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Abstract 
 

Complementary to the genome, the concept of exposome has been proposed to 
capture the totality of human environmental exposures. While there has been some 
recent progress on the construction of the exposome, few tools exist that can integrate 
the genome and exposome for complex trait analyses. Here we propose a linear mixed 
model approach to bridge this gap, which jointly models the random effects of the two 
omics layers on phenotypes of complex traits. We illustrate our approach using traits 
from the UK Biobank (e.g., BMI & height for N ~ 35,000) with a small fraction of the 
exposome that comprises 28 lifestyle factors. The joint model of the genome and 
exposome explains substantially more phenotypic variance and significantly improves 
phenotypic prediction accuracy, compared to the model based on the genome alone. 
The additional phenotypic variance captured by the exposome includes its additive 
effects as well as non-additive effects such as genome-exposome (gxe) and 
exposome-exposome (exe) interactions. For example, 19% of variation in BMI is 
explained by additive effects of the genome, while additional 7.2% by additive effects 
of the exposome, 1.9% by exe interactions and 4.5% by gxe interactions. 
Correspondingly, the prediction accuracy for BMI, computed using Pearson’s 
correlation between the observed and predicted phenotypes, improves from 0.15 
(based on the genome alone) to 0.35 (based on the genome & exposome). We also 
show, using established theories, integrating genomic and exposomic data is essential 
to attaining a clinically meaningful level of prediction accuracy for disease traits. In 
conclusion, the genomic and exposomic effects can contribute to phenotypic variation 
via their latent relationships, i.e. genome-exposome correlation, and gxe and exe 
interactions, and modelling these effects has a great potential to improve phenotypic 
prediction accuracy and thus holds a great promise for future clinical practice.  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 19, 2021. ; https://doi.org/10.1101/2020.11.09.373704doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.373704
http://creativecommons.org/licenses/by/4.0/


 
 

3 

Introduction 
Both genetic and environmental factors underlie phenotypic variance of complex traits. 
Understanding the influences of these factors not only helps explain why individuals 
differ from one another in phenotypes but also helps predict future phenotypes, such 
as disease diagnoses. The proliferation of genotypic data in the past decades, along 
with developments in relevant analytic tools, have already contributed a great deal to 
understanding phenotypic variations of complex traits1-9, and enabled phenotypic 
predictions at a level of accuracy for potential use in clinical settings10-12. However, 
these understandings and predictions are bounded by the heritability of the traits, and 
for many complex traits, large phenotypic variation remains unexplained, suggesting 
substantial environmental contributions to phenotypic variance. 
 
Complementary to the genome, the concept of exposome has been proposed to 
capture the totality of human environmental exposures, encompassing external as well 
as internal environments over the lifetime of a given individual13-15. Similar to 
genotypes, exposomic variables are standardised across cohorts16. Since the 
inception of the concept, considerable efforts have been made to assess and 
characterise the exposome17. For example, the Human Early-Life Exposome project 
is a European collaborative effort established to characterize the early-life exposome 
which includes all environmental hazards that mothers and children are exposed to18. 
Despite the progress in the construction of the exposome, few analytic tools exist to 
date that can integrate genomic and exposomic data for complex trait analyses. We 
hypothesize that exposomic variables do not only affect phenotypes on their own but 
also interact among each other19,20 and with genotypes20,21. In addition, the estimation 
of exposomic effects and genomic effects on phenotypes could be biased, if these 
effects are correlated but the estimation model assumes otherwise22. Hence, tools that 
integrate genomic and exposomic data are required to capture variance as well as 
covariance components of phenotypes. 
 
Here we propose a versatile linear mixed model that fulfils these requirements. The 
proposed approach jointly models the random effects of the genome and exposome 
and can be extended to capture genome-exposome and exposome-exposome 
interactions and genome-exposome correlations in the phenotypic analysis of a 
complex trait. It also allows us to model exposomic effects modulated by one or a few 
specific environmental variables. We demonstrate the proposed approach using traits 
from the UK biobank with 11 complex traits and 28 lifestyle exposures that were 
measured using a standard protocol. 
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Results 
 
Method overview 
 
We used a novel linear mixed model (LMM) to jointly model the effects of the genome 
and exposome on the phenotypes of a complex trait. The exposome here is restricted 
to 28 lifestyle exposures that were measured using a standard protocol (see Methods). 
Our model has three key features. First, it allows estimation of the correlation between 
genomic and exposomic effects, relaxing the assumption of independence between 
those effects as in a conventional LMM22. Second, the model can capture both additive 
and non-additive effects of the exposome and genome, i.e. pair-wise interactions 
between exposomic variables (exe interactions; e.g.19) and interactions between 
exposomic variables and genotypes (i.e., gxe interactions; e.g.21). Third, the model 
can handle correlated exposomic variables (see Methods & Supplementary Note 1) 
that may cause biased variance estimations of exposomic variables (e.g.20). 
 
To illustrate the use of the model with real data, we selected 11 complex traits from 
the UK Biobank with heritability estimates above 0.05, including BMI, sitting height and 
years of education etc. (https://nealelab.github.io/UKBB_ldsc/), along with 28 lifestyle 
variables, including alcohol use, smoking, physical activity and dietary composition 
(see Methods for a detailed description). We performed the following analyses. First, 
for each trait, we used various models to estimate variance components of the additive 
and non-additive effects of the exposome and genome, including exe interactions and 
gxe interactions. The significance of the variance components was determined 
through a series of model comparisons using likelihood ratio tests (Table 1). Second, 
we extended the proposed model to examine the extent to which exposomic effects 
are modulated by covariates such as age, sex and socio-economic status (i.e., exc 
interactions). Third, we used 5-fold cross validation to show that the prediction 
accuracy increased significantly after accounting for the exposomic effects and exe 
interactions. Finally, we explored the potential clinical use of the proposed integrative 
analysis of genomic and exposomic data, by projecting its prediction accuracy for a 
disease trait in terms of the area under the receiver operating characteristic curve 
(AUC). The projection was based on well-established theories23-30 that express AUC 
as a function of sample size, proportions of variance explained by genomic and 
exposomic effects and the population prevalence of the disease. 
 
