
 1 

An integrative analysis of genomic and exposomic data for complex traits and 1 

phenotypic prediction 2 

 3 

Xuan Zhou1,2,3, S. Hong Lee*1,2,3 4 

 5 

1. Australian Centre for Precision Health, University of South Australia, Adelaide, 6 

South Australia, 5000, Australia. 7 

 8 

2. UniSA Allied Health and Human Performance, University of South Australia, 9 

Adelaide, SA 5000, Australia  10 

 11 

3. South Australian Health and Medical Research Institute, Adelaide, South Australia, 12 

5000, Australia. 13 

 14 

*Correspondence: S. Hong Lee (hong.lee@unisa.edu.au) 15 

 16 

  17 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.09.373704doi: bioRxiv preprint 

mailto:hong.lee@unisa.edu.au
https://doi.org/10.1101/2020.11.09.373704
http://creativecommons.org/licenses/by/4.0/


 2 

Abstract 18 

 19 

Complementary to the genome, the concept of exposome has been proposed to 20 

capture the totality of human environmental exposures. While there has been some 21 

recent progress on the construction of the exposome, few tools exist that can 22 

integrate the genome and exposome for complex trait analyses. Here we propose a 23 

linear mixed model approach to bridge this gap, which jointly models the random 24 

effects of the two omics layers on phenotypes of complex traits. We illustrate our 25 

approach using traits from the UK Biobank (e.g., BMI & height for N ~ 40,000) with a 26 

small fraction of the exposome that comprises 28 lifestyle factors. The joint model of 27 

the genome and exposome explains substantially more phenotypic variance and 28 

significantly improves phenotypic prediction accuracy, compared to the model based 29 

on the genome alone. The additional phenotypic variance captured by the exposome 30 

includes its additive effects as well as non-additive effects such as genome-31 

exposome (gxe) and exposome-exposome (exe) interactions. For example, 19% of 32 

variation in BMI is explained by additive effects of the genome, while additional 7.2% 33 

by additive effects of the exposome, 1.9% by exe interactions and 4.5% by gxe 34 

interactions. Correspondingly, the prediction accuracy for BMI, computed using 35 

Pearson’s correlation between the observed and predicted phenotypes, improves 36 

from 0.15 (based on the genome alone) to 0.35 (based on the genome & exposome). 37 

We also show, using established theories, integrating genomic and exposomic data 38 

is essential to attaining a clinically meaningful level of prediction accuracy for 39 

disease traits. In conclusion, the genomic and exposomic effects can contribute to 40 

phenotypic variation via their latent relationships, i.e. genome-exposome correlation, 41 

and gxe and exe interactions, and modelling these effects has a great potential to 42 

improve phenotypic prediction accuracy and thus holds a great promise for future 43 

clinical practice.  44 
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Introduction 45 

Both genetic and environmental factors underlie phenotypic variance of complex 46 

traits. Understanding the influences of these factors not only helps explain why 47 

individuals differ from one another in phenotypes but also helps predict future 48 

phenotypes, such as disease diagnoses. The proliferation of genotypic data in the 49 

past decades, along with developments in relevant analytic tools, have already 50 

contributed a great deal to understanding phenotypic variations of complex traits1-9, 51 

and enabled phenotypic predictions at a level of accuracy for potential use in clinical 52 

settings10-12. However, these understandings and predictions are bounded by the 53 

heritability of the traits, and for many complex traits, large phenotypic variation 54 

remains unexplained, suggesting substantial environmental contributions to 55 

phenotypic variance. 56 

 57 

Complementary to the genome, the concept of exposome has been proposed to 58 

capture the totality of human environmental exposures, encompassing external as 59 

well as internal environments over the lifetime of a given individual13-15. Similar to 60 

genotypes, exposomic variables are standardised across cohorts16. Since the 61 

inception of the concept, considerable efforts have been made to assess and 62 

characterise the exposome17. For example, the Human Early-Life Exposome project 63 

is a European collaborative effort established to characterize the early-life exposome 64 

which includes all environmental hazards that mothers and children are exposed 65 

to18. Despite the progress in the construction of the exposome, few analytic tools 66 

exist to date that can integrate genomic and exposomic data for complex trait 67 

analyses. We hypothesize that exposomic variables do not only affect phenotypes 68 

on their own but also interact among each other19,20 and with genotypes20,21. In 69 

addition, the estimation of exposomic effects and genomic effects on phenotypes 70 

could be biased, if these effects are correlated but the estimation model assumes 71 

otherwise22. Hence, tools that integrate genomic and exposomic data are required to 72 

capture variance as well as covariance components of phenotypes. 73 

 74 

Here we propose a versatile linear mixed model that fulfils these requirements. The 75 

proposed approach jointly models the random effects of the genome and exposome 76 

and can be extended to capture genome-exposome and exposome-exposome 77 

interactions and genome-exposome correlations in the phenotypic analysis of a 78 

complex trait. It also allows us to model exposomic effects modulated by one or a 79 

few specific environmental variables. We demonstrate the proposed approach using 80 

traits from the UK biobank with 11 complex traits and 28 lifestyle exposures that 81 

were measured using a standard protocol. 82 

  83 
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Results 84 

 85 
Method overview 86 

 87 

We used a novel linear mixed model (LMM) to jointly model the effects of the 88 

genome and exposome on the phenotypes of a complex trait. The exposome here is 89 

restricted to 28 lifestyle exposures that were measured using a standard protocol 90 

(see Methods). Our model has three key features. First, it allows estimation of the 91 

correlation between genomic and exposomic effects, relaxing the assumption of 92 

independence between those effects as in a conventional LMM22. Second, the model 93 

can capture both additive and non-additive effects of the exposome and genome, i.e. 94 

pair-wise interactions between exposomic variables (exe interactions; e.g.19) and 95 

interactions between exposomic variables and genotypes (i.e., gxe interactions; 96 

e.g.21). Third, the model can handle correlated exposomic variables (see Methods & 97 

