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Abstract 
 
Lower function of the serotonin transporter (5-HTT) has a strong relationship with the 
development of autism spectrum disorder (ASD) in humans. One characteristic of ASD is the 
repetitive and restrictive behavior, which may form the basis for better memory and savant 
skills in some people with ASD. This characteristic in ASD may reflect a tendency towards an 
exploitation strategy rather than an exploration strategy during learning. Using a rat model, 
we developed a touchscreen-based task for testing 5-HTT knockout effects on stimulus 
category learning. By analyzing the data with a reinforcement learning drift diffusion model, 
we find that 5-HTT knockout rats show a lower learning rate and apply more of an exploitation 
versus exploration strategy compared to WT rats during category learning. The decision 
bound of decision-making during stimulus generalization indicates that more 5-HTT knockout 
rats than WT rats exploit irrelevant information to categorize stimuli. The touchscreen-based 
task we developed greatly increases the translational value from animals to humans and helps 
to understand the behavioral mechanisms underlying repetitive behavior in ASD.  
 

Introduction 
 
Direct evidence from a human study showed that the functional efficiency of serotonin 
transporter (5-HTT) in the brain of people with autism spectrum disorder (ASD) is relatively 
lower compared to that of healthy control 1. Further, pharmacological inhibition of 5-HTT 
during the maternal period increases the risk for ASD in offspring 2,3, and inhibition of 5-HTT 
in children with ASD makes them even worse in repetitive behaviors 4. All these humane 
studies imply that lower function of 5-HTT has a strong relationship with the development of 
ASD. 
 
A salient characteristic of ASD is repetitive and restrictive behavior 5. This behavior might be 
boring to most healthy people, but it seems interesting to people with ASD. It has been 
speculated that their repetition of things of interest is not strictly repetition for repetition’s 
sake 6. People with ASD are like domain experts, and are able to discriminate the subtle 
differences of objects they are interested in. The consequence of this ability is that one 
category of objects for most people, may be multiple categories for people with ASD. This 
allows people with ASD to have a novel experience in every “repetitive” behavior and be 
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“restricted” to this behavior without getting bored. The “repetitive and restrictive” behavior 
may be the basis for many people with ASD that have better capacity of memory and form 
savant skills (also known as talent) 7.  
 
Cognitive superiority and repetitive behavior have also been observed among individuals 
carrying the low activity short allele of the serotonin transporter-linked polymorphic region 
(5-HTTLPR), in both humans and monkeys  8. For example, short allele carriers show a better 
performance in reversal learning 9. Experiments in rodents also confirmed that the loss 
function of 5-HTT causes a better performance in reversal learning 10,11. One explanation is 
that ablation of 5-HTT increases cognitive flexibility. An alternative explanation might be that 
individuals characterized by reduced 5-HTT availability are better able to categorize the target 
stimulus and have a consistent approach to choose the target stimulus during reversal 
learning, namely through repetitive and restrictive behavior. Indeed, 5-HTT knockout (KO) 
rats show increased repetitive behavior when exploring objects and a developmental delay  
12. The consistency of “repetitive and restrictive” behavior in ASD may reflect a tendency 
towards an exploitation strategy rather than an exploration strategy during learning 13. 
Exploitation refers to an explicitly chosen strategy to make decisions. In contrast, exploration 
refers to a strategy that might change or is not consistent when making a decision. During 
category learning, subjects enter a situation of exploitation-exploration trade-off.  
 
5-HTT KO rats and people with ASD may have the capacity to learn categories correctly under 
rule-based instruction 11,14,15. However, people with ASD have a robust impairment in 
generalizing the learned information to novel situations/stimuli 16,17. Generalization is the 
process by which the brain processes information before taking actions. During this 
processing, the transfer of the stored information to novel situations/stimuli is required (Guo 
et al. 2020). Typically, the novel stimuli are similar to the categorized stimuli to some extent, 
such as the frequency of sound, tactile feel of the material, or orientation of gratings 18. 
According to the similarity relationship, one stimulus is associated with a valence (e.g. reward 
conditioned stimulus, CS), while the second stimulus is different from the first stimulus in one 
dimension (e.g. different orientation of gratings) and associated with another valence. The 
two CSs can be distinguished at the perceptual dimension. When using a series of stimuli 
(Generalization stimuli, GS) that vary along with the defined stimulus dimension (the 
orientation of gratings), generalization performance can be tested in rodents (Guo et. al. 
2020). 
 
