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Stéphane Joost3,1

1 Urban and Regional Planning Community, École Polytechnique Fédérale
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Abstract

Urban green infrastructure, especially trees, are widely regarded as one of the most
effective ways to reducing urban temperatures in extreme heat events, and alleviate its
adverse impacts on human health and well-being. Nevertheless, urban planners and
decision-makers are still lacking methods and tools to spatially evaluate the cooling
effects of urban green spaces and exploit them to assess greening strategies at the urban
agglomeration scale. This article introduces a novel spatially-explicit approach to
simulate urban greening scenarios by increasing the tree canopy cover in the existing
urban fabric, and evaluating their heat mitigation potential. The latter is achieved by
applying the InVEST urban cooling model to the synthetic land use/land cover maps
generated for the greening scenarios. A case study in the urban agglomeration of
Lausanne, Switzerland, illustrates the development of tree canopy scenarios following
distinct spatial distribution strategies. The spatial pattern of the tree canopy strongly
influences the human exposure to the highest temperatures, and small increases in the
abundance of tree canopy cover with the appropriate spatial configuration can have
major impacts on human health and well-being. The proposed approach supports urban
planning and the design of nature-based solutions to enhance climate resilience.

Introduction 1

Urbanization is a global phenomenon that increasingly concentrates the world’s 2

population in urban areas, with the latter expected to grow in both the number of 3

dwellers and spatial extent over the next decades [1–3]. As a major force of landscape 4

change, urbanization is characterized by the conversion of natural to artificial surfaces, 5

which alters the energy and water exchanges as well as the movement of air. Such 6

changes often result in the urban heat island (UHI) effect, a phenomenon by which 7

urban temperatures are warmer than its rural surroundings [4–9]. The negative impacts 8

of UHI have been widely documented and include increased energy and water 9

consumption [10–12], reduced workplace productivity [13, 14] and aggravation of health 10

risks [15–17]. As urban areas grow and global temperatures rise, the UHI effect is 11
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expected to become more intense [18,19], which makes urban heat mitigation a major 12

priority for urban planning and policy-making [20]. 13

Increasing urban green space, especially the urban tree canopy, has been one of the 14

most widely advocated strategies of urban heat mitigation. Nevertheless, the impacts of 15

the urban tree canopy on air temperature show a complex spatial behaviour that 16

remains poorly understood [9, 21,22]. While many case studies have reported evidence 17

of the cooling effects of urban green areas, the relationship between their size and their 18

cooling capacity is non-linear [23], and little is known about how the overall spatial 19

configuration of urban green spaces affects the heat mitigation at the urban 20

agglomeration scale [24–27]. Therefore, the extent to which cities can use green 21

infrastructure to reduce heat stress remains uncertain, largely because of the lack of 22

fine-grained approaches to evaluate the cooling effects of the spatial pattern of the tree 23

canopy at the urban agglomeration scale. 24

With the aim of addressing the above shortcomings, the present work introduces a 25

novel spatially-explicit method to evaluate the heat mitigation potential of altering the 26

abundance and spatial configuration of the urban tree canopy cover in realistic settings. 27

The proposed method consists of two major parts. First, synthetic scenarios are 28

generated by increasing the tree canopy cover in candidate locations where the existing 29

urban fabric permits it. Then, the spatial distribution of air temperature of each 30

synthetic scenario is estimated with the InVEST urban cooling model, which simulates 31

urban heat mitigation based on three biophysical processes, namely shade, 32

evapotranspiration and albedo. Finally, the simulated temperature map is coupled with 33

a gridded population census in order to evaluate the human exposure to urban heat in 34

the scenario. By applying such a procedure in the urban agglomeration of Lausanne, 35

Switzerland, this study aims to map the heat mitigation potential that can be achieved 36

starting from the existing urban fabric. With the aim of quantifying the effects of the 37

abundance and spatial configuration of the tree canopy cover on urban heat mitigation, 38

a set of synthetic scenarios are generated by increasing different proportions of tree 39

canopy cover in distinct spatial configurations. 40

Materials and Methods 41

Study area 42

Lausanne is the fourth largest Swiss urban agglomeration with 420757 inhabitants as of 43

January 2019 [28]. The agglomeration is located at the Swiss Plateau and on the shore 44

of the Lake Léman, and is characterized by a continental temperate climate with mean 45

annual temperatures of 10.9 ◦C and mean annual precipitation of 100 mm, with a 46

dominating vegetation of mixed broadleaf forest. The spatial extent of the study has 47

been selected following the recent application of the InVEST urban cooling model to 48