Supplementary Note 1) that may cause biased variance estimations of exposomic 98 

variables (e.g.20). 99 

 100 

To illustrate the use of the model with real data, we selected 11 complex traits from 101 

the UK Biobank with heritability estimates above 0.05, including BMI, sitting height 102 

and years of education etc. (https://nealelab.github.io/UKBB_ldsc/), along with 28 103 

lifestyle variables, including alcohol use, smoking, physical activity and dietary 104 

composition (see Methods for a detailed description). We performed the following 105 

analyses. First, for each trait, we used various models to estimate variance 106 

components of the additive and non-additive effects of the exposome and genome, 107 

including exe interactions and gxe interactions. The significance of the variance 108 

components was determined through a series of model comparisons using likelihood 109 

ratio tests (Table 1). Second, we extended the proposed model to examine the 110 

extent to which exposomic effects are modulated by covariates such as age, sex and 111 

socio-economic status (i.e., exc interactions). Third, we used 5-fold cross validation 112 

to show that the prediction accuracy increased significantly after accounting for the 113 

exposomic effects and exe interactions. Finally, we explored the potential clinical use 114 

of the proposed integrative analysis of genomic and exposomic data, by projecting 115 

its prediction accuracy for a disease trait in terms of the area under the receiver 116 

operating characteristic curve (AUC). The projection was based on well-established 117 

theories23-30 that express AUC as a function of sample size, proportions of variance 118 

explained by genomic and exposomic effects and the population prevalence of the 119 

disease. 120 

 121 

Exposomic effects on phenotypes 122 

 123 

In line with previous estimation (https://nealelab.github.io/UKBB_ldsc/), we found 124 

significant SNP-based heritability for all selected traits, with estimates ranging 125 

between 0.08 (years of education) and 0.52 (standing height; Figure 1). We detected 126 

robust additive effects of the lifestyle-exposome on phenotypes of all traits (see 127 

Figure 1 for e and Table 1 for p-values under H0 σe
2 = 0). The magnitude of these 128 

additive effects, however, varied across traits. For example, the exposome 129 

accounted for 8.5% of the phenotypic variance of waist circumference, but less than 130 
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2.5 % for height, standing height, heel bone mineral density and fluid intelligence. 131 

Importantly, the additive exposomic effects were mostly uncorrelated with the genetic 132 

effects (see Table 1 for p-values under H0 σg,e = 0; see Supplementary Table 1 for 133 

covariance estimates), which was notably different from the genome-transcriptome 134 

correlation22. 135 

 136 

The estimated variance component of non-additive effects of the lifestyle-exposome 137 

(exe) was highly significant for 7 out 11 traits (Table 1), although they only account 138 

for ~ 1% to 2% of phenotypic variance (See Figure 1 & Supplementary Table 2). By 139 

contrast, significant gxe interactions are only evident for BMI, weight and years of 140 

education (Table 1), but they could account for up to 9% of total phenotypic variance 141 

(years of education; Figure 1 & Supplementary Table 2). The low presence of gxe 142 

signals is probably due to relatively low power of detecting gxe interactions, which is 143 

caused by a large number of pairs of gxe interaction terms to be estimated in the 144 

model, i.e. 28 (number of exposomic variables) x 1.3 million (number of SNPs) in this 145 

study. In addition, the identified gxe and exe interactions are orthogonal to each 146 

other. This is evidenced by that both gxe and exe remained significant when being 147 

jointly modelled (see p-values under H0 σgxe|exe = 0 and under H0 σexe|gxe = 0). 148 

 149 

By extending the proposed model to a reaction normal model (RNM; see Methods), 150 

we examined whether the additive exposomic effects on phenotype vary depending 151 

on specific covariates, which would be evidenced by the presence of significant exc 152 

interactions. Using single-covariate RNMs, we identified several significant exc 153 

interactions (Supplementary Table 3), noting that most covariates are lifestyle related, 154 

which are in line with the exe interactions found above. For each trait, we then fitted 155 

an RNM model that simultaneously includes all significant exc interactions identified 156 

from single-covariate RNM analyses. The variance estimates of exc interactions from 157 

the joint analyses are presented in Supplementary Table 7. 158 

 159 

It is important to note that the estimation of exposomic effects is sensitive to the 160 

correlation structure of exposomic variables. Specifically, multicollinearity between 161 

exposomic variables would bias the estimate of σe
2 (Supplemental Note 1); and by 162 

extension, correlated exe interaction terms and gxe interaction terms (Equations 3 & 163 

4 in Table 2) would bias the estimates of σexe
2  and σgxe

2 , unless their true values are 164 

small (e.g., σgxe
2  = 0.1 and σexe

2  = 0.1 in our simulations). Without knowing the true 165 

values of variance components, transforming exposomic variables and interaction 166 

terms using a principal component analysis (see Methods & Supplemental Note 1) 167 

seems necessary prior to model fitting in order to avoid estimation bias due to 168 

multicollinearity. While transforming the exposomic variables and the exe interaction 169 

terms are computationally trivial, transforming the gxe interaction terms is 170 

computationally infeasible (28 x 1.3 million variables). Nonetheless, the variance of 171 

gxe interactions is small in general, suggesting that using the gxe interaction terms 172 

without the transformation (i.e., derived from 𝐆⨂𝐄  in Equation 3 of Table 2) is 173 

generally free from the estimation bias due to multicollinearity. Note that the largest 174 

variance estimate of gxe interactions in this study is ~0.09. 175 

 176 
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Validation of exposomic effects 177 

 178 

Using 5-fold cross-validation, we found that both additive (e) and non-additive effects 179 

(exe) of the exposome, which were significantly estimated from the discovery dataset, 180 

could improve the phenotypic prediction accuracy in the target dataset. In general, 181 

the larger the variance estimates, the greater the prediction improvements (Figures 182 

2a & 2b), which indicates that the additive effects of the exposomic variables and 183 

exe interactions are genuine. Similarly, we also validated the exposomic effects 184 

modulated by specific covariates, by showing that the larger the total variance 185 

estimates of exc interactions, the greater the improvement of predication accuracy 186 

(Figure 3). The validated exc interactions would in part explain the phenotypic 187 

variance due to residual x covariate interactions found in our previous studies31,32. 188 

 189 

By contrast, although gxe interactions contribute to the phenotypic variance of BMI, 190 

weight and years of eduation (Table 1), the contribution did not lead to significant 191 

gains in phenotypic prediction accuracy (Supplementary Figure 1). This was most 192 

likely due to a lack of power. i.e. the size of discovery samples was insufficient to 193 

accurately estimate an extremely large number of parameters, i.e., best linear 194 

unbiased prediction (BLUPs) of gxe interaction effects23,27,28,33. This is further verified 195 

using simulations (see Supplementary Note 2 and Supplementary Figure 2). 196 

 197 

Given the sample sizes of the discovery data sets (~28,000), the prediction 198 

accuracies of the model y = g + ε for the selected traits are only between 1/3 and 1/2 199 

of the theoretical maximums (i.e., square root of heritability; Supplementary Figure 3). 200 