In the current study, we investigated the effect of 5-HTT knockout in rats on exploitation and 
exploration learning strategies to categorize stimuli using a novel paradigm. In this paradigm, 
stimuli were presented on a touchscreen and subjects responded to stimuli directly by 
touching the screen. Presenting stimuli on the screen as targets is a widely used approach in 
human studies. Typically, disc-shape grating stimuli are used in humans to investigate rule-
based category learning, in which subjects apply hypotheses to testing rules for forming 
stimulus categorization 19–21. We also investigated rule-based category learning in the present 
study employing rats as subjects. This increases the crucial translational value from animal to 
human studies. During the category learning task, the stimuli differed from each other on two 
dimensions, orientation and frequency. Subjects were required to focus on the orientation of 
the gratings while ignoring the frequency of the gratings in order to categorize the two preset 
categories correctly. In the orientation dimension, the standard deviation (SD) is the same in 
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the two categories of grating stimuli, but the mean is different. The mean of stimuli is 25 in 
one category and 65 in the other category. In the frequency dimension the mean and SD 
parameters of the spatial frequency of the stimuli in the two categories are the same. People 
with ASD perform well in specific category learning but have a robust impairment in 
generalization 16,17. We therefore further tested whether 5-HTT knockout affects 
generalization in rats after sufficient training in stimulus categorization.  
 

Materials and methods 
Subjects 
Eighteen male rats aged 95-110 days served as subjects. Nine of them were homozygous 5-
HTT KO rats, the others were wild-type (WT) siblings. The sample size based on previous 
experiments 11(Guo et al. 2020). The KO rats (Slc6a41Hubr) had been generated by target-
selected ethylnitrosourea induced mutagenesis and outcrossed for at least 15 generations 
with commercial Wistar (albino) rats 22. All rats were housed in a temperature-controlled 
room (21 ± 1 °C) with a humidity of 40-50% under a 12/12 h reverse light and dark cycle 
(lighting from 19:00 to 7:00). Rats were housed in pairs in regular European standard III H-
type cages including a shelter. They had ad libitum access to water and food chow in home 
cages. Housing conditions and experiments were approved by the Animal Welfare Committee 
of Radboud University Medical Center, Nijmegen, the Netherlands.  
 
Stimuli 
All stimuli used in the experiments were generated by using python (version 3.7) with the 
package of PsychoPy (version 3.0). Stimuli were presented on a touchscreen. The touchscreen 
is placed on one side of the wall of an operant box (more details about the operant box is 
described in Guo et al. 2020). The stimuli presented during category learning and 
generalization were black and white gratings of varying orientation (Orit) and spatial 
frequency (SF). Orit ranged from 0 to 1.5708 radians (rad) and SF ranged from 0.1202 to 
0.4952 cycles per degree (cpd). These values are within the visual acuity of albino rats 23. 
Linear transformations normalized the dimensions of SF and Orit to create a two-dimensional 
space ranging from 0 to 90 cpd or rad. For example, 0.4952 cpd was converted to 90; 1.5708 
rad was also converted to 90. The formulas for the conversion are as follows: 
Normalized SF: 𝑓(𝑆𝐹) = 240 × 𝑆𝐹 − 28.8480 
Normalized Orit: 𝑓(𝑂𝑟𝑖) = 𝑂𝑟𝑖𝑡	 ×	 345

6
 

The diameter of the stimulus was set to 320 pixels so that the actual diameter distance of the 
stimulus was 6 cm presented on the screen. The specific stimuli parameters of SF and Orit 
dimensions during category learning and generalization are described below.  
 