Exposomic effects on phenotypes 
 
In line with previous estimation (https://nealelab.github.io/UKBB_ldsc/), we found 
significant SNP-based heritability for all selected traits, with estimates ranging 
between 0.08 (years of education) and 0.52 (standing height; Figure 1). We detected 
robust additive effects of the lifestyle-exposome on phenotypes of all traits (see Figure 
1 for e and Table 1 for p-values under H0 σ!" = 0). The magnitude of these additive 
effects, however, varied across traits. For example, the exposome accounted for 8.5% 
of the phenotypic variance of waist circumference, but less than 2.5 % for height, 
standing height, heel bone mineral density and fluid intelligence. Importantly, the 
additive exposomic effects were mostly uncorrelated with the genetic effects (see 
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Table 1 for p-values under H0 σ#,! = 0; see Supplementary Table 1 for covariance 
estimates), which was notably different from the genome-transcriptome correlation22. 
 
The estimated variance component of non-additive effects of the lifestyle-exposome 
(exe) was highly significant for 7 out 11 traits (Table 1), although they only account for 
~ 1% to 2% of phenotypic variance (See Figure 1 & Supplementary Table 2). By 
contrast, significant gxe interactions are only evident for BMI, weight and years of 
education (Table 1), but they could account for up to 9% of total phenotypic variance 
(years of education; Figure 1 & Supplementary Table 2). The low presence of gxe 
signals is probably due to relatively low power of detecting gxe interactions, which is 
caused by a large number of pairs of gxe interaction terms to be estimated in the model, 
i.e. 28 (number of exposomic variables) x 1.3 million (number of SNPs) in this study. 
In addition, the identified gxe and exe interactions are orthogonal to each other. This 
is evidenced by that both gxe and exe remained significant when being jointly 
modelled (see p-values under H0 σ#%!|!%! = 0 and under H0 σ!%!|#%! = 0). 
 
By extending the proposed model to a reaction normal model (RNM; see Methods), 
we examined whether the additive exposomic effects on phenotype vary depending 
on specific covariates, which would be evidenced by the presence of significant exc 
interactions. Using single-covariate RNMs, we identified several significant exc 
interactions (Supplementary Table 3), noting that most covariates are lifestyle related, 
which are in line with the exe interactions found above. For each trait, we then fitted 
an RNM model that simultaneously includes all significant exc interactions identified 
from single-covariate RNM analyses. The variance estimates of exc interactions from 
the joint analyses are presented in Supplementary Table 7. 
 
It is important to note that the estimation of exposomic effects is sensitive to the 
correlation structure of exposomic variables. Specifically, multicollinearity between 
exposomic variables would bias the estimate of σ!" (Supplemental Note 1); and by 
extension, correlated exe interaction terms and gxe interaction terms (Equations 3 & 
4 in Table 2) would bias the estimates of σ!%!"  and σ#%!" , unless their true values are 
small (e.g., σ#%!"  = 0.1 and σ!%!"  = 0.1 in our simulations). Without knowing the true 
values of variance components, transforming exposomic variables and interaction 
terms using a principal component analysis (see Methods & Supplemental Note 1) 
seems necessary prior to model fitting in order to avoid estimation bias due to 
multicollinearity. While transforming the exposomic variables and the exe interaction 
terms are computationally trivial, transforming the gxe interaction terms is 
computationally infeasible (28 x 1.3 million variables). Nonetheless, the variance of 
gxe interactions is small in general, suggesting that using the gxe interaction terms 
without the transformation (i.e., derived from $⨂&  in Equation 3 of Table 2) is 
generally free from the estimation bias due to multicollinearity. Note that the largest 
variance estimate of gxe interactions in this study is ~0.09. 
 
Validation of exposomic effects 
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Using 5-fold cross-validation, we found that both additive (e) and non-additive effects 
(exe) of the exposome, which were significant in the discovery dataset, could improve 
the phenotypic prediction accuracy in the target dataset. In general, the larger the 
variance estimates, the greater the prediction improvements (Figures 2a & 2b), which 
indicates that the additive effects of the exposomic variables and exe interactions are 
genuine. Similarly, we also validated the exposomic effects modulated by specific 
covariates, by showing that the larger the total variance estimates of exc interactions, 
the greater the improvement of predication accuracy (Figure 3). The validated exc 
interactions would in part explain the phenotypic variance due to residual x covariate 
interactions found in our previous studies31-33. 
 
By contrast, although gxe interactions contribute to the phenotypic variance of BMI, 
weight and years of eduation (Table 1), the contribution did not lead to significant gains 
in phenotypic prediction accuracy (Supplementary Figure 1). This was most likely due 
to a lack of power. i.e. the size of discovery samples was insufficient to accurately 
estimate an extremely large number of parameters, i.e., best linear unbiased 
prediction (BLUPs) of gxe interaction effects23,27,28,34. This is further verified using 
simulations (see Supplementary Note 2 and Supplementary Figure 2). 
 
Given the sample sizes of the discovery data sets (~28,000), the prediction accuracies 
of the model y = g + ε for the selected traits are only between 1/3 and 1/2 of the 
theoretical maximums (i.e., square root of heritability; Supplementary Figure 3). They 
can improve, in theory, by increasing the sample size of discovery sets 
(Supplementary Figure 3); or, as shown in the above, by accounting for the additive 
effects of the exposome and exe interactions (Figures 2b & 2c). To examine prediction 
efficiency of the latter, we projected the observed prediction accuracies of the models 
y = g + e + ε and y = g + e + exe + ε onto the theoretical trajectory of prediction 
accuracies of the model y = g + ε as a function of the sample sizes of discovery 
datasets (Supplementary Figure 3). As such, the use of exposomic information could 
improve phenotypic prediction accuracy to the same extent as a 1.2 to 14-fold increase 
in sample size, depending on the significance of the exposomic effects and their 
interactions (Figure 4). Given the substantial costs and efforts associated with 
increasing sample size, the improved predictive accuracy by the models y = g + e + ε 
and y = g + e + exe + ε are considerable, despite the fact that the proportion of 
phenotypic variance explained by the exposome is small (see the x-axis of Figures 2b 
& 2c). 
 