They can improve, in theory, by increasing the sample size of discovery sets 201 

(Supplementary Figure 3); or, as shown in the above, by accounting for the additive 202 

effects of the exposome and exe interactions (Figures 2b & 2c). To examine 203 

prediction efficiency of the latter, we projected the observed prediction accuracies of 204 

the models y = g + e + ε and y = g + e + exe + ε onto the theoretical trajectory of 205 

prediction accuracies of the model y = g + ε as a function of the sample sizes of 206 

discovery datasets (Supplementary Figure 3). As such, the use of exposomic 207 

information could improve phenotypic prediction accuracy to the same extent as a 208 

1.2 to 14-fold increase in sample size, depending on the significance of the 209 

exposomic effects and their interactions (Figure 4). Given the substantial costs and 210 

efforts associated with increasing sample size, the improved predictive accuracy by 211 

the models y = g + e + ε and y = g + e + exe + ε are considerable, despite the fact 212 

that the proportion of phenotypic variance explained by the exposome is small (see 213 

the x-axis of Figures 2b & 2c). 214 

 215 

Quantification of clinical relevance 216 

 217 

We quantified the clinical relevance of the proposed model by exploring its prediction 218 

accuracy for quantitative traits and disease traits. For quantitative traits, we 219 

expressed the prediction accuracy of the model y = g + e + ε (i.e., correlation 220 

coefficient between the true and predicted phenotypes) as a function of the sample 221 

size of the discovery dataset, variances explained by the genome and exposome, 222 

and effective numbers of (independent) SNPs and exposomic variables (see 223 
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Methods), using previous theoretical derivations27-30,33. Based on the derived 224 

expression (Equation 6), we computed the expected prediction accuracies for the 225 

quantitative traits used in this study and found that they agreed well with the 226 

observed prediction accuracies from the 5-fold cross validation (Supplementary 227 

Figure 4). We then extended the derived expression to disease traits in terms of the 228 

area under the operative characteristic curve (AUC; see Equation 10 in Methods for 229 

details) using well-established theories23-26. AUC is a gold-standard measure used to 230 

evaluate how well a prediction model discriminates diseased from non-diseased 231 

individuals. An AUC between 0.7 to 0.8 is considered acceptable, 0.8 to 0.9 excellent, 232 

and above 0.9 outstanding34. Figure 5 shows the expected AUC of the proposed 233 

integrative analysis of genomic and exposomic data for disease traits of different 234 

values of population prevalence (k), assuming different amounts of variance (on the 235 

liability scale) explained by the genome and exposome and discovery sample sizes. 236 

For simplicity, we use σe.tot
2  to denote the total variance in disease liability explained 237 

by additive effects of the exposome and exe interactions as a whole.  238 

 239 

When setting σe.tot
2  to 0—that is, using no exposomic information at all—varying the 240 

heritability of disease liability h2 from 0 to 0.3 improves AUC from 0.5 to ~ 0.6 when 241 

the sample size of the discovery set is 50k. This is in contrast to a 2-fold 242 

improvement, from 0.5 to ~ 0.7, when the sample size is 500k. Thus, genomic 243 

prediction accuracy heavily relies on sample size, such that for a disease trait with a 244 

moderate heritability, a clinically meaningful level of accuracy (AUC >=0.7) may not 245 

be attainable unless the sample size of the discovery dataset is substantially large (> 246 

= 500k). On the other hand, the benefit of using exposomic information to disease 247 

prediction can be realised with a relatively small discovery sample. This is evidenced 248 

by that when setting h2 to 0 (i.e., using no genomic information at all), increasing the 249 

value of σe.tot
2  has the same effects on AUC whether using a discovery sample of 50k 250 

or 500k individuals. Notably, for a moderately heritable disease that affects 1% of the 251 

population, with a discovery dataset of 50k individuals, a collection of exposomic 252 

variables that together explains ~30% of the variance in disease liability is sufficient 253 

to yield an AUC greater than 0.85 for the target sample (see area under ROC when 254 

h2 = 0.3, k = 0.01, σe.tot
2  = 0.3 & N = 50k in Figure 5). Importantly, in all scenarios, 255 

AUC consistently improves with increasing σe.tot
2 . Thus, incorporating exposomic 256 

data is not only an efficient but also an effective way of improving prediction 257 

accuracy based on genomic data alone. Taken together, genomic prediction 258 

accuracy for disease traits is constrained by sample size; with a relatively small 259 

sample at hand, a desired level of prediction accuracy may only be achieved by 260 

combining genomic and exposomic information. 261 

  262 
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Discussion 263 

 264 

Using our approach, we demonstrate the importance of the exposome for 265 

understanding individual differences in phenotypes. Although the ‘exposome’ 266 

constructed in this study comprises only 28 lifestyle factors, when integrated with 267 

genomic data, it explained between 2% to 10% additional phenotypic variance and 268 

significantly improved phenotypic prediction accuracy to a level equivalent to a 1.2 to 269 

14-fold increase in sample size. The additional phenotypic variance is not only from 270 

additive effects of the exposome but also from its non-additive effects (exe) and 271 

genome-exposome interactions (gxe). We expect that as the construction of the 272 

exposome continues to progress, more phenotypic variance will be explained and 273 

greater improvements in phenotypic prediction accuracy will be gained. This would 274 

be particularly promising for phenotypic analysis and prediction of traits with small to 275 

little heritability component, such as ovarian and colorectal cancer35. 276 

 277 

We noted that when exposomic variables are correlated, the variance estimate of 278 

additive effects of exposomic variables is biased unless these variables are 279 

transformed using a principal component analysis (i.e. E in Table 2 should be based 280 

on transformed variables). By extension, this would apply to exe interaction terms 281 

and gxe interactions terms, unless the proportions of phenotypic variance explained 282 

by these interaction effects are small (<10%), as shown in our simulations. These 283 

observations have important implications for modelling environmental effects in 284 