Stimuli in category learning 
The stimuli were divided into two categories during category learning. The boundary between 
the categories corresponded to the orientation of the alternating light and dark bands of the 
stimuli. One type of stimulus fell into Learning Category 25 (LC25) and the other into Learning 
Category 65 (LC65). All stimuli were sampled from a population of bivariate normal 
distribution, in which Orit and SF were the two variants. As shown in Figure 1a, points on the 
left side are members of LC25 and points to the right are members of LC65. The mean value 
of Orit is 25 degrees, and the SD is 2 for LC25 stimuli. The SD of Orit for LC65 is also 2, but the 
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mean value is 65. In the dimension of SF, the mean values of SF for LC25 and LC65 stimuli are 
both 45, and the SDs are 18. The summary value of each category is as follows: 

𝐿𝐶25:	𝜇<=>? = 25, 𝜎<=>? = 2, 𝜇BC = 45, 𝜎BC = 18 
𝐿𝐶65:	𝜇<=>? = 65, 𝜎<=>? = 2, 𝜇BC = 45, 𝜎BC = 18 

 

 
Figure 1. Distributions of stimuli and trial procedure. (a) The bivariate normal distribution of 
stimuli from the Learning Category 25 (blue) and learning Category 65 (orange). (b) The 
bivariate normal distribution of stimuli from the Generalization Category 25 (blue) and 
Generalization Category 65 (orange). (c) Trial procedure for category learning and 
generalization. If a subject assigns a stimulus to the corresponding category within a trial 
duration, a sucrose pellet is delivered as a reward. 
 
Stimuli in generalization 
Stimuli presented during the generalization test had identical means of Orit and SDs of SF as 
the stimuli presented in category learning. The means along the Orit dimension were also 
identical, but the SDs were increased to 10. Figure 1b shows the stimuli distributions of both 
Generalization Category 25 (GC25) and Generalization Category 65 (GC65). The distribution 
parameters of the two stimuli sets were summarized as below: 
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𝐺𝐶25:	𝜇<=>? = 25, 𝜎<=>? = 10,𝜇BC = 45, 𝜎BC = 18 
𝐺𝐶65:	𝜇<=>? = 65, 𝜎<=>? = 10,𝜇BC = 45, 𝜎BC = 18 

 
The test stimuli could be categorized into two stimulus types based on the Orit SD. The value 
of Orit within the two SDs of stimuli in Generalization Category are equal to the stimuli in 
category learning. These stimuli are termed ‘trained stimuli’. The remaining stimuli beyond 
the two SD ranges of Orit dimension are termed ‘generalization stimuli’. 
 
 
Experiment setup and task 
Training stage 
Rats were subjected to a simple instrumental learning task. The task included two stages: 
instrumental conditioning and sequential instrumental conditioning. Each learning stage had 
a passing criterion. Only when the rat reached the passing criterion it was allowed to proceed 
to the next learning stage. 
 
Instrumental conditioning 
Rats were allowed to freely explore the operant box. A white disc-shaped stimulus (size: 2.88 
cm2) was displayed in the center of the touchscreen. When the stimulus was touched, rats 
received a sucrose pellet as reward immediately. Rats were trained during one session per 
day (except Sunday) until completing 70% trials during a session. Each session consisted of 30 
trials, each trial was 30 seconds long, and the inter-trial interval (ITI) was 10 seconds. Touching 
the stimulus during each trial period was marked as completing a trial correctly. When 70% 
of the trial in a session was completed, the animal was allowed to enter the stage of 
sequential instrumental conditioning the next session.  
 
Sequential instrumental conditioning 
During this stage, target stimuli from the learning category were presented in the center of 
the touchscreen. If a stimulus was touched, a reporter stimulus (RS) was randomly presented 
on either the left or right side of the screen sequentially. The symmetric Chinese character "
靈" served as RS. If the RS was touched, a sucrose pellet was immediately delivered. Rats 
were trained for one session per day (except Sunday) until reaching a criterion of 90% trials 
completed during a session. Each session consisted of 60 trials, 30 for stimuli in LC25 and 30 
for stimuli in LC65. Each trial lasted for 30 seconds at maximum, and the ITI was random from 
10 to 15 seconds. The order of displaying the LC25 and LC65 trials was random. The same trial 
would not appear more than 3 times consecutively. If the target stimulus and RS were 
touched during a trial period, the trial was marked as completed correct. If a rat completed 
at least 90% of the trials in a session, it would enter the stage of category learning the next 
day. 
 