Quantification of clinical relevance 
 
We quantified the clinical relevance of the proposed model by exploring its prediction 
accuracy for quantitative traits and disease traits. For quantitative traits, we expressed 
the prediction accuracy of the model y = g + e + ε (i.e., correlation coefficient between 
the true and predicted phenotypes) as a function of the sample size of the discovery 
dataset, variances explained by the genome and exposome, and effective numbers of 
(independent) SNPs and exposomic variables (see Methods), using previous 
theoretical derivations27-30,34. Based on the derived expression (Equation 6), we 
computed the expected prediction accuracies for the quantitative traits used in this 
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study and found that they agreed well with the observed prediction accuracies from 
the 5-fold cross validation (Supplementary Figure 4). We then extended the derived 
expression to disease traits in terms of the area under the operative characteristic 
curve (AUC; see Equation 10 in Methods for details) using well-established theories23-

26. AUC is a gold-standard measure used to evaluate how well a prediction model 
discriminates diseased from non-diseased individuals. An AUC between 0.7 to 0.8 is 
considered acceptable, 0.8 to 0.9 excellent, and above 0.9 outstanding35. Figure 5 
shows the expected AUC of the proposed integrative analysis of genomic and 
exposomic data for disease traits of different values of population prevalence (k), 
assuming different amounts of variance (on the liability scale) explained by the 
genome and exposome and discovery sample sizes. For simplicity, we use σ!.()("  to 
denote the total variance in disease liability explained by additive effects of the 
exposome and exe interactions as a whole.  
 
When setting σ!.()("  to 0—that is, using no exposomic information at all—varying the 
heritability of disease liability h2 from 0 to 0.3 improves AUC from 0.5 to ~ 0.6 when 
the sample size of the discovery set is 50k. This is in contrast to a 2-fold improvement, 
from 0.5 to ~ 0.7, when the sample size is 500k. Thus, genomic prediction accuracy 
heavily relies on sample size, such that for a disease trait with a moderate heritability, 
a clinically meaningful level of accuracy (AUC >=0.7) may not be attainable unless the 
sample size of the discovery dataset is substantially large (> = 500k). On the other 
hand, the benefit of using exposomic information to disease prediction can be realised 
with a relatively small discovery sample. This is evidenced by that when setting h2 to 
0 (i.e., using no genomic information at all), increasing the value of σ!.()("  has the same 
effects on AUC whether using a discovery sample of 50k or 500k individuals. Notably, 
for a moderately heritable disease that affects 1% of the population, with a discovery 
dataset of 50k individuals, a collection of exposomic variables that together explains 
~30% of the variance in disease liability is sufficient to yield an AUC greater than 0.85 
for the target sample (see area under ROC when h2 = 0.3, k = 0.01, σ!.()("  = 0.3 & N = 
50k in Figure 5). Importantly, in all scenarios, AUC consistently improves with 
increasing σ!.()(" . Thus, incorporating exposomic data is not only an efficient but also 
an effective way of improving prediction accuracy based on genomic data alone. 
Taken together, genomic prediction accuracy for disease traits is constrained by 
sample size; with a relatively small sample at hand, a desired level of prediction 
accuracy may only be achieved by combining genomic and exposomic information. 

Comparison with existing models 
 
The key model parameters of the proposed integrative analysis of genomic and 
exposomic data (IGE) compared to existing linear mixed models that incorporate 
genetic and environmental effects on phenotypes are outlined in Table 3. In general, 
IGE offers thus far the most detailed partition of phenotypic variance. 
 
Both IGE and GxEMM36 are whole-genome approaches to the estimation of heritability 
and g x e interactions, although IGE is considered more comprehensive and versatile, 
which models variances explained by additive effects of exposomic variables, by 
exposome x exposome interactions, and by exposome x covariate (such as 
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demographics) interactions; and covariance between genetic effects and exposomic 
effects (Table 3). Further, bivariate or multivariate IGE (i.e., simultaneously including 
two or more traits) can be feasibly performed using mtg2 version 2.18  
 (https://sites.google.com/site/honglee0707/mtg2). 
 
In contrast, StructLMM has been developed primarily for a genome-wide by 
environment interaction study (GWEIS)20 that examines one SNP at a time with a 
focus on association tests (providing p-values) for GxE interactions between the SNP 
genotypes and multiple exposomic variables. Using the well-established SNP BLUP 
method2,37,38, IGE can also provide GWEIS summary statistics, including estimated 
allele substitution effects of all SNPs across environments, their standard errors and 
p-values. Note that SNP BLUP implemented in IGE can model all SNP jointly (a whole-
genome approach). Nonetheless, one of the main scopes of this study is to provide 
unbiased estimates of exposomic variances, e.g. v(e) (σ!") that is common to both 
StructLMM and IGE (Table 3 & Supplementary Note 3). Importantly, correlated 
exposomic variables would cause biased estimation of σ!" (Supplementary Table 4) 
unless they are transformed to independent variables via a principal component 
analysis (Methods). To our knowledge, this transformation has not yet been 
implemented in any existing methods including StructLMM. Using results from 
simulations, we show that σ!"  estimates by StructLMM are prone to bias due to 
correlated environments (Supplementary Table 4). The other model parameters such 
as v(exe), v(exc) and cov(g, e) cannot be estimated by StructLMM (Table 3).  
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Discussion 
 
Using our approach, we demonstrate the importance of the exposome for 
understanding individual differences in phenotypes. Although the ‘exposome’ 
constructed in this study comprises only 28 lifestyle factors, when integrated with 
genomic data, it explained between 2% to 10% additional phenotypic variance and 
significantly improved phenotypic prediction accuracy to a level equivalent to a 1.2 to 
14-fold increase in sample size. The additional phenotypic variance is not only from 
additive effects of the exposome but also from its non-additive effects (exe) and 
genome-exposome interactions (gxe). We expect that as the construction of the 
exposome continues to progress, more phenotypic variance will be explained and 
greater improvements in phenotypic prediction accuracy will be gained. This would be 
particularly promising for phenotypic analysis and prediction of traits with small to little 
heritability component, such as ovarian and colorectal cancer39. 
 