LMMs. Recently, Moore et al.20 proposed the structured linear mixed model 285 

(StructLMM) that incorporates random effects of multiple environments in order to 286 

study the interactions between these environments and genotypes of a single SNP 287 

(i.e., gxe interactions). However, the environmental variables in StructLMM are not 288 

transformed, even though they are very likely correlated, which would have biased 289 

the variance estimate of environmental effects. Consequently, it remains uncertain 290 

the extent to which the estimation bias affects the StructLMM-based test statistics for 291 

detecting gxe interactions. 292 

 293 

Depending on the research question at hand, the construction of the exposome may 294 

be guided by causal analyses. A meaningful exposome may only contain causal 295 

information. Examples may include lifestyles that potentially alter the molecular 296 

pathways or the pathogenesis of the main trait, or biomarkers that potentially explain 297 

possible molecular pathways underlying the phenotypes. As a contrast, in our BMI 298 

analysis, for example, it is not useful to include weight and height as part of the 299 

exposome, even though they would explain a large amount of phenotypic variance. 300 

This is because variations in these traits inform nothing other than the fact that they 301 

are correlated with the trait.  302 

 303 

Heritability estimates were slightly reduced after including more variance 304 

components (result not shown). We considered two possibilities. First, the exposome 305 

may mediate part of additive genetic effects on phenotypes. For example, some 306 

SNPs affect smoking status, which in turn affect BMI. A model that simultaneously 307 

includes genetic and exposomic data would account for smoking status and their 308 

genetic effects, and hence gives arise to reduced heritability estimates. Second, 309 
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there is a genuine correlation between exposomic and genomic effects in some 310 

latent mechanism. It is noted that there are marginally significant correlation 311 

estimates, which were not significant after Bonferroni correction. Such correlation 312 

may be because people who have similar genotypes may somehow share similar 313 

exposures i.e. genotype-environment correlation36. 314 

In conclusion, the genomic and exposomic effects can contribute to phenotypic 315 

variation via their latent relationships, i.e. genome-exposome correlation, and gxe 316 

and exe interactions, for which our proposed method can provide reliable estimates. 317 

We show that the integrative analysis of genomic and exposomic data has a great 318 

potential for understanding genetic and environmental contributions to complex traits 319 

and for improving phenotypic prediction accuracy, and thus holds a great promise for 320 

future clinical practice. 321 

  322 
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Methods 323 

 324 

Ethics statement 325 

 326 

We used data from the UK Biobank (http://www.ukbiobank.ac.uk/) for our analyses. 327 

The UK Biobank’s scientific protocol has been reviewed and approved by the North 328 

West Multi-centre Research Ethics Committee (MREC), National Information 329 

Governance Board for Health & Social Care (NIGB), and Community Health Index 330 

Advisory Group (CHIAG). UK Biobank has obtained informed consent from all 331 

participants. Our access to the UK Biobank data was under the reference number 332 

14575. The research ethics approval of the current study was obtained from the 333 

University of South Australia Human Research Ethics Committee. 334 

 335 

Genotype data 336 

 337 

The UK Biobank contains health-related data from ~ 500,000 participants aged 338 

between 40 and 69, who were recruited throughout the UK between 2006 and 339 

201037. Prior to data analysis, we applied stringent quality control to exclude 340 

unreliable genotypic data. We filtered SNPs with an INFO score (used to indicate the 341 

quality of genotype imputation) < 0.6, a MAF < 0.01, a Hardy-Weinberg equilibrium 342 

p-value <1e-4, or a call rate < 0.95. We then selected HapMap phase III SNPs, 343 

which are known to yield reliable and robust estimates of SNP-based heritability38-40, 344 

for downstream analyses. We filtered individuals who had a genotype-missing rate > 345 

0.05, were non-white British ancestry, or had the first or second ancestry principal 346 

components outside six standard deviations of the population mean. We also applied 347 

quality control on the degree of relatedness between individuals by excluding one of 348 

any pair of individuals with a genomic relationship > 0.025. From the remaining 349 

individuals, we selected those who were included in both the first and second 350 

release of UK Biobank genotype data. Eventually, 408,218 individuals and 1,133,273 351 

SNPs passed the quality control of genotype data.  352 

Phenotype data 353 

 354 

We chose eleven UK Biobank traits available to us that have a heritability estimate 355 

(by an independent open source; https://nealelab.github.io/UKBB_ldsc/) greater than 356 

0.05. These traits are standing height, sitting height, body mass index, heel bone 357 

mineral density, fluid intelligence, weight, waist circumference, hip circumference, 358 

waist-to-hip ratio, diastolic blood pressure and years of education.  359 

 360 

Prior to model fitting, phenotypic data were prepared using R (v3.4.3) in three 361 

sequential steps: 1) adjustment for age, sex, birth year, social economic status (by 362 

Townsend Deprivation Index), population structure (by the first ten principal 363 

components of the genomic relationship matrix estimated using PLINK v1.9), 364 

assessment centre, and genotype batch using linear regression; 2) standardization; 365 

and 3) removal of data points outside +/- 3 standard deviations from the mean. 366 
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 367 

Exposomic variables 368 

 369 

We deliberately selected lifestyle-related variables that are known to affect some of 370 

the selected traits to construct the exposome in this study. These variables include 371 

smoking, alcohol intake, physical activity, and dietary composition. Details of these 372 

variables are listed in Supplementary Table 6. Our aim here is not to cover a 373 

comprehensive set of exposomic variables, but to demonstrate the potential use of 374 

the proposed integrative analysis of genomic and exposomic data for partitioning 375 

phenotypic variance and phenotypic prediction. 376 

 377 

Statistical Models 378 

 379 

We used LMMs to simultaneously model the random effects of the genome and the 380 

exposome. The model equations and their assumed sample variance-covariance 381 

structures are summarized Table 2. In these models, a genomic relationship matrix 382 

(G) was constructed using an n x m1 genotype coefficient matrix (A) as G=𝐀𝐀t

m1
⁄ , 383 

where n is the number of participants and m1 is the number of SNPs. Similarly, an 384 

exposomic relationship matrix (E) was estimated using an n x m2 exposomic variable 385 

matrix (B) as E=𝐁𝐁t

m2
⁄  where m2 is the number of exposomic variables (Table 2). 386 

These relationship matrices were used to estimate the additive effects of the genome 387 

and the exposome. In addition, interaction effects, including gxe, exe and exc, were 388 

also considered in these models (Table 2). 389 

 390 

Principal component-based transformed variables for E  391 

 392 

If the degree of correlation among variables is high, it can cause biased estimates 393 

when the variables are fitted in a model, i.e. multicollinearity problem. Such bias is 394 

also problematic when using correlated exposomic variables to construct E to be 395 

fitted in an LMM to estimate the proportion of the variance explained by the variables 396 