Category learning 
Rats were subjected in this stage to one session per day except Sunday. Each session consisted 
of 60 trials, with 30 trials presenting LC25 target stimuli and 30 presenting LC65 target stimuli. 
Each trial lasted for 30 seconds at maximum, and the ITI was random, ranging from 10 to 15 
seconds. The order of the trials presenting LC25 or LC65 stimuli was randomly assigned for 
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each rat and for each session. The same type of trial did not appear more than 3 times 
consecutively. The difference from sequential conditioning was that when the target stimulus 
was touched, two identical reporter stimuli (RS, 靈) were presented on the left and right side 
of the screen at the same time. The representative trial sequence is shown in Figure 1c. If the 
target stimulus presented on the screen was from LC25, the rat would only receive a sucrose 
pellet as a reward after touching the RS of 靈 presented on the left side of the screen. No 

reward was obtained when the RS of 靈 on the right side was touched. In contrast, if the 
target stimulus was from LC65, the rat would only receive a sucrose pellet as a reward after 
touching the RS presented on the right side of the screen. Trials that ended with delivering a 
sucrose pellet were marked as completed correct. With this experimental design, rats were 
able to report to the experimenter a stimulus category in each trial. Rats were trained until 
reaching the learning criterion of completing at least 80% of the trials in a session correctly 
and across the last three consecutive sessions. Once the rat had reached criterion, it entered 
the next stage of stimulus generalization during the next session. 
 
Stimulus generalization 
Rats were tested during one session per day. Each session consisted of 60 trials, of which 30 
trials presented GC25 stimuli and 30 GC65 stimuli. Each trial lasted for 30 seconds at 
maximum, and the ITI was random ranging from 10 to 15 seconds. Each rat was tested for 5 
sessions. The trial sequence was the same as the sequence applied during category learning 
except for that the LC25 target stimuli were replaced by GC25 stimuli and the LC65 stimuli 
were replaced by GC65 stimuli.  
 
 
Data analysis 
Linear mixed-effect models 
The total number of sessions needed for reaching criteria in the stages of instrumental 
learning, sequential instrumental learning and category learning were statistically analyzed 
using JASP (version 0.12) for t-tests. If normality of the data was violated, student t-test was 
replaced by the Mann-Whitey test. T-test could capture the general genotype effect on 
learning, to capture the session-by-session effect, linear mixed-effect regression modeling 
was run in software R (version 3.6.2) with package lme4 24 for frequentist analysis, and brms 
25 for Bayesian analysis. Genotype, session, and stimuli factors were entered as fixed effects. 
Subject was entered as a random effect, and the session was entered as a random slope, 
unless stated otherwise. Response time data were fitted in a log-normal distribution, while 
response choice data were fitted in a beta distribution. For frequentist analysis, the P-value 
was derived from Wald chi-square tests using the package car 26. P-values less than 0.05 were 
defined as significant. For Bayesian analysis, significant effects were calculated by 95% 
credible intervals (CrI) and the estimate (E) of the effect was given. If the 95% CrI did not 
include 0, the effect was deemed significant.  
 
Reinforcement learning and drift-diffusion model analysis for discriminative conditioning 
Trial-by-trial analysis could reflect the dynamic complexities of decision-making and learning 
during discriminative conditioning. To capture both the within- and across-trial dynamics, 
data were analyzed by a combined model of reinforcement learning (RL) and drift diffusion 
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model (DDM), namely reinforcement learning drift diffusion model (RLDDM). The parameters 
in RLDDM were estimated in a mixed-effect Bayesian framework using the HDDM package 
(version 0.8) 27 with the HDDMrl module 28 in python (version 3.6).  
 
RLDDM included the drift rate scaling (v), decision threshold (a), non-decision time (t), 
positive learning rate (pos_alpha), and negative learning rate (neg_alpha) parameters. A 
higher drift rate scaling means an increased sensitivity to rewards or an increase in the degree 
of exploitation relative to exploration. A wider decision boundary results in a slower but more 
accurate decision, while a narrower boundary results in a faster but error-prone decision. A 
higher learning rate results in rapid adaptation to reward expectations, while a lower learning 
rate results in slow adaptation. The non-decision time parameter records the time spent on 
stimulus coding and movement processes 29.  
Group-level parameters of the genotype effects were used to assess discrimination 
performance. The posterior density plots of each parameter are presented. We also report 
the posterior means (E) and 95% credible intervals (Crl). If the 95% CrI did not include 0, the 
effect was deemed significant. The proportion of the posteriors (P) in which the parameters 
for one genotype is greater/less than the other were examined. Model validation was 
assessed by posterior predictive checks, in which we checked by visual inspection whether 
the observed patterns of data were within the predicted range. 
 