We noted that when exposomic variables are correlated, the variance estimate of 
additive effects of exposomic variables is biased unless these variables are 
transformed using a principal component analysis (i.e. E in Table 2 should be based 
on transformed variables). By extension, this would apply to exe interaction terms and 
gxe interactions terms, unless the proportions of phenotypic variance explained by 
these interaction effects are small (<10%), as shown in our simulations. These 
observations have important implications for modelling environmental effects in LMMs. 
Recently, Moore et al.20 proposed the structured linear mixed model (StructLMM) that 
incorporates random effects of multiple environments in order to study the interactions 
between these environments and genotypes of a single SNP (i.e., gxe interactions). 
However, the environmental variables in StructLMM are not transformed, even though 
they are very likely correlated, which would have biased the variance estimate of 
environmental effects. Consequently, it remains uncertain the extent to which the 
estimation bias affects the StructLMM-based test statistics for detecting gxe 
interactions. 
 
Depending on the research question at hand, the construction of the exposome may 
be guided by causal analyses. A meaningful exposome may only contain causal 
information. Examples may include lifestyles that potentially alter the molecular 
pathways or the pathogenesis of the main trait, or biomarkers that potentially explain 
possible molecular pathways underlying the phenotypes. As a contrast, in our BMI 
analysis, for example, it is not useful to include weight and height as part of the 
exposome, even though they would explain a large amount of phenotypic variance. 
This is because variations in these traits inform nothing other than the fact that they 
are correlated with the trait.  
 
Heritability estimates were slightly reduced after including more variance components 
(result not shown). We considered two possibilities. First, the exposome may mediate 
part of additive genetic effects on phenotypes. For example, some SNPs affect 
smoking status, which in turn affect BMI. A model that simultaneously includes genetic 
and exposomic data would account for smoking status and their genetic effects, and 
hence gives arise to reduced heritability estimates. Second, there is a genuine 
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correlation between exposomic and genomic effects in some latent mechanism. It is 
noted that there are marginally significant correlation estimates, which were not 
significant after Bonferroni correction. Such correlation may be because people who 
have similar genotypes may somehow share similar exposures i.e. genotype-
environment correlation40. 

In conclusion, the genomic and exposomic effects can contribute to phenotypic 
variation via their latent relationships, i.e. genome-exposome correlation, and gxe and 
exe interactions, for which our proposed method can provide reliable estimates. We 
show that the integrative analysis of genomic and exposomic data has a great potential 
for understanding genetic and environmental contributions to complex traits and for 
improving phenotypic prediction accuracy, and thus holds a great promise for future 
clinical practice. 
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Methods 
 
Ethics statement 
 
We used data from the UK Biobank (http://www.ukbiobank.ac.uk/) for our analyses. 
The UK Biobank’s scientific protocol has been reviewed and approved by the North 
West Multi-centre Research Ethics Committee (MREC), National Information 
Governance Board for Health & Social Care (NIGB), and Community Health Index 
Advisory Group (CHIAG). UK Biobank has obtained informed consent from all 
participants. Our access to the UK Biobank data was under the reference number 
14575. The research ethics approval of the current study was obtained from the 
University of South Australia Human Research Ethics Committee. 
 
Genotype data 
 
The UK Biobank contains health-related data from ~ 500,000 participants aged 
between 40 and 69, who were recruited throughout the UK between 2006 and 201041. 
Prior to data analysis, we applied stringent quality control to exclude unreliable 
genotypic data. We filtered SNPs with an INFO score (used to indicate the quality of 
genotype imputation) < 0.6, a MAF < 0.01, a Hardy-Weinberg equilibrium p-value <1e-
4, or a call rate < 0.95. We then selected HapMap phase III SNPs, which are known 
to yield reliable and robust estimates of SNP-based heritability42-44, for downstream 
analyses. We filtered individuals who had a genotype-missing rate > 0.05, were non-
white British ancestry, or had the first or second ancestry principal components outside 
six standard deviations of the population mean. We also applied quality control on the 
degree of relatedness between individuals by excluding one of any pair of individuals 
with a genomic relationship > 0.025. From the remaining individuals, we selected those 
who were included in both the first and second release of UK Biobank genotype data. 
Eventually, 408,218 individuals and 1,133,273 SNPs passed the quality control of 
genotype data.  

Phenotype data 
 
We chose eleven UK Biobank traits available to us that have a heritability estimate (by 
an independent open source; https://nealelab.github.io/UKBB_ldsc/) greater than 0.05. 
These traits are standing height, sitting height, body mass index, heel bone mineral 
density, fluid intelligence, weight, waist circumference, hip circumference, waist-to-hip 
ratio, diastolic blood pressure and years of education.  
 
Prior to model fitting, phenotypic data were prepared using R (v3.4.3) in three 
sequential steps: 1) adjustment for age, sex, birth year, social economic status (by 
Townsend Deprivation Index), population structure (by the first ten principal 
components of the genomic relationship matrix estimated using PLINK v1.9), 
assessment centre, and genotype batch using linear regression; 2) standardization; 
and 3) removal of data points outside +/- 3 standard deviations from the mean. 
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Exposomic variables 
 
We deliberately selected lifestyle-related variables that are known to affect some of 
the selected traits to construct the exposome in this study. These variables include 
smoking, alcohol intake, physical activity, and dietary composition. Details of these 
variables are listed in Supplementary Table 6. Our aim here is not to cover a 
comprehensive set of exposomic variables, but to demonstrate the potential use of the 
proposed integrative analysis of genomic and exposomic data for partitioning 
phenotypic variance and phenotypic prediction. 
 
Statistical Models 
 
We used LMMs to simultaneously model the random effects of the genome and the 
exposome. The model equations and their assumed sample variance-covariance 
structures are summarized Table 2. In these models, a genomic relationship matrix (G) 
was constructed using an n x m1 genotype coefficient matrix (A) as G=!!! m"# , where n 
is the number of participants and m1 is the number of SNPs. Similarly, an exposomic 
relationship matrix (E) was estimated using an n x m2 exposomic variable matrix (B) 
as E= $$! m##  where m2 is the number of exposomic variables (Table 2). These 
relationship matrices were used to estimate the additive effects of the genome and the 
exposome. In addition, interaction effects, including gxe, exe and exc, were also 
considered in these models (Table 2). 
 