(R2 = σe
2 when phenotypes are standardised with mean zero and variance one). The 397 

R2 can also be obtained from a linear model, i.e. the coefficients of determination. 398 

For problematically correlated variables, principal component regression has been 399 

introduced41. 400 

 401 

A linear model can be written as  402 

𝐲 = 𝐖𝛃 +  𝛆             (1) 403 

 404 

where y is a N vector of phenotypes, W is a column-standardised N x M matrix 405 

having correlated exposomic variables, β is their effects and ε is a vector of residuals.  406 

 407 

When exposomic variables in W are highly correlated, estimated exposomic effects 408 

(β-hat) are inflated due to multicollinearity problem.  409 

From the singular value decomposition, W can be expressed as 410 
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𝐖 = 𝐔𝐃𝐕𝐭  411 

where U is a matrix whose columns contain the left singular vectors of W, D is a 412 

diagonal matrix having a vector containing the singular values of W and V is a 413 

unitary matrix (i.e. VV’=I) whose columns contain the right singular vectors of W.  414 

V can be also obtained from the eigen decomposition of the covariance matrix of the 415 

variables, i.e. 𝐖𝐭𝐖.  416 

The principal component regression approach41 proposes to transform W to a 417 

column-orthogonal matrix, Ω, multiplied by V, which can be written as 418 

 419 

Ω = WV 420 

 421 

Now, we can replace W with Ω in the model as 422 

 423 

𝐲 = 𝛀𝛄 +  𝛆            (2) 424 

 425 

where 𝛄̂ = (𝛀′𝛀)−𝟏𝛀′𝐲 = (𝐖′𝐕′𝐖𝐕)−𝟏𝐖′𝐕′𝐲 = (𝐖′𝐖)−𝟏𝐖′𝐲𝐕′ = 𝛃̂𝐕′.  426 

 427 

Therefore, R2 values obtained from models (1) and (2) are equivalent as 428 

R2 =
∑[y̅−yî]2

∑[y̅−yi]2 =
∑[y̅−(Ωγ̂)i]2

∑[y̅−yi]2 =
∑[y̅−(Ωβ̂V′ )i]

2

∑[y̅−yi]2 =
∑[y̅−(Wβ̂)i]

2

∑[y̅−yi]2  . 429 

  430 

However, equation (2) can avoid a collinearity issue among the variables. Therefore, 431 

model (2) can be extended to a linear mixed model, i.e. the covariance structure can 432 

be constructed based on Ω, i.e. ΩΩ’/m where Ω is column-standardised.  433 

 434 

Suppose a LMM of the form 435 

 436 

𝐲 = 𝐖𝛃 +  𝛆             (3) 437 

where y is a vector of phenotypes for n individuals; W is a n x m matrix that contains 438 

m exposomic variables; β is a vector of random exposomic effects, each assumed 439 

normal with mean zero and variance σe
2/𝑚; and ε is a vector of residuals, each 440 

assumed normal with mean zero and variance σε
2. 441 

 442 

Under this model, phenotypic variance is partitioned as 443 

 444 

var(𝐲) =  σe
2 𝐖𝐖𝐭/m +  σε

2𝐈 ,  445 

where I is the n x n identify matrix.  446 

 447 

When exposomic variables are highly correlated, a transformed W, denoted as Ω, 448 

should be used, to avoid biased σ̂e
2.  449 
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 450 

In a similar manner to the linear models (1) and (2), LMM (3) can be rewritten as 451 

 452 

𝐲 = 𝐔𝐃𝐕𝐭𝛃 +  𝛆   453 

 454 

Since 𝐕𝐭𝐕 = 𝐈  455 

𝐲 = 𝐔𝐃(𝐕𝐭𝐕)𝐕𝐭𝛃 +  𝛆 = (𝐔𝐃𝐕𝐭)𝐕(𝐕𝐭𝛃) +  𝛆 =  𝐖𝐕(𝐕𝐭𝛃) +  𝛆 =  𝛀 (𝐕𝐭𝛃) +  𝛆  456 

 457 

Then  458 

var(𝐲) =  𝛀var(𝐕𝐭𝛃)𝛀𝐭 +  σε
2𝐈 =  𝛀𝐕𝐭var(𝛃)𝐕𝛀𝐭 +  σε

2𝐈 =   σe
2𝐕𝐭𝐕𝛀𝐭/m +  σε

2𝐈 459 

=  σe
2𝛀𝐈𝛀𝐭/m + σε

2𝐈 =  σe
2𝛀𝛀𝐭/m + σε

2𝐈   460 

 461 

Therefore, using column-standardized principal components of exposomic variables 462 

as W for Equation (3) can avoid biased σ̂e
2. This is further verified using simulations.  463 

 464 

Estimation of exc interactions 465 

 466 

We extend the proposed model to a reaction normal model (RNM) by introducing exc 467 

interaction terms, where e is the additive effects of exposomic variables and c is a 468 

covariate. Given the robust additive effects found in the above, the interest of fitting 469 

RNMs is determine whether these effects vary depending on covariates, which 470 

would be evidenced by the presence of significant exc interactions. 471 

 472 

While estimates of σexe
2  inform the phenotypic variance explained by the sum of all 473 

possible combinations of pair-wise interactions between lifestyle-exposomic 474 

variables, it may also be of interest to estimate the modulated exposomic effects 475 

specific to particular covariates, using the reaction norm model (RNM31,32). The 476 

covariates include alcohol intake, smoking, energy intake, physical activity, sex, 477 

socio-economic status (indexed by Townsend deprivation index), age and ethnicity 478 

measured using the first two ancestry principal components. For each covariate, we 479 

fitted the RNM that allows the covariate to interact with exposomic effects and 480 

compared the fit of this model with a null model that assumes no exc interactions 481 