Lausanne by Bosch et al. [29], and covers an area of 112.46 km2. 49

In order to evaluate the human exposure to UHI, the population data for the study 50

area has been extracted from the population and households statistics (STATPOP) [30] 51

provided at a 100 m resolution by the Swiss Federal Statistical Office (SFSO) with the 52

Python library swisslandstats-geopy [31]. 53

Simulation with the InVEST urban cooling model 54

The spatial distribution of air temperatures is simulated with the InVEST urban 55

cooling model (version 3.8.0) [32], which is based on the heat mitigation provided by 56

shade, evapotranspiration and albedo. The main inputs are a land use/land cover 57

(LULC) raster map, a reference evapotranspiration raster and a biophysical table 58

2/20

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.09.373779doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.373779
http://creativecommons.org/licenses/by-nc/4.0/


containing model information of each LULC class of the map. The LULC maps have 59

been obtained by rasterizing the vector geometries of the official cadastral survey of the 60

Canton of Vaud [33] as of August 2019 to a 10 m resolution. Such a dataset 61

distinguishes 25 LULC classes which are relevant ot the urban, rural and wild 62

landscapes encountered in Switzerland. The reference evapotranspiration pixel values 63

are estimated with the Hargreaves equation [34] based on the daily minimum, average 64

and maximum air temperature values of the 1 km gridded inventory of by the Federal 65

Office of Meteorology and Climatology (MeteoSwiss) [35]. The biophysical table used in 66

this study is shown in Table S1. A more thorough description of the model and the data 67

inputs can be found in Bosch et al. [29]. 68

The parameters of the model are set based on its calibration to the same study area 69

in previous work [29]. Finally, the rural reference temperature (Tref ) and UHI 70

magnitude (UHImax) values are derived from the air temperature of 11 monitoring 71

stations in the study area (see Figure S1). More precisely, Tref is set as the 9 p.m. air 72

temperature measurement — the moment of maximal UHI intensity in Switzerland [36] 73

— of the station showing the lowest temperature value, and UHImax is set as the 74

difference between the 9 p.m. temperature measurement of the station showing the 75

highest temperature value and Tref . With the above definitions, a reference day for the 76

simulations has been selected from the 2018-2019 period as the day showing the 77

maximum UHImax with Tref > 20. Such a date corresponds to July 27th 2018, with 78

Tref = 20.60◦C and UHImax = 7.38◦C. 79

Refining LULC classes based on tree cover and building density 80

A procedure to redefine the LULC classes from the cadastral survey has been designed 81

to distinguish the LULC classes depending on their proportional cover of both trees and 82

buildings. The reclassification is achieved by combining the 10 m raster LULC map 83

with two 1 m binary raster masks, one for the tree canopy raster and another for the 84

buildings. The 1 m binary tree canopy mask has been derived from the SWISSIMAGE 85

orthomosaic [37], by means of the Python library DetecTree [38], which implements the 86

methods proposed by Yang et al. [39]. The estimated classification accuracy of the tree 87

canopy classification is of 91.75%. On the other hand, the 1 m binary building mask has 88

been obtained by rasterizing the buildings of the vector cadastral survey [33]. 89

The reclassification procedure consists of three steps. Firstly, each 10 m pixel is 90

coupled with the tree canopy and building masks in order to respectively compute its 91

proportion of tree and building cover. Secondly, the set of 10 m pixels of each LULC 92

class are grouped into a user-defined set of bins to form two histograms, one based on 93

their proportion of tree cover and the other analogously for the building cover. Lastly, 94

the two histograms are joined so that each LULC class is further refined into a set of 95

classes. For example, if two bins were used for both the tree and building cover, the 96

“sidewalk” LULC code might be further refined into “sidewalk with low tree/low 97

building cover”, “sidewalk with low tree/high building cover”, “sidewalk with high 98

tree/low building cover” and “sidewalk with high tree/high building cover”. 99

In the present work, four equally spaced bins (i.e., distinguishing 0-25%, 25-50%, 100

50-75% and 75-100% intervals) have been used to reclassify each LULC class according 101

to both the tree and building cover. Following the advice given by the directorate of 102

resoures and natural heritage in the Canton of Vaud (DGE-DIRNA), the threshold over 103

which a pixel is considered to have a high tree canopy cover has been set to 75%, which 104

corresponds to placing trees of a spheric crown with a 5 m radius spaced 10 m from one 105

another so that they form a continuous canopy. Therefore, adjacent pixels with a tree 106

canopy cover over 75% can Finally, in order to adapt the biophysical table of the 107