Principal component-based transformed variables for E  
 
If the degree of correlation among variables is high, it can cause biased estimates 
when the variables are fitted in a model, i.e. multicollinearity problem. Such bias is 
also problematic when using correlated exposomic variables to construct E to be fitted 
in an LMM to estimate the proportion of the variance explained by the variables (R2 = 
σ!" when phenotypes are standardised with mean zero and variance one). The R2 can 
also be obtained from a linear model, i.e. the coefficients of determination. For 
problematically correlated variables, principal component regression has been 
introduced45. 
 
A linear model can be written as  

' = () + 	,	            (1) 
 
where y is a N vector of phenotypes, W is a column-standardised N x M matrix having 
correlated exposomic variables, β is their effects and ε is a vector of residuals.  

 

When exposomic variables in W are highly correlated, estimated exposomic effects 
(β-hat) are inflated due to multicollinearity problem.  

From the singular value decomposition, W can be expressed as 
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( = -./*  
where U is a matrix whose columns contain the left singular vectors of W, D is a 
diagonal matrix having a vector containing the singular values of W and V is a unitary 
matrix (i.e. VV’=I) whose columns contain the right singular vectors of W.  

V can be also obtained from the eigen decomposition of the covariance matrix of the 
variables, i.e. (*(.  

The principal component regression approach45 proposes to transform W to a column-
orthogonal matrix, Ω, multiplied by V, which can be written as 
 
Ω = WV 
 
Now, we can replace W with Ω in the model as 

 

' = 01 + 	,            (2) 

 

where 12 = (0+0),-0+' = ((′/′(/),-(+/+' = ((+(),-(+'/+ = )6/′.  

 
Therefore, R2 values obtained from models (1) and (2) are equivalent as 

R" =
∑[01,0!2 ]"

∑[01,0#]"
=

∑[01,(562)#]"

∑[01,0#]"
=

∑801,(59:;+	)#=
"

∑[01,0#]"
=

∑801,(>9:)#=
"

∑[01,0#]"
 . 

  

However, equation (2) can avoid a collinearity issue among the variables. Therefore, 
model (2) can be extended to a linear mixed model, i.e. the covariance structure can 
be constructed based on Ω, i.e. ΩΩ’/m where Ω is column-standardised.  

 
Suppose a LMM of the form 
 
' = () + 	,	            (3) 
where y is a vector of phenotypes for n individuals; W is a n x m matrix that contains 
m exposomic variables; β is a vector of random exposomic effects, each assumed 
normal with mean zero and variance σ!"/9 ; and ε is a vector of residuals, each 
assumed normal with mean zero and variance σ?". 
 
Under this model, phenotypic variance is partitioned as 
 
var(') = 	σ!"	((*/m +	σ?">	,  
where I is the n x n identify matrix.  
 
When exposomic variables are highly correlated, a transformed W, denoted as Ω, 
should be used, to avoid biased σ?!".  
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In a similar manner to the linear models (1) and (2), LMM (3) can be rewritten as 
 
' = -./*) + 	,	  
 
Since /*/ = >  
' = -.(/*/)/*) + 	,	 = (-./*)/(/*)) + 	, = 	(/(/*)) + 	, = 	0	(/*)) + 	,  
 
Then  

var(') = 	0var(/*))0* +	σ?"> = 	0/*var())/0* +	σ?"> = 	 	σ!"/*/0*/m +	σ?">	
= 	σ!"0>0*/m +	σ?">	 = 	σ!"00*/m +	σ?">		 

 
Therefore, using column-standardized principal components of exposomic variables 
as W for Equation (3) can avoid biased σ?!". This is further verified using simulations.  
 
Estimation of exc interactions 
 
We extend the proposed model to a reaction normal model (RNM) by introducing exc 
interaction terms, where e is the additive effects of exposomic variables and c is a 
covariate. Given the robust additive effects found in the above, the interest of fitting 
RNMs is determine whether these effects vary depending on covariates, which would 
be evidenced by the presence of significant exc interactions. 
 
While estimates of σ!%!"  inform the phenotypic variance explained by the sum of all 
possible combinations of pair-wise interactions between lifestyle-exposomic variables, 
it may also be of interest to estimate the modulated exposomic effects specific to 
particular covariates, using the reaction norm model (RNM31-33,46). The covariates 
include alcohol intake, smoking, energy intake, physical activity, sex, socio-economic 
status (indexed by Townsend deprivation index), age and ethnicity measured using 
the first two ancestry principal components. For each covariate, we fitted the RNM that 
allows the covariate to interact with exposomic effects and compared the fit of this 
model with a null model that assumes no exc interactions (see Supplementary Table 
3 for p-values). Significant covariates were then included in a subsequent analysis of 
RNM that fit multiple covariates simultaneously. We reported the total variance of exc 
interaction effects in Supplementary Table 7. 
 
Five-fold cross-validation 
 
Using 5-fold cross validation, we 1) validate significant variance components identified 
above (Table 1) and 2) evaluate the extent to which the inclusion of these variance 
components improves phenotypic prediction. For every trait, we randomly split the 
sample into a discovery set (~80%) and a target set (~20%) and iterated this process 
five times in a manner such that target sets did not overlap across iterations (see 
Figure 6 for an outline). We derived the prediction accuracy of each model by 
averaging the Pearson’s correlation coefficients between the observed and predicted 
phenotypes across target sets; then compared prediction accuracies between models 
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(e.g., y = g + ε vs. y = g + e + ε) to determine phenotypic prediction improvements 
gained by the inclusion of a given variance component (e.g., var(e)). For each variance 
component, we regressed prediction accuracy improvements on estimates of the 
variance component and declared the variance component valid if the slope differs 
from zero. 
 
Theoretical prediction accuracy for quantitative traits 
 
Suppose we predict phenotypes of a quantitative trait (e.g., BMI) with SNP-based 
heritability h2 using a discovery dataset of N individuals. Following previous theoretical 
derivations23,27-30,34, the genomic prediction accuracy based on the model y = g + ε 
can be written as  
 

r# = @h"	 ∙ @"

@"	AB$ C⁄ 	
          (4) 

where M1 is the effective number of chromosome segments, which is a function of the 
effective number of population size and can be estimated using the inverse of the 
variance of genomic relationships (i.e., G in Table 2) between the discovery and target 
samples27-30.  
 