(see Supplementary Table 3 for p-values). Significant covariates were then included 482 

in a subsequent analysis of RNM that fit multiple covariates simultaneously. We 483 

reported the total variance of exc interaction effects in Supplementary Table 7. 484 

 485 

Five-fold cross-validation 486 

 487 

Using 5-fold cross validation, we 1) validate significant variance components 488 

identified above (Table 1) and 2) evaluate the extent to which the inclusion of these 489 

variance components improves phenotypic prediction. For every trait, we randomly 490 

split the sample into a discovery set (~80%) and a target set (~20%) and iterated this 491 

process five times in a manner such that target sets did not overlap across iterations 492 

(see Figure 6 for an outline). We derived the prediction accuracy of each model by 493 

averaging the Pearson’s correlation coefficients between the observed and predicted 494 

phenotypes across target sets; then compared prediction accuracies between 495 
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models (e.g., y = g + ε vs. y = g + e + ε) to determine phenotypic prediction 496 

improvements gained by the inclusion of a given variance component (e.g., var(e)). 497 

For each variance component, we regressed prediction accuracy improvements on 498 

estimates of the variance component and declared the variance component valid if 499 

the slope differs from zero. 500 

 501 

Theoretical prediction accuracy for quantitative traits 502 

 503 

Suppose we predict phenotypes of a quantitative trait (e.g., BMI) with SNP-based 504 

heritability h2 using a discovery dataset of N individuals. Following previous 505 

theoretical derivations23,27-30,33, the genomic prediction accuracy based on the model 506 

y = g + ε can be written as  507 

 508 

rg = √h2 ∙
h2

h2 +M1 N⁄  
          (4) 509 

where M1 is the effective number of chromosome segments, which is a function of 510 

the effective number of population size and can be estimated using the inverse of the 511 

variance of genomic relationships (i.e., G in Table 2) between the discovery and 512 

target samples27-30.  513 

 514 

Assuming that phenotypes are standardized to have mean zero and variance one, if 515 

the total amount of phenotypic variance explained by the exposome is σe
2, Equation 4 516 

can be adapted to describe the prediction accuracy of the model y = e + ε in the form 517 

 518 

re = √σe
2 ∙

σe
2

σe
2 +M2 N⁄  

          (5) 519 

where M2 is analogous to M1 and can be thought of as the effective number of 520 

(independent) exposomic variables. Similar to M1, M2 can be estimated using the 521 

inverse of the variance of exposomic relationships (E in Table 2) between the 522 

discovery and target samples. 523 

 524 

Upon establishing an agreement between expected accuracies, based on Equations 525 

4 and 5, and observed accuracies for the 11 traits in this study (Supplementary 526 

Figure 4), we proceeded to the prediction accuracy of the proposed integrative 527 

analysis of genomic and exposomic data. 528 

 529 

Assuming that the genomic and exposomic effects on phenotypes are uncorrelated, 530 

the prediction accuracy of the model y = g + e + ε can be written as 531 

r = √rg
2  +  re

2            (6) 532 

Equation 6 is verified by an agreement between the expected and observed 533 

prediction accuracies for the 11 traits in this study (Supplementary Figure 4). 534 

 535 

Theoretical prediction accuracy for disease traits 536 

 537 
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Considering a disease trait with a population prevalence k, we derived the expected 538 

prediction accuracy of the model y = g + e + ε for the disease in terms of the 539 

correlation coefficient between the true underlying disease liability and predicted 540 

values from the model23,28,33,42, which can then be converted to an AUC value23-25. 541 

 542 

Similar to rg and re, the expected prediction accuracies for the disease on the liability 543 

scale, denoted as rg
′  (for y = g + ε) and re

′  (for y = e + ε), can be computed using 544 

previous derivations23,28,33,42 as the followings. 545 

 546 

rg
′ =  √h2 ∙

h2z2

h2z2 + [k(1−k)]2 ∙ M1/[p(1−p)∙ N]
       (7) 547 

 548 

where h2 is the SNP-based heritability on the liability scale, N is the discovery 549 

sample size, k is the population prevalence, p is the ratio of cases in the discovery 550 

sample, and z is the density at the threshold on the standard normal distribution 551 

curve.  552 

 553 

 re
′ =  √σe.tot

2 ∙
σe.tot

2 z2

σe.tot
2 z2 + [k(1−k)]2 ∙ M2/[p(1−p)∙ N]

       (8) 554 

 555 

where σe.tot
2  is the total amount of variance explained by the exposome on the liability 556 

scale (i.e., σe
2 + σexe

2 ). Note σe.tot
2  =  σe

2 when σexe
2  =  0. 557 

 558 

 559 

As in Equation 6, we combined rg
′ and re

′  to derive the expected prediction accuracy 560 

on the liability scale for the disease, denoted as r′, under the assumption that the 561 

genetic effects and exposomic effects are uncorrelated. 562 

 563 

r′ = √rg
′2 +  re

′2 .          (9) 564 

 565 

Following a well-established theory23-25,28 that has been verified by a comprehensive 566 

analysis of real data26, we converted r′  to the area under the receiver operating 567 

characteristic curve (AUC) as  568 

 569 

AUC ≈ Ф [
(i−i2)r′2

√r′2{[1−r′2i(i−t)] + [1−r′2i2(i2−t)]}
]                (10) 570 

 571 

where i (=z/k) is the mean liability for diseased individuals, i2 (=-ik/(1-k)) is the mean 572 

liability for non-diseased individuals, t is the threshold on the normal distribution that 573 

truncates the proportion of disease prevalence k and Ф is the cumulative density 574 

function of the normal distribution.  575 

 576 

To derive the AUC values shown in Figure 5, we set p = k, M1 to 50,000 and M2 to 577 

28. M1 (50,000) was estimated from the inverse of the variance of genomic 578 

relationships (G) between the discovery and target samples27,29,30. Similarly, M2 (28) 579 
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was estimated from the inverse of the variance of exposomic relationships (E) 580 

between the discovery and target samples, which agrees with the number of 581 

transformed exposomic variables by a principal component analysis in this study 582 

(see the correlated exposomic variables section in Methods). Note that setting M2 up 583 

to 100 would not yield expected prediction accuracies that notably differ from those 584 

from setting M2 = 28. 585 

  586 
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Table 1. P-values for variance-covariance components of phenotypes of selected traits 
 