InVEST urban cooling model to the reclassified LULC classes, the shade coefficients are 108

computed as the midpoint of the bin interval of each level of tree cover (i.e., 0.125, 109
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0.375, 0.625 and 0.875), whereas the albedo coefficients have been linearly interpolated 110

based on the level of building cover (see Table S1). 111

Generation of urban greening scenarios 112

Starting from the refined LULC map, a set of urban greening scenarios are generated by 113

altering the LULC classes of certain candidate pixels in a way that corresponds to 114

reasonable transformations that could occcur in urban areas. More precisely, pixels 115

whose base LULC class corresponds to “building”, “road, path”, “sidewalk”, “traffic 116

island”, “other impervious” and “garden” are changed to the LULC code that has the 117

same base class but with the highest tree cover, e.g., pixels of a post-refinement class 118

“sidewalk with low tree/low building cover” are be changed to “sidewalk with high 119

tree/low building cover”. In order to ensure that such an increase of the tree canopy 120

cover is performed only where the existing urban fabric permits it, pixels might only be 121

transformed when two conditions are met. First, the proportion of building cover in the 122

candidate pixels must be under 25%, i.e., there is a 75% of the pixel area which could 123

be occupied by a tree crown. Secondly, pixels of the “road, path” class might only be 124

transformed when they are adjacent to a pixel of a different class, which prevents 125

increasing the tree canopy cover in pixels that are in the middle of a road (e.g., a 126

highway). 127

After mapping the candidate pixels where the tree canopy cover can be increased, 128

scenarios are generated based on two key attributes: the extent of tree canopy 129

conversion (expressed as a proportion of the total number of candidate pixels), and the 130

selection of pixels to be converted. A set of scenarios is generated by transforming a 131

12.5, 25, 37.5, 50, 62.5, 75 and 87.5% of the candidate pixels respectively. For each of 132

these canopy areas, three distinct selection approaches are used. The first consists in 133

randomly sampling from the candidate pixels until the desired proportion of changed 134

pixels is matched. In the second and third approaches, the candidate pixels are sampled 135

according to the number of pixels with high tree canopy cover (i.e., greater than 75%) 136

found in their Moore neighborhood (i.e., the 8 adjacent pixels). In the second approach, 137

pixels with higher number of high tree canopy cover neighbors are transformed first, 138

which intends to spatially cluster pixels of high tree canopy cover. The third approach 139

intends to spatially scatter pixels of high tree canopy cover by prioritizing pixels with 140

lower number of high tree canopy neighbors. Given that the three sampling approaches 141

are stochastic, for each scenario configuration, i.e., each pair of proportion of 142

transformed candidate pixels and sampling approach, the corresponding temperature 143

maps will be computed by averaging a number of simulation runs. After observing little 144

variability among the simulation results, the number of runs of a each configuration has 145

been set to 10. Lastly, the set of scenarios is completed with a configuration where a 146

100% of the candidate pixels are transformed, which is independent of the sampling 147

approach or scenario run since there exists a single deterministic way to transform all 148

the candidate pixels. The final number of scenarios simulated scenarios is 211, i.e., 10 149

scenario runs for 3 different sampling approaches and 7 proportions of transformed 150

candidate pixels, plus a last scenario where all the pixels are transformed. 151

For each scenario, the spatial pattern of the tree canopy is quantified by means of a 152

set of spatial metrics from landscape ecology [40,41], which are computed for the pixels 153

whose post-refinement LULC class has a tree canopy cover over 75% 1. Based on other 154

studies that explore the relationship between the spatial of tree canopy and UHIs, four 155

spatial metrics have been chosen to quantify both the composition and oconfiguration of 156

1Following the advice given by the directorate of resoures and natural heritage in the Canton of
Vaud (DGE-DIRNA), the threshold over which a pixel is considered to have a high tree canopy cover
has been set to 75%, which corresponds to placing trees of a spheric crown with a 5 m radius spaced
10 m from one another so that they form a continuous canopy.
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the tree canopy, which are listed in Table 1. The proportion of landscape (PLAND) of 157

pixels with high tree canopy cover serves to quantify the composition aspects, while the 158

configuration is quantified by means of the mean patch size (MPS), edge density (ED) 159

and the mean shape index (MSI) of patches of high tree canopy cover. The four metrics 160

have been computed with the Python library PyLandStats [42]. 161

Table 1. Selected landscape metrics. A more thorough description can be found in the documentation of the software
FRAGSTATS v4 [41]

Category Metric name Description

Composition Percentage of landscape (PLAND) Percentage of landscape, in terms of area, occupied by pixels with
high tree canopy cover