Assuming that phenotypes are standardized to have mean zero and variance one, if 
the total amount of phenotypic variance explained by the exposome is σ!", Equation 4 
can be adapted to describe the prediction accuracy of the model y = e + ε in the form 
 

r! = @σe2 ∙
σe2

σe2	AB" C⁄ 	
          (5) 

where M2 is analogous to M1 and can be thought of as the effective number of 
(independent) exposomic variables. Similar to M1, M2 can be estimated using the 
inverse of the variance of exposomic relationships (E in Table 2) between the 
discovery and target samples. 
 
Upon establishing an agreement between expected accuracies, based on Equations 
4 and 5, and observed accuracies for the 11 traits in this study (Supplementary Figure 
4), we proceeded to the prediction accuracy of the proposed integrative analysis of 
genomic and exposomic data. 
 
Assuming that the genomic and exposomic effects on phenotypes are uncorrelated, 
the prediction accuracy of the model y = g + e + ε can be written as 

r = @rg2 	+ 	 re2	           (6) 

Equation 6 is verified by an agreement between the expected and observed 
prediction accuracies for the 11 traits in this study (Supplementary Figure 4). 
 
Theoretical prediction accuracy for disease traits 
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Considering a disease trait with a population prevalence k, we derived the expected 
prediction accuracy of the model y = g + e + ε for the disease in terms of the correlation 
coefficient between the true underlying disease liability and predicted values from the 
model23,28,34,47, which can then be converted to an AUC value23-25. 
 
Similar to rg and re, the expected prediction accuracies for the disease on the liability 
scale, denoted as r#+  (for y = g + ε) and r!+  (for y = e + ε), can be computed using 
previous derivations23,28,34,47 as the followings. 
 

r#+ =	@h" ∙
@"E"

@"E"	A	[F(G,F)]"	∙	B$/[J(G,J)∙	C]
       (7) 

 
where h2 is the SNP-based heritability on the liability scale, N is the discovery sample 
size, k is the population prevalence, p is the ratio of cases in the discovery sample, 
and z is the density at the threshold on the standard normal distribution curve.  
 

	r!+ =	@σe.tot2 ∙ σe.tot2 E"

σe.tot2 E"	A	[F(G,F)]"	∙	B"/[J(G,J)∙	C]
       (8) 

 
where σ!.*+*"  is the total amount of variance explained by the exposome on the liability 
scale (i.e., σ!"	+	σ!%!" ). Note σ!.*+*" 	= 	σ!"	when σ!%!" 	= 	0. 
 
 
As in Equation 6, we combined r#+and r!+  to derive the expected prediction accuracy on 
the liability scale for the disease, denoted as r+, under the assumption that the genetic 
effects and exposomic effects are uncorrelated. 
 

r+ = @r#+" +	r!+"	.          (9) 

 
Following a well-established theory23-25,28 that has been verified by a comprehensive 
analysis of real data26, we converted r+  to the area under the receiver operating 
characteristic curve (AUC) as  
 

AUC ≈ Ф H (K,K")L%"

ML%"{[G,L%"K(K,()]	A	[G,L%"K"(K",()]}
I                (10) 

 
where i (=z/k) is the mean liability for diseased individuals, i2 (=-ik/(1-k)) is the mean 
liability for non-diseased individuals, t is the threshold on the normal distribution that 
truncates the proportion of disease prevalence k and Ф is the cumulative density 
function of the normal distribution.  
 
To derive the AUC values shown in Figure 5, we set p = k, M1 to 50,000 and M2 to 28. 
M1 (50,000) was estimated from the inverse of the variance of genomic relationships 
(G) between the discovery and target samples27,29,30. Similarly, M2 (28) was estimated 
from the inverse of the variance of exposomic relationships (E) between the discovery 
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and target samples, which agrees with the number of transformed exposomic 
variables by a principal component analysis in this study (see the correlated 
exposomic variables section in Methods). Note that setting M2 up to 100 would not 
yield expected prediction accuracies that notably differ from those from setting M2 = 
28. 
 

Code availability  
The source code for MTG2 v2.18 and example code along with related files for fitting 
IGE model can be accessed without any restrictions from https://sites.google. 
com/site/honglee0707/mtg2 or from https://github.com/honglee0707/IGE.  
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Table 1. P-values for variance-covariance components of phenotypes of selected traits 
 

● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●
Trait N
BMI 35,431 <1.0E-324 0.94 7.0E-07 4.7E-60 1.2E-05 7.4E-59

Standing Height 35,806 5.8E-132 0.07 1.8E-02 4.9E-01 2.0E-02 5.8E-01

Sitting Height 35,553 7.7E-64 0.19 2.4E-03 5.6E-01 2.7E-03 7.0E-01

Heel Bone Mineral Density 16,441 1.5E-33 0.56 2.3E-02 1.2E-01 3.3E-02 1.8E-01

Weight 35,503 <1.0E-324 0.53 3.0E-05 5.7E-47 3.2E-04 5.3E-46

Fluid Intelligence 16,917 4.1E-67 0.32 2.5E-01 8.6E-10 4.3E-01 1.2E-09

Years of Education 35,890 <1.0E-324 0.04 1.0E-17 5.1E-29 1.6E-16 8.0E-28

Waist Circumference 35,589 <1.0E-324 0.69 3.3E-02 3.1E-52 1.7E-01 1.2E-51

Hip Circumference 35,479 <1.0E-324 0.44 8.0E-01 2.5E-32 5.1E-01 2.1E-32

Waist to Hip Ratio 35,759 <1.0E-324 0.56 6.2E-01 1.2E-20 3.3E-01 8.6E-21

Diastolic Blood Pressure 34,100 1.6E-108 0.97 6.2E-02 2.1E-01 6.9E-02 2.4E-01
Note: Bonferroni corrected alpha level for each model comparison = 0.05/66 = 7.6E-04

Statistical Model Model Comparison

p-value under H0:

y= #+ %+ %	'	% + #	'	% +	ε , cov(g,	e)	=	0
y= #+ %+ %	'	% + #	'	% +	ε ,σ3,4 = 0
y= #+ %+ %	'	% + #	'	% +	ε ,σ3,4 ≠	0
y= #+ %+ #	'	% + #	'	% +	ε ,σ3,4 = 0
y= #+ %+ %	'	% + %	'	% +	ε ,σ3,4 = 0
y= #+ %+ #	'	% + %	'	% +	ε ,σ3,4 = 0