● ● ● ● ● ●
● ● ● ● ● ●
● ● ● ● ● ●
● ● ● ● ● ●
● ● ● ● ● ●
● ● ● ● ● ●

Trait N

BMI 35,431 <1.0E-324 0.94 7.0E-07 4.7E-60 1.2E-05 7.4E-59

Standing Height 35,806 5.8E-132 0.07 1.8E-02 4.9E-01 2.0E-02 5.8E-01

Sitting Height 35,553 7.7E-64 0.19 2.4E-03 5.6E-01 2.7E-03 7.0E-01

Heel Bone Mineral Density 16,441 1.5E-33 0.56 2.3E-02 1.2E-01 3.3E-02 1.8E-01

Weight 35,503 <1.0E-324 0.53 3.0E-05 5.7E-47 3.2E-04 5.3E-46

Fluid Intelligence 16,917 4.1E-67 0.32 2.5E-01 8.6E-10 4.3E-01 1.2E-09

Years of Education 35,890 <1.0E-324 0.04 1.0E-17 5.1E-29 1.6E-16 8.0E-28

Waist Circumference 35,589 <1.0E-324 0.69 3.3E-02 3.1E-52 1.7E-01 1.2E-51

Hip Circumference 35,479 <1.0E-324 0.44 8.0E-01 2.5E-32 5.1E-01 2.1E-32

Waist to Hip Ratio 35,759 <1.0E-324 0.56 6.2E-01 1.2E-20 3.3E-01 8.6E-21

Diastolic Blood Pressure 34,100 1.6E-108 0.97 6.2E-02 2.1E-01 6.9E-02 2.4E-01

Note: Bonferroni corrected alpha level for each model comparison = 0.05/66 = 7.6E-04

Statistical Model Model Comparison

p-value under H0:

y                  ε , cov(g, e) = 0

y                  ε ,      

y                  ε ,    ≠  

y                  ε ,      

y                  ε ,      

y                  ε ,      
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Figure 1. Breakdown of phenotypic variance by the model with the best fit. The best 

model for each trait is derived from model comparisons shown in Table 1. g = 

additive genetic effects on phenotypes; e = additive effects of exposomic variables; e 

x e = interaction effects between exposomic variables; g x e = interaction effects 

between genotypes and exposomic variables. Variance components are expressed 

as percentage of total phenotypic variance. 
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Figure 2. Exposomic variables contribute to phenotypic variance and improve phenotypic prediction accuracy. The prediction 

accuracy of a given model was computed using the Pearson’s correlation coefficient between the observed and the predicted by 

the model. For all panels, the least squares line with 95% confidence band is based on a linear model that regressed either 

prediction accuracies (panel a) or predication accuracy improvements (panels b-c) by a model on variance component estimates of 

the model. The p-value is for the t-test statistic (df=7) under the null hypothesis that the slope of the regression line is zero.   
  = 

phenotypic variance explained by additive effects of the genome;   
  = phenotypic variance explained by additive effects of the 

exposome;     
  = phenotypic variance explained by exposome-by-exposome interactions; and  y

  = total phenotypic variance. 

Panel a. Phenotypic prediction accuracies by the baseline model that uses genomic data alone, i.e., y = g+ε, where g = phenotypic 

effects of the genome and ε = residuals. The larger the genetic variance, the greater the prediction accuracy. Panel b. Additive 

effects of the exposomic variables (i.e., e) contribute to phenotypic variance and improve phenotypic prediction accuracy. The 
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greater the additive effects, the larger the gain in phenotypic prediction accuracy. A prediction accuracy improvement (on the y-axis) 

was derived by subtracting the prediction accuracy of the model y = g+ε from that of the model y = g+e+ε. Panel c. Exposome-by-

exposome interactions (i.e., exe interactions) contribute to phenotypic variance and further improve phenotypic prediction accuracy. 

The greater the variance estimate of exe interactions, the larger the gain in phenotypic prediction accuracy. A prediction accuracy 

improvement (on the y-axis) was derived by subtracting the prediction accuracy of the model y = g+e+ε from that of the model y = 

g+e+exe+ε. 
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Figure 3. Positive relationship between phenotypic variance explained by exposome-

by-covariate (exc) interaction effects and prediction accuracy improvement. 

Prediction accuracy improvement is computed by subtracting the prediction accuracy 

of the model y = g + e + ε from that of a model with multiple covariates (see Equation 

6 of Table 2) that are shown to interact with the exposome in univariate exc 

interaction analyses. The least squares line with 95% confidence band is based on a 

linear model that regressed prediction accuracy improvement on phenotypic 

variance explained by exc interactions. The p-value is for the t-test statistic (df=7) 

under the null hypothesis that the slope of the regression line is zero. Significant 

covariates included for each trait can be found in Supplementary Table 3. 
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Figure 4. Additional sample size required for the model y = g + ε to achieve the 

same level of prediction accuracy as y = g + e + ε (blue) and y = g + e + exe + ε 

(red). nt = sample size of the training dataset.  
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Figure 5. Expected prediction accuracy of the proposed integrative analysis of 

genetic and exposomic data for disease traits of different prevalence (k) and 

heritability (h2) at varying levels of total variance explained by the exposome (  .tot
 ) 

and sample size of the discovery dataset (N). Diseases are assumed to have a 

liability of mean zero and variance 1, and both h2 and   .tot
  are on the disease 

liability scale. Prediction accuracy is measured using the area under the receiver 

operating characteristic (ROC) curve, with 0.7 to 0.8 generally being considered 

acceptable, 0.8 to 0.9 excellent, and above 0.9 outstanding. The assumed effective 

number of chromosome segments and the number of exposomic variables are 

50,000 and 28, respectively, which are based on the genomic and exposomic data 

used in this study. However, varying the number of exposomic variables from 28 to 

100 does not have a notable effect on the expected area under the ROC curve. 
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Figure 6. A schematic showing 5-fold cross-validation procedures. i) Randomly assign individuals to 5 groups of an equal size. ii) 

Choose one group as the target set and the remaining four as the training set. Iterate the selection process five times in such a way 

that target sets do not overlap across iterations. Fit 4 models to each training set. iii) For each model, generate the best linear 

unbiased predictions from training sets and project them onto their corresponding target sets to derive predicted phenotypes. 

Compute the phenotypic prediction accuracy for each model by averaging Pearson’s correlation coefficients between the predicted 

and the observed phenotypes across target datasets. 
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Table 2. Model equations and their assumed sample variance-covariance matrices. 