Configuration Mean patch area (AREA MN) Average size (in hectares) of the patches formed by pixels with high
tree canopy cover

Mean shape index (SHAPE MN) Average shape index of the patches formed by pixels with high tree
canopy cover

Edge density (ED) Sum of the lengths of all edge segments between pixels with high
tree canopy cover an other pixels, per area unit (in m/hectare)

Results 162

Proportion of transformed pixels by their original LULC class 163

The relationship between the number of transformed candidate pixels by their original 164

LULC class and the overall proportion of transformed candidate pixels is shown in 165

Figure 1. Changing a 25, 50, 75 and 100% of the candidate pixels corresponds to a total 166

number of pixels changed of 118880, 237760, 356640 and 475520, which account for a 167

total area of 1188.8, 2377.6, 3566.4 and 4755.2 hectares respectively. In the latter case, 168

i.e., increasing the tree canopy in all the possible pixels, 61.50% of the pixels correspond 169

to the “garden” LULC class, followed by “road, path”, “building”, “other impervious”, 170

(18.01, 10.81 and 7.69%, respectively). Finally, the LULC classes of “sidewalk” and 171

“traffic island” constitute only 1.67 and 0.3% of the pixels where the tree canopy can be 172

increased. The differences when considering the sampling approaches separately are 173

small relative to the total number of transformed candidate pixels. The largest 174

differences between sampling approaches can be noted in the number of transformed 175

pixels that originally belong to the “garden” class. When transforming 25, 50 and 75% 176

of the candidate pixels, clustering respectively transforms (on average among the 177

simulation runs) a 0.90, 0.38 and 0.12% more garden pixels than random sampling, and 178

1.28, 0.76 and 0.43% more garden pixels than the scattering approach (Figure 2). 179
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Figure 1. Number of transformed pixels by its original LULC class for an overall
proportion of transformed pixels of 25, 50, 75 and 100%. The lines at the top of the bars
represent the 95% confidence intervals. The bar heights and the confidence intervals
are computed out of all the simulation runs and sampling approaches. See the Jupyter
Notebook at section S2.1 for the detailed numbers of the figure.
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Figure 2. Comparison of between the number of transformed pixels by its original LULC class with the random sampling
approach and the scattering (Nrandom − Nscatter, left subplot) and the clustering (Nrandom − Ncluster, right subplot)
selection approaches, for an overall proportion of transformed pixels of 25, 50 and 75%. The lines at the top of the bars
represent the 95% confidence intervals. The bar heights and the confidence intervals are computed out of all the simulation
runs. See the Jupyter Notebook at section S2.1 for the detailed numbers of the figure.

Simulated LULC, temperature and heat mitigation maps 180

The LULC, temperature and heat mitigation maps for the scenarios generated by 181

transforming a 25, 50, 75 and 100% of the candidate pixels are shown in Figure 3. 182

When changing 25, 50, 75 and 100% of the candidate pixels, the maximum temperature 183

T for the reference date, i.e., 26.05◦C, is progressively reduced to 25.77, 25.30, 24.82 184

and 24.49◦C respectively, while the magnitude of maximum heat mitigation (T − Tobs) 185

increases from 0.49, 1.17, 1.81 and 2.22◦C respectively. The largest heat mitigation 186

magnitudes occur in the most urbanized parts, which are located along the main 187

transportation axes. The relationship between the proportion of candidate pixels 188

transformed and the simulated distribution of air temperature can be approximated as a 189

linear relationship with a negative slope (see Figure S2 and Figure S3 for more details 190

about this relationship). 191
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Figure 3. Simulated LULC (top), temperature (middle) and heat mitigation (bottom) maps by transforming a 25, 50,
75 and 100% of the candidate pixels to its corresponding LULC code with high tree canopy cover. The pixel values of
each map are aggregated out of all the sampling approaches and simulation runs, i.e., the LULC maps show the mode,
whereas the temperature and heat mitigation maps show the average. The axes tick labels display the Swiss CH1903+/LV95
coordinates. See the Jupyter Notebook at section S2.1 for the detailed numbers of the figure.
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Figure 4. Relationship between landscape metrics and the simulated average temperature T for each scenario run, colored
to distinguish the sampling approaches. See the Jupyter Notebook at section S2.2 for the detailed numbers of the figure.