Decision bound analysis for generalization test 
General recognition theory (or decision-bound theory) was used to estimate each rat’s 
decision bound during the stimulus generalization stage. In order to categorize stimuli, the 
General Recognition Theory (GRT) postulates that stimulus (perception) space is divided into 
multiple areas. These regions are separated by decision boundaries and category labels (such 
as the learned categories of LC25 and LC65). When observers regard the stimulus as falling 
within a specific area (LC25 or LC65), they act according to the learned categories. When the 
category is defined by a bivariate normal distribution (such as the distribution for LC25 and 
LC65), the optimal division of the perception area is a linear decision boundary 30,31. Within a 
trial, the distance between the stimulus and the decision bound determines the possibility of 
a response choice. Specifically, the decision bound is defined as: 
 

 𝛿 ∗ 𝑂𝑟𝑖	 + 	𝛾 ∗ 𝑆𝐹	 + 	𝜀	 = 	0 
 

where Ori and SF are orientation and spatial frequency of a given stimulus, and 𝛿, 𝛾, 𝜀are 
parameters. For the general linear classifier model, which is one of the models within the 
general recognition theory, the noise parameter (𝜎) is included. 𝜎represents perceptual and 
criterial variance 32. Specifically, the subject's response choices were fitted in the model based 
with single orientation information (Ori model) and both spatial frequency and orientation 
(Ori-Fre model). Each model parameters were estimated using the maximum likelihood 
method and the goodness-of-fit statistic, Akaike information criterion (AIC),  
 

𝐴𝐼𝐶 = 2𝑟 − 2𝑙𝑛𝐿 

 
where  𝑟  is the number of free parameters and𝐿 is the likelihood of the model given the data 
(33). The AIC statistic penalizes a model for extra free parameters in such a way that the 
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smaller the AIC, the closer a model is to the true model regardless of the number of free 
parameters. If the best fit model is the one without spatial frequency information, it means 
that the subject’s response choice was controlled exclusively by orientation. The model was 
run in R with the package grt 30. 
  
Results 
 
5-HTT KO and WT rats reached the criterion of (sequential) instrumental conditioning 
similarly. 
Rats touched the stimuli presented on the screen exploratorily during the instrumental 
conditioning. Independent t-test analysis revealed no significant difference between 5-HTT 
KO and 5-HTT WT rats regarding the numbers of sessions needed to reach the criterion of 
instrumental conditioning (t(16)=0.943, p=0.360, d=0.444, see Figure. 2a). An estimated Bayes 
factor (BF01 = 1.791) suggested that it was 1.791 times more likely that there was no genotype 
difference than there was genotype difference. During sequential instrumental conditioning, 
rats touched a target stimulus and subsequently a reporter stimulus to acquire a sucrose 
pellet. Mann-Whitey U test revealed that there was no significant genotype difference in 
reaching the criterion of sequential instrumental conditioning (U(16)  = 47.5, p = 0.467, rB= 
0.173, see Figure. 2b). An estimated Bayes factor (BF01 = 1.835) suggested that it was 1.835 
times more likely that there was no genotype difference than there was genotype difference 
during the sequential instrumental conditioning. Both BFs obtained in the stage of 
(sequential) instrumental conditioning are below 3, suggesting that the evidence for 
supporting no genotype differences is weak. Taken together, these analyses indicate that 5-
HTT KO and WT rats likely associated touching the stimuli with acquiring rewards at a similar 
speed.  