 Model Equation Matrix Notion Sample Variance-Covariance Matrix 

 For individual i = 1, 2, …., n, For y = (y1, y2, …., yn),  
 
1 yi  μ  ∑aijαj

m1

j=1

 εi 

 
 
where yi is the phenotype, μ is the grand mean, aij is the SNP 
genotype at locus j, m1 is the total number of SNPs, αj is the random 
effect of the SNP that is assumed to be normal with mean zero and 
variance   

 /m1, and εi is the residual assumed to be normal with 

mean zero and variance  ε
 . 

 
𝐲  μ𝟏𝐧       𝛆 
 
 

where   𝐀𝛂t    (

a11 ⋯ a1m1
⋮ ⋱ ⋮
an1 ⋯ anm1

)(

α1
⋮
αm1

) 

 

  
  𝐀𝐀

t

m1⁄    ε
  𝐈 

 
 
where 𝐈 is the n x n identity matrix. 

 

 
2a yi  μ  gi   ∑bikβk

m2

k=1

 εi 

 
 
where bk is the kth exposomic variable, m2 is the total number of 
exposomic variables, and βk is the random effect of the exposomic 
variable that is assumed to be normal with mean zero and variance 
  
 /m .  To avoid estimation bias due to multicollinearity, bk is 

transformed using a principal component analysis (see Methods). 

 

𝐲  μ𝟏𝐧          𝛆 
 
 

where   𝐁𝛃t    (

b11 ⋯ b1m2
⋮ ⋱ ⋮
bn1 ⋯ bnm2

)(

β1
⋮
βm2

) 

 

  
  𝐆     

  𝐁𝐁
t

m ⁄    ε
  𝐈 

 
 
 

2b yi  μ  gi   ei  εi 𝐲  μ𝟏𝐧          𝛆   
  𝐆     

  𝐄  [√𝐆  √𝐄t  (√𝐆  √𝐄t)
t
 ]       ε

  𝐈  

 

where √𝐆  and √𝐄t  are the Cholesky decompositions of 𝐆 
and 𝐄t , respectively, and     is the covariance between   

and  . 

 
3 yi  μ  gi   ei  ∑ciq γq

𝑄

q=1

 εi 

 
 
where cq  is the qth pairwise interaction term between SNP 

genotypes and exposomic variables, and γq is the effect of the qth 

interaction term. γq is assumed to be normally distributed with mean 

zero and variance   × 
 /Q, and Q is the total number of interaction 

terms (Q  m1m ). 

 
𝐲  μ𝟏𝐧            ×    𝛆 
 
 

where  ×     𝐂𝛄t    (

c11 ⋯ 𝑐1Q
⋮ ⋱ ⋮
𝑐n1 ⋯ 𝑐nQ

)(

γ1
⋮
γQ
)  and 𝐂  

can be derived using the following pseudo-code  
with  𝐀  [𝐚1 ⋯ 𝐚m1] ;  𝐁  [𝐛1 ⋯ 𝐛m2] ; 𝐂  
[𝐜1 ⋯ 𝐜Q], and q = 1, 2 … Q. 
for i = 1 to m1 { 
    for j = 1 to m2 { 
        𝐜𝑞    𝐚i⨂𝐛j } } 

 

  
  𝐆     

  𝐄    × 
  𝚪    ε

  𝐈 

 
 
 
where 𝚪 is a n x n matrix derived by the Hadamard product 
of 𝐆 and 𝐄 ,i.e., 𝐆⨂𝐄 . 

gi  
𝐆 

𝐄 ei 

g × ei 
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4 yi  μ  gi   ei  ∑xip θp

P

p=1

 εi 

 
 
where  xp  is the pth pairwise interaction term between exposomic 

variables, and when the two exposomic variables are identical, the 
interaction term becomes the quadratic term of the exposomic 
variable; θp is the effect of the pth interaction term and is assumed to 

be normally distributed with mean zero and variance   × 
 /P, and P is 

the total number of interaction terms (P = m2 (m2 + 1)/2). To avoid 
estimation bias due to multicollinearity, xp is transformed using a 
principal component analysis (see Methods). 

 
𝐲  μ𝟏𝐧            ×     𝛆  
 
 
 

where  ×     𝐗𝛉t    (

𝑥11 ⋯  1P
⋮ ⋱ ⋮
𝑥n1 ⋯ xnP

)(
θ1
⋮
θP

),  

and 𝐗 can be derived using the following pseudo-code 

with  𝐁  [𝐛1 ⋯ 𝐛m2];  𝐗  [ 1 ⋯  P], and p = 1, 

2 … P. 
for i = 1 to m2 { 
    for j = i to m2 { 
         𝑝    𝐛i⨂𝐛j } } 

 

  
  𝐆     

  𝐄    × 
  𝐗𝐗

t

P ⁄      ε
  𝐈 

 

5 yi  μ  gi   ei  g × ei   e × ei  εi 
 

𝐲  μ𝟏𝐧            ×      ×     𝛆  
 

  
  𝐆     

  𝐄    × 
  𝚪    × 

  𝚯     ε
  𝐈 

 

 
6 yi  μ  gi   ei  ∑cil

L

l=1

∑bikλkl

m2

k=1

 εi 

 
 
where λkl  is the random effect of kth exposomic variable, bk , 

modulated by the lth covariate cl . λkl  is assumed to be normally 
distributed with mean zero and variance   l

 /m  

𝐲  μ𝟏𝐧          ∑ × 𝐜𝐥

L

l=1

   𝛆 

 
 
where  × 𝐜l is a n x 1 vector that can be derived by  

 𝐥⨂𝐜𝐥, and  𝐥   (

b11 ⋯ b1m2
⋮ ⋱ ⋮
bn1 ⋯ bnm2

)(

λ1l
⋮
λm2l

) 

 

 

  
  𝐆   𝐄⨂(𝛟𝐊𝛟t)    ε

  𝐈 

 
 
where 𝛟   (𝟏𝐧 𝐜𝟏 𝐜𝟐 ⋯ 𝐜𝐋) and 

𝐊  (

  0
 ⋯   0 L
⋮ ⋱ ⋮

  0 L ⋯   L
 
) . 

e × ei  
𝚯 

Type equation here.

eli
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