Spatial patterns of tree canopy cover 192

The relationships between the landscape metrics of each scenario run and the 193

corresponding simulated average temperature T (over all the pixels) are displayed in 194

Figure 4. The proportion of landscape (PLAND) occupied by pixels with high tree 195

canopy cover range from 17.26 to 53.37%. As a composition metric, PLAND is directly 196

related to the proportion of transformed candidate pixels, and the extreme values of the 197

PLAND range correspond to transforming 0 and 100% of the candidate pixels 198

respectively. The relationship between PLAND and the average simulated temperature 199

of each scenario T shows a sharp monotonic decrease. However, for the same PLAND 200

values, clustering the transformed pixels to other pixels with high tree canopy cover 201

consistently leads to higher T than scattering or randomly sampling — the latter 202

approaches show almost indistinguishable PLAND and T relationship. 203

Regarding the configuration metrics, the values of the mean patch area (AREA MN) 204

show that the clustering and random sampling approaches lead to larger patches of high 205

tree canopy cover than the scattering approach. When transforming a 12.5 and 25% of 206

the candidate pixels, clustering them to other pixels of high tree canopy cover increases 207
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AREA MN from 0.14 to 0.54 hectares respectively (on average over the simulation runs). 208

For 37.5% of transformed candidate pixels in the clustering approach, AREA MN shows 209

a sudden decline to 0.20 hectares, followed by a monotonic increase that reaches 1.52 210

hectares when all the candidate pixels are transformed. Such a discernable kink in the 211

computed AREA MN reveals characteristics of the existing urban fabric, and describes 212

the point after which all the candidate pixels that are adjacent to other pixels of high 213

tree canopy have been transformed and hence new pixels have to be allocated as part of 214

new (and smaller) patches. The same kink is even more notable for the mean shape 215

index (SHAPE MN), yet the computed values show a very irregular pattern accross the 216

different scenario configurations, and it is the only metric where differences can be 217

noted among scenario runs with the same configuration. The only consistency is that 218

the scattering approach tends to lower SHAPE MN values than randomly sampling the 219

transformed pixels, which is likely due to the larger abundance of simple single-pixel 220

patches in the former approach. Finally, the clustering approach results in lower edge 221

density (ED) values than in the scattering and random sampling approaches, which 222

show a very similar trend. The observed pattern is consistent with the notion that 223

growing existing patches by clustering the new pixels to them accounts for less total 224

edge length than scattering the same amount of new pixels in a leapfrog manner. In the 225

three approaches, the ED increases monotonically at first until an apex is reached when 226

the proportion of transformed pixels is between 50% and 60%, and then declines 227

monotonically. 228

The average simulated temperature T is overall negatively correlated with 229

AREA MN, which suggests that for the same amount of high tree canopy pixels, large 230

patches provide lower heat mitigation. On the other hand, configurations with the same 231

proportion of high tree canopy pixels show lower T for larger values of ED, which 232

suggests that edge effects between artificial patches and patches of high tree canopy 233

contribute to greater heat mitigation. Nonetheless, as higher proportions of candidate 234

pixels are transformed and the locations of the remaining candidate pixels force the 235

overall ED to decrease, the simulated average temperatures continue to decline. This 236

highlights how the cooling effects of the abundance of tree canopy overshadow those of 237

the spatial configuration, which is consistent with many related research. 238

Effects on human exposure 239

The relationship between human exposure to air temperatures higher than 21, 22, 23, 240

24, 25 and 26◦C and the proportion of pixels transformed to their respective high tree 241

canopy cover class is shown in Figure 5. The number of dwellers exposed to 242

temperatures higher than 21◦C does not show a significant decrease (even when 243

converting all the candidate pixels), whereas for temperatures higher than 22◦C, it 244

diminishes from 269254 to 268601, 267683, 266518 and 264125 when the proportion of 245

transformed pixels is of 25, 50, 75 and 100% respectively, which represents a relative 246

share of 97.25, 97.02, 96.69 96.27 and 95.41% of the population of the study area. Such 247

a decline progressively becomes more notable as temperatures increase, e.g., the share of 248

the population exposed to temperatures over 24◦C declines from an initial 78.4% to 249

72.39, 59.57, 37.53 and 11.52% when transforming a 25, 50, 75 and 100% of the 250

candidate pixels respectively. Finally, the share of dwellers exposed to temperatures 251

over 25◦C, which is initially of 47.91%, is diminished to a 24.98 and 5.74% when 252

transforming a 25 and 50% of the pixels respectively, and becomes 0 after that, whereas 253

the 2508 dwellers originally exposed to temperatures over 26◦C do no longer meet such 254

temperatures after transforming a 25% of the candidate pixels. 255

The way in which the transformed pixels are sampled has significant effects on the 256

human exposure to high temperatures (Figure 6). Overall, scattering the transformed 257

pixels to avoid forming a continuous tree canopy appears as the most effective approach 258
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Figure 5. Population exposed to temperatures higher than 21, 22, 23, 24, 25 and 26◦C
respectively for an overall proportion of transformed pixels of 0, 25, 50, 75 and 100%.
The bar heights and the confidence intervals are computed out of all the simulation runs
and sampling approaches. See the Juptyer Notebook at section S2.3 for the detailed
numbers of the figure.