σ3,4 = 0σ46 = 0 σ3	7	46 = 0 σ4	7	46 = 0 σ3	7	4	|	4	7	46 = 0 σ4	7	4	|	3	7	46 = 0
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Figure 1. Breakdown of phenotypic variance by the model with the best fit. The best 
model for each trait is derived from model comparisons shown in Table 1. g = additive 
genetic effects on phenotypes; e = additive effects of exposomic variables; exe = 
interaction effects between exposomic variables; gxe = interaction effects between 
genotypes and exposomic variables. Variance components are expressed as 
percentage of total phenotypic variance. 
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Figure 2. Exposomic variables contribute to phenotypic variance and improve phenotypic prediction accuracy. The prediction accuracy of a given model was 
computed using the Pearson’s correlation coefficient between the observed and the predicted by the model. For all panels, the least squares line with 95% 
confidence band is based on a linear model that regressed either prediction accuracies (panel a) or predication accuracy improvements (panels b-c) by a model 
on variance component estimates of the model. The p-value is for the t-test statistic (df=7) under the null hypothesis that the slope of the regression line is zero. 
!!"  = phenotypic variance explained by additive effects of the genome; !#"  = phenotypic variance explained by additive effects of the exposome; !#$#"  = 
phenotypic variance explained by exposome-by-exposome interactions; and !%" = total phenotypic variance. Panel a. Phenotypic prediction accuracies by the 
baseline model that uses genomic data alone, i.e., y = g+ε, where g = phenotypic effects of the genome and ε = residuals. The larger the genetic variance, the 
greater the prediction accuracy. Panel b. Additive effects of the exposomic variables (i.e., e) contribute to phenotypic variance and improve phenotypic prediction 
accuracy. The greater the additive effects, the larger the gain in phenotypic prediction accuracy. A prediction accuracy improvement (on the y-axis) was derived 
by subtracting the prediction accuracy of the model y = g+ε from that of the model y = g+e+ε. Panel c. Exposome-by-exposome interactions (i.e., exe interactions) 
contribute to phenotypic variance and further improve phenotypic prediction accuracy. The greater the variance estimate of exe interactions, the larger the gain 
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in phenotypic prediction accuracy. A prediction accuracy improvement (on the y-axis) was derived by subtracting the prediction accuracy of the model y = g+e+ε 
from that of the model y = g+e+exe+ε. 
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Figure 3. Positive relationship between phenotypic variance explained by exposome-by-covariate (exc) 
interaction effects and prediction accuracy improvement. Prediction accuracy improvement is computed 
by subtracting the prediction accuracy of the model y = g + e + ε from that of a model with multiple 
covariates (see Equation 6 of Table 2) that are shown to interact with the exposome in univariate exc 
interaction analyses. The least squares line with 95% confidence band is based on a linear model that 
regressed prediction accuracy improvement on phenotypic variance explained by exc interactions. The 
p-value is for the t-test statistic (df=7) under the null hypothesis that the slope of the regression line is 
zero. Significant covariates included for each trait can be found in Supplementary Table 3. 
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Figure 4. Additional sample size required for the model y = g + ε to achieve the same level of prediction 
accuracy as y = g + e + ε (blue) and y = g + e + exe + ε (red). nt = sample size of training (or discovery) 
datasets. 
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Figure 5. Expected prediction accuracy of the proposed integrative analysis of genetic and exposomic 
data for disease traits of different prevalence (k) and heritability (h2) at varying levels of total variance 
explained by the exposome (!!.#$#% ) and sample size of the discovery dataset (N). Diseases are assumed 
to have a liability of mean zero and variance 1, and both h2 and !!.#$#%  are on the disease liability scale. 
Prediction accuracy is measured using the area under the receiver operating characteristic (ROC) curve, 
with 0.7 to 0.8 generally being considered acceptable, 0.8 to 0.9 excellent, and above 0.9 outstanding. 
The assumed effective number of chromosome segments and the number of exposomic variables are 
50,000 and 28, respectively, which are based on the genomic and exposomic data used in this study. 
However, varying the number of exposomic variables from 28 to 100 does not have a notable effect on 
the expected area under the ROC curve. 
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Figure 6. A schematic showing 5-fold cross-validation procedures. i) Randomly assign individuals to 5 groups of an equal size. ii) Choose one group as the 
target dataset and the remaining four as the discovery dataset. Iterate the selection process five times in such a way that target datasets do not overlap across 
iterations. Fit 4 models to each discovery dataset. iii) For each model, generate the best linear unbiased predictions from discovery datasets and project them 
onto their corresponding target datasets to derive predicted phenotypes. Compute the phenotypic prediction accuracy for each model by averaging Pearson’s 
correlation coefficients between the predicted and the observed phenotypes across target datasets. 
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Table 2. Model equations and their assumed sample variance-covariance matrices. 
 Model Equation Matrix Notion Sample Variance-Covariance Matrix 
 For individual i = 1, 2, …., n, For y = (y1, y2, …., yn),  
 
1 y! = µ +%a!"α"

#!

"$%
+ ε!	

 
 
where yi is the phenotype, µ is the grand mean, aij is the SNP genotype 
at locus j, m1 is the total number of SNPs, αj is the random effect of the 
SNP that is assumed to be normal with mean zero and variance 
σ!"/m#, and εi is the residual assumed to be normal with mean zero 

and variance σ$".	

 
) = µ*& + 	,	 + 	- 
 
 

where & = ()% 	= 	 +
a## ⋯ a#&!
⋮ ⋱ ⋮
a'# ⋯ a'&!

0+
α#
⋮

α&!

0 

 
σ'( 	//

)
m%1 +	σ*(	2 

 
 
where 2 is the n x n identity matrix. 

 

 
2a y! = µ	 + g! 	+%b!+β+

#"

+$%
+ ε! 

 
 
where bk is the kth exposomic variable, m2 is the total number of 
exposomic variables, and βk is the random effect of the exposomic 
variable that is assumed to be normal with mean zero and variance 
σ("/m".  To avoid estimation bias due to multicollinearity, bk is 
transformed using a principal component analysis (see Methods).	

