing the user to
determine the parallelization strategy used [Bengtsson, 2020].
Signac also includes a convenience function (GenomeBin-
Matrix) to quantify signal in genomic bins tiling the entire
genome or given chromosomes. Following quantification, we
retained cells containing over 1,000 total counts in peaks and
peaks open in over 100 total cells.

Quality control and dimension reduction
We computed the nucleosome signal as described above, with
n=1e9 to sample the first billion fragments in the fragment
file. We also computed the TSS enrichment score per cell
as described above, using gene annotations for the mouse
genome from the EnsDb.Mmusculus.v79 R package. We
reduced dimensionality using LSI and UMAP as described
above.

Cell downsampling analysis
To test the scalability of key steps in the Signac workflow,
we downsampled the BICCN dataset from the full dataset
(733,526 cells), down to 50,000 cells. We randomly sampled
different cell numbers from the full dataset and used the Fil-
terCells function in Signac to create downsampled fragment
files containing only the cells sampled. We then ran Feature-
Matrix to quantify the total counts per peak (for all 315,334
peaks) using 1, 2, 4, or 8 cores, as well as NucleosomeSignal,
TSSEnrichment, RunTFIDF, and RunSVD on each downsam-
pled dataset and recorded the total runtime for each step in
triplicate. For the FeatureMatrix step, we also profiled the
maximum resident memory using the GNU time command.
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Figure S1. Comparison of peak calling methods for single-cell DNA accessibility data. (A) Comparison of cell-type-specific peak
calling (grey) and bulk peak calling (red) using MACS2. (B) Fraction of cell-type-specific peaks for each cell type that were recovered when
calling peaks on the bulk cell population. (C) Comparison of MACS2 (grey) and Cellranger (red) peak calls.

Figure S2. Reduced dimension representations of individual modalities. Separate UMAP plots constructed from the PBMC multiomic
RNA assay or ATAC assay, with cells colored by predicted cell type.
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