to reduce the human exposure to the highest temperatures, followed by random 259

sampling. When transforming a 25 and 50% of the candidate pixels with the scattering 260

approach, the number of dwellers exposed to temperatures over 25◦C decreases from 261

124073 to 65108 and 4498 respectively. Such a reduction is larger than its random 262

sampling counterpart by 3125 and 8223 dwellers respectively, and larger than its 263

clustering approach counterpart by 9359 and 21388 dwellers respectively (Figure 6). 264

Discussion 265

Validity and applicability of the proposed approach 266

The scenarios simulated in this study map locations where the tree canopy cover in the 267

urban agglomeration of Lausanne can be increased, and suggests that such changes can 268

result in urban nighttime temperatures that are up to 2◦C lower. The results indicate 269

that given the same proportion of tree canopy cover, a scattered configuration might 270

lead to more effective urban heat mitigation than a clustered one, which is in line with 271

previous studies in humid climates [43–48]. Nevertheless, the results suggest that effect 272

of the spatial configuration (measured by the metrics AREA MN, SHAPE MN and ED) 273

is secondary when compared to the effect of the composition (measured by the PLAND 274

metric). Overall, the effect of the spatial configuration of trees on its urban heat 275

mitigation depends on how it affects the shading and evapotranspiration processes. 276

Such a relationship is known to be strongly mediated by the tree species, background 277

climatic and environmental conditions as well as the spatial scale [45–47,49–53]. 278

The spatial effects observed in the results are due to the InVEST model equations 279

representing air mixing and the effect of parks. In order to ascertain these effects, the 280

InVEST urban cooling model must be further validated with experiments at the 281

neighborhood scale to ensure that it provides an appropriate city-scale depiction of how 282

the urban heat mitigation mechanisms operate at finer scales. In fact, the InVEST 283

urban cooling model presents limitations regarding the simplified and homogeneous way 284

in which the air is mixed, as well as the cooling effects of large green spaces [29, 32]. As 285

a result, the relationship between the proportion of tree canopy cover and the 286

magnitude of the urban heat mitigation reported in this work is practically linear, and 287

the temperature differences between spatially clustering or scattering the new tree 288

9/20

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.09.373779doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.373779
http://creativecommons.org/licenses/by-nc/4.0/


21.0 22.0 23.0 24.0 25.0 26.0
T

10000

5000

0

5000

N
ra

nd
om

N
sc

at
te

r

21.0 22.0 23.0 24.0 25.0 26.0
T

N
ra

nd
om

N
cl

us
te

r

Prop. pixels
0.25
0.5
0.75

Figure 6. Comparison of between the population exposed to temperatures higher than 21, 22, 23, 24, 25 and 26◦C with
the random sampling approach and the scattering (Nrandom −Nscatter, left subplot) and the clustering (Nrandom −Ncluster,
right subplot) selection approaches, for an overall proportion of transformed pixels of 25, 50 and 75%. The lines at the top
of the bars represent the 95% confidence intervals. The bar heights and the confidence intervals are computed out of all the
simulation runs. See the Jupyter Notebook at section S2.3 for the detailed numbers of the figure.

canopy cover are limited. Nonetheless, in complex terrains such as the Lausanne 289

agglomeration, models with uniform weighting of space show considerable deviations 290

from the observed spatial patterns of air temperature [35,54]. Moreover, the cooling 291

effects of large green spaces have been found to be non-proportional to their area and 292

shape complexity [55–57]. Improving how these non-linear components are represented 293

in the InVEST urban cooling model could enhance not only its validity, but also its 294

value to urban planning by identifying thresholds and regime changes in the cooling 295

efficiency of additional tree planting. 296

Despite the limitations noted above, a major advantage of the proposed approach is 297

that it can be used to evaluate urban heat mitigation of synthetic scenarios. The 298

simulations presented in this article focus on spatially exploring the effects of an 299

increase of the tree canopy cover, yet there is room for much more experimentation of 300

this kind. On the one hand, the generic sampling approaches explored above can be 301

extended to consider ad-hoc characteristics such as the spatial distribution of the 302

population, and design optimization procedures with specific goals. For instance, the 303

candidate pixels can be selected with the aim of minimizing the exposure of the most 304

vulnerable populations to critical heat thresholds. More broadly, the approach can be 305