 
) = µ*& + 	,	 + 	6 + 	- 
 
 

where 3 = 45% 	= 	6
b## ⋯ b#&"
⋮ ⋱ ⋮
b'# ⋯ b'&"

86
β#
⋮
β&"

8 

 
σ'(	7 +	σ,( 	88

)
m(1 +	σ*(	2 

 
 
 

2b y! = µ	 + g! 	+ e! + ε! ) = µ*& + 	,	 + 	6 + 	- σ'(	7 +	σ,(	:	 + ;√7 +=:) + >√7 + =:)?
)
	@ σ', +	σ*(	2	 

 
where √: and √;% are the Cholesky decompositions of : and 
;%, respectively, and σ!( is the covariance between & and 3. 

 
3 y! = µ	 + g! 	+ e! +%c!-	γ-

.

-$%
+ ε! 

 
 
where c) is the qth pairwise interaction term between SNP genotypes 

and exposomic variables, and γ) is the effect of the qth interaction 

term.	γ) is assumed to be normally distributed with mean zero and 
variance σ!×(" /Q, and Q is the total number of interaction terms (Q =
m#m").	

 
) = µ*& + 	,	 + 	6	 + 	, × 6 + 	- 
 
 

where & × 3	 = 	@D% = 		 +
c## ⋯ A#+
⋮ ⋱ ⋮
A'# ⋯ A'+

0+
γ#
⋮
γ+
0,	 and @	 

can be derived using the following pseudo-code  
with 	( = [D# ⋯ D&!] ; 	4	 = [F# ⋯ F&"] ; @	 =
[G# ⋯ G+], and q = 1, 2 … Q.	
for i = 1 to m1 { 
    for j = 1 to m2 { 
        G, 	= 	 D-⨂F.	} } 

 
σ'(	7 +	σ,(	:	 + σ'×,( 	E	+	σ*(	2 
 
 
 
where I is a n x n matrix derived by the Hadamard product of 
: and ; ,i.e., :⨂;	. 

g! 
7 

: e! 

g × e! 
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4 y! = µ	 + g! 	+ e! +%x!0	θ0

1

0$%
+ ε! 

 
 
where 	x/  is the pth pairwise interaction term between exposomic 
variables, and when the two exposomic variables are identical, the 
interaction term becomes the quadratic term of the exposomic 
variable; θ/ is the effect of the pth interaction term and is assumed to 

be normally distributed with mean zero and variance σ(×(" /P, and P is 
the total number of interaction terms (P = m2 (m2 + 1)/2). To avoid 
estimation bias due to multicollinearity, xp is transformed using a 
principal component analysis (see Methods).	

 
) = µ*& + 	,	 + 	6	 + 	6 × 6	 + 	-  
 
 
 

where 3 × 3	 = 	MN% = 		+
O## ⋯ P#0
⋮ ⋱ ⋮
O'# ⋯ x'0

0+
θ#
⋮
θ0
0,  

and M can be derived using the following pseudo-code 
with 	4	 = [F# ⋯ F&"]; 	M	 = [P# ⋯ P0], and p = 1, 
2 … P.	
for i = 1 to m2 { 
    for j = i to m2 { 
        P1 	= 	F-⨂F.	} } 

 
σ'(	7 +	σ,(	:	 + σ,×,( 	HH

)
P	1 		+	σ*(	2 

 

5 y! = µ	 + g! 	+ e! + g × e! 	+ e × e! + ε! 
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6 y! = µ	 + g! 	+ e! +%c!2

3

2$%
%b!+λ+2

#"

+$%
+ ε! 

 
 
where λ23  is the random effect of kth exposomic variable, b2 , 
modulated by the lth covariate c3 . λ23  is assumed to be normally 
distributed with mean zero and variance σ(#

" /m"	

) = µ*& + 	,	 + 	6	 +%6× L4
3

2$%
	+ 	- 

 
 
where 3 × G3 is a n x 1 vector that can be derived by  

34⨂G4, and 34 = 	6
b## ⋯ b#&"
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b'# ⋯ b'&"

86
λ#3
⋮
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σ'(	7 + 	:⨂(OPO)) +	σ*(	2 
 
 
where R	 = 	 (T5 G6 G7 ⋯ G8) and 

V = 6
σ($
" ⋯ σ($(%
⋮ ⋱ ⋮

σ($(% ⋯ σ(%
"
8	.	

e × e! 
J 
Type	equation	here.

e2!
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Table 3. Comparisons of methods (software packages) on the genomic and 
exposomic analysis of complex traits 

Model Parameter/ software functionality Method 
IGE StructLMM GxEMM 

v(g)      
single SNP   ●   

whole genome ●●   ●● 
v(gxe)      

single SNP x multiple environments   ●   
whole genome x multiple environments ●●   ●● 

GWEIS summary statistics  ●●  ●●  
cov(g,e) ●●     

v(e) ●● ●   
v(exe) ●●     
v(exc) ●●     

bivariate or multivariate analyses ●●   

IGE (proposed method): integrative analysis of genomic and exposomic data 
 

StructLMM & GxEMM are existing linear mixed models that incorporate genetic and exposomic effects on 
phenotypes 
●: the parameter is included in the model, but the parameter estimate is not provided by the software 
package. 
●●: the parameter is included in the model, and the parameter estimate is provided by the software package. 
v(g): additive genetic variance due to either a single SNP or all common SNPs (i.e., whole genome) 
v(gxe): GxE variance due to either interactions of a single SNP or all common SNPs with multiple exposomic 
variables.  
GWEIS: Genome-wide by environment interaction study. Using the SNP BLUP method, the software for IGE 
(mtg2 v2.18) provides allele substitution effects of SNPs across environments, their standard errors and p-
values. The StructLMM software provides allele substitution effects and p-values for GxE interactions. 
cov(g,e): covariance between genomic and exposomic effects on phenotypes 
v(e): variance due to additive effects of exposomic variables  
v(exe): variance due to exposome x exposome interactions   
v(exc): variance due to exposome x covariate (e.g., demographics) interactions  
bivariate or multivariate analyses: analyses that simultaneously involve two or more traits. 
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