used as part of decision support system to explore the trade-offs between ecosystem 306

services provided by trees, perform weighted optimizations and map priority planting 307

locations [58]. On the other hand, in line with recent studies [59–61], the approach 308

could be applied to examine the impact of distinct urbanization scenarios such as 309

densification and urban sprawl on air temperature and human exposure to extreme heat, 310

under current conditions as well as future climate estimates, e.g., by changing the Tref 311

or UHImax parameters. Similarly, InVEST urban cooling model might be coupled with 312

models of LULC change such as cellular automata in order to assess not only which 313

scenarios are most desirable in terms of urban heat mitigation, but also which planning 314

strategies might lead to them [62–64]. 315

Implications for urban planning in Lausanne 316

The spatiotemporal patterns of LULC change observed during the last 40 years in the 317

Lausanne agglomeration have been characterized by infilling development and a 318
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progressive coalescensce of artificial surfaces in its inner ring [65]. Such an infilling trend 319

urges for careful evaluation of the beneficial ecosystem services provided by urban green 320

spaces, which should be balanced against the adverse consequences of urban 321

sprawl [26,27]. 322

The approach proposed in this study maps locations in the current urban fabric 323

where the tree canopy cover can be increased. While part of this urban greening might 324

occur in impervious surfaces (e.g., in sidewalks, next to roads and in other impervious 325

surfaces), most of the candidate locations currently correspond to urban green space 326

(i.e., the “garden” LULC class). Therefore, the potential heat mitigation suggested by 327

the results study is not attainable in a scenario of severe infill development. 328

Additionally, densification strategies should consider that newly created urban green 329

space might result in less provision of ecosystem services than remnant natural 330

patches [25, 66, 67]. Finally, infilling might exacerbate the unevenness of the accessibility 331

to green areas by depriving dwellers of the most dense parts in city core from their few 332

remaining urban green spaces. Spatial heterogeneity of this kind, which are encountered 333

in many socioeconomic and environmental aspects of contemporary cities, are often 334

hard to represent with aggregate indicators and highlight the importance of spatially 335

explicit models to urban planning and decision making. 336

The explicit representation of space is also crucial when considering the impacts of 337

urban green space on human exposure to extreme heat. Although the simulated 338

scenarios suggest that the impact of the spatial pattern of tree canopy on the air 339

temperature is practically linear, the implications on human exposure to critical 340

temperatures exhibit important thresholds. For example, by increasing the tree canopy 341

cover of a 25% of the candidate pixels, the number of dwellers exposed to nighttime 342

temperatures over 25◦C can be reduced from 124073 to 74466, which respectively 343

represents a 45.08 and 27.06% of the total population in the study area. Furthermore, 344

the results suggest by selecting such pixels to prioritize a spatial scattering of the tree 345

canopy cover, such a population can be reduced by an additional 3125 or 6234 dwellers 346

when respectively compared to random sampling such pixels or clustering them to the 347

existing tree canopy cover. In Switzerland, the excess mortality associated to the heat 348

wave of 2003 occurred over-proportionally to urban and sub-urban residents of its 349

largest urban agglomerations [68]. Furthermore, the association between temperature 350

and mortality in extreme heat events in the largest Swiss urban agglomerations are 351

exponential [69], which indicates that reducing temperatures by even fractions of a 352

degree can have a dramatic impact on death rates. 353

Conclusion 354

The scenarios simulated in this study represent a new way of spatially exploring the 355

heat mitigation potential provided by modifications of the urban fabric, and allow 356

evaluating the cooling effects of both the abundance and spatial configuration of the 357

tree canopy cover. The results map locations where the existing tree canopy cover of the 358

urban agglomeration of Lausanne can be increased, and show an urban cooling potential 359

for urban nighttime temperatures of more than 2◦C. Additionally, the simulations 360

suggest that the spatial configuration in which the tree canopy is increased influences its 361

heat mitigation effects. The configuration effects become more significant when 362

considering the impacts on the urban population, and small increases in the tree canopy 363

can result in important reductions in the number of dwellers exposed to the highest 364

temperatures. Overall, the presented approach provides a novel way to explore how the 365

urban tree canopy of can be exploited to reduce heat stress. Future studies can extend 366

the analyses by assessing the provision of other ecosystem services in the various tree 367

canopy strategies presented here. 368
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Supporting Information 369

S1 Data 370

S1.1 Biophysical table 371

The biophysical table for the LULC codes (before the reclassification) is shown in 372

Table S1. The crop and water coefficients are based on Allen et al. [70], while rock, soil 373

and urban coefficients are derived from the results of Grimmond and Oke [71] in the city 374

of Chicago. Given that the evapotranspiration of the vegetation and crops is subject to 375

seasonal changes in temperate zones such as Switzerland [70], the values that correspond 376

to the mid-season estimation (June to August) in [72]. The albedo values are based on 377

the work of Steward et al. [73]. The shade column, which represents the proportion of 378

tree cover of each LULC class, is computed after the reclassification procedure described 379

in section “Refining LULC classes based on tree cover and building density”. 380

Table S1. Biophysical table (before the reclassification). The source comma-separated value
(CSV) file used in the computational workflow is available at https://github.com/martibosch/
lausanne-heat-islands/blob/master/data/raw/biophysical-table.csv.

LULC code Description Case Kc Albedo Green area

0 building artificial 0.4 0.1-0.25 0
1 road, path artificial 0.35 0.15 0
2 sidewalk artificial 0.35 0.15 0
3 traffic island artificial 0.35 0.15 0
4 rail artificial 0.35 0.15 0
5 airfield artificial 0.4 0.2 0
6 pond water 0.45 0.15 0
7 other impervious artificial 0.36 0.15 0
8 field, meadow, pasture vegetation 0.9 0.2 1
9 vineyards vegetation 0.7 0.2 1
10 other intensive farming vegetation 1.05 0.2 1
11 garden artificial 0.32 0.2 1
12 wetland water 0.45 0.1 1
13 other green vegetation 0.45 0.2 1
14 backwater water 0.65 0.05 1
15 water course water 0.65 0.05 0
16 reed water 0.45 0.1 1
17 dense forest vegetation 1.5 0.15 1
18 densely wooded pasture vegetation 1.15 0.15 1
19 open wooded pasture vegetation 1.15 0.2 1
20 other wooded vegetation 1.15 0.15 1
21 bare rocks rock and soil 0.2 0.25 0
22 glacier water 0.52 0.1 0
23 sand rock and soil 0.3 0.25 0
24 gravel pit artificial 0.36 0.25 0
25 other non-vegetated artificial 0.36 0.15 0

S1.2 Monitoring stations 381

The locations of the monitoring stations used to get the Tref and UHImax parameters 382

of the InVEST urban cooling model are shown in Figure S1. The operators of the 383
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stations are: Agrometeo, Federal roads office (ASTRA), Federal office for the 384

environment (BAFU), General directorate for the environment of the Canton of Vaud 385

(DGE), and the Federal Institute of Forest, Snow and Landscape Research (WSL) [74]. 386

The source CSV file with the operator, location and elevation in meters above sea level 387

of the monitoring stations used in the computational workflow is available at 388

https://github.com/martibosch/lausanne-greening-scenarios/blob/master/ 389

data/raw/tair-stations/station-locations.csv. The code to produce Figure S1 390

is available as a Jupyter Notebook (IPYNB) at https://github.com/martibosch/ 391

lausanne-greening-scenarios/blob/master/notebooks/stations.ipynb. 392

Figure S1. Locations of the monitoring stations used to get the Tref and UHImax

parameters. The axes tick labels display the Swiss CH1903+/LV95 coordinates. The
basemap tile is provided by StamenDesign, under CC BY 3.0, with data from Open-
StreetMap, under ODbL.

S2 Results 393

S2.1 Scenario LULC, temperature and heat mitigation 394

The code to produce the figures 1, 3, S2 and S3, as well as tables describing the data of 395

the figures, are available as a Jupyter Notebook (IPYNB) at 396

https://github.com/martibosch/lausanne-greening-scenarios/blob/master/ 397

notebooks/scenarios.ipynb. 398
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Figure S2. Relationship between the proportion of candidate pixels transformed and
the average simulated temperature T for each scenario sample. The translucent bands
around the regression line represent the 95% confidence intervals estimated using a
bootstrap.
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Figure S3. Histogram of raster temperature values for a 25, 50, 75 and 100% of
the candidate pixels transformed. The temperature rasters for each histogram are
computed by averaging the 10 simulations with the same proportion of candidate pixels
transformed.

S2.2 Scenario metrics 399

The code to produce Figure 4 is available as a Jupyter Notebook (IPYNB) at 400

https://github.com/martibosch/lausanne-greening-scenarios/blob/master/ 401

notebooks/scenario-metrics.ipynb. 402

S2.3 Scenario human exposure 403

The code to produce Figure 5 is available as a Jupyter Notebook (IPYNB) at 404

https://github.com/martibosch/lausanne-greening-scenarios/blob/master/ 405

notebooks/human-exposure.ipynb. 406
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