 
 
 
Figure 2. Number of sessions needed to reach criteria across different stages.  Individual 
data are shown as dots. The effect size and 95% confidence intervals obtained from 
bootstrapping are plotted on separate axes beneath the individual data points. For each 
genotype, mean ± standard deviations are shown as vertical gaped lines. (a) Instrumental 
conditioning. (b) Sequential instrumental conditioning. (c) Category learning. 
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Linear mixed-effect models reveal that 5-HTT KO and WT rats reached the criterion for 
category learning similarly 
All rats were gradually able to categorize the two types of stimuli appropriately and reached 
the category learning criterion of at least 80% correctly across the last three consecutive 
sessions. An independent t-test showed that both KO and WT rats needed a similar number 
of sessions to reach the criterion (t(16)=0.150, p=0.883, d=0.071, see Figure 2c). An estimated 
Bayes factor (BF01 = 2.411) suggested that it was 2.411 times more likely that there was no 
genotype difference than there was a genotype difference for discriminative accuracy.  
Frequentist linear mixed-effect model analysis revealed that as the sessions progressed the 
percentage of correct response per session increased significantly (χ2

(1) = 158.7801, p<0.001).  
The effect of genotype and interaction between genotype and sessions were not significant 
(genotype:  χ2

(1) = 1.6071, p = 0.2049; genotype*session: χ2
(1) = 0.8327, p = 0.3615). Bayesian 

linear mixed-effect analysis showed the same effects of session, genotype and 
genotype*session (genotype: E(KO-WT) = -0.322, Crl = [-0.857, 0.288]; session: E = 0.11, Crl = 
[0.09, 0.14]; genotype*session: E = 0.01, Crl = [-0.04, 0.05], see Figure 3a). The mean response 
time (RT) of each session was also analyzed by a linear-mixed effect model. According to 
frequentist analysis the RT decreased significantly as the sessions progressed (χ2

(1) = 24.9077, 
p < 0.001). The effects of genotype and the interaction between genotype and session were 
not significant (genotype: χ2

(1) = 0.8535, p = 0.3556; genotype*session = 2.2893, p = 0.1303). 
When applying Bayesian analyses, similar results were found; the effect of session was 
significant, but no effect of genotype and interaction between genotype and session 
(genotype: E(KO - WT) = 0.0961, Crl = [-0.26, 0.431]; sessions:  E = -0.03, Crl = [-0.05, -0.02]; 
genotype*session: E = -0.02, Crl = [-0.05, 0.01], see Figure 3b) was found.  
Summarized, session-by-session analysis revealed that 5-HTT KO and WT rats reached the 
criterion in discriminative conditioning similarly.  
 

 
Figure 3. Linear Mixed-effect model analysis of category learning and stimulus 
generalization. Solid lines represent the mean of discriminative accuracy per session in each 
genotype. The transparent stripes are 95% confidence intervals. (a) The discriminative 
accuracy in each session. Figures embedded in panel a are the individual data of 
discrimination accuracy. (b) Response time (RT) in each session. Solid lines represent the 
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mean of RT per session in each genotype. The transparent stripes are 95% confidence 
intervals. Figures embedded in panel c are the individual RT. (c) The percentage of response 
choice towards category 65 in each bin of orientation. (d) Response time in each bin of 
orientation.  
 
Linear mixed-effect models reveal that response choice and response time were similar 
between WT and KO rats during stimulus generalization 
After reaching category learning criterion, rats were subjected to a stimulus generalization 
test. Frequentist linear mixed-effect model analysis revealed that 5-HTT KO and WT rats were 
not significantly different on the ratio of response choices (χ2

(1) = 0.0651, p =0.799). Bayesian 
linear mixed-effect analysis showed that there was no significant genotype effect  for their 
response choice (E(KO-WT) = 0.124, Crl = [-0.209, 0.484], see Figure. 3c). For response time, a 
frequentist linear mixed-effect model showed that KO rats responded slightly faster than WT 
rats (χ2

(1) =3.1556, p = 0.0757). However, there was no significant genotype effect on response 
time with Bayesian linear mixed-effect analysis (E(KO-WT) = -0.215, Crl = [-0.505, 0.060], see 
Figure 3d) 
 
RLDD model reveals that KO rats had a higher drift rate scaling but lower positive learning 
rate than WT rats during category learning 
To capture both the within- and across-trial dynamics, data were analyzed using the 
reinforcement learning drift diffusion model (RLDDM). The RLDDM was run with three chains 
with 40,000 samples (2000 was discarded as “burn-in”). Visually compared, the simulated 
data with the observed data from rats on both RT and choice proportion are decent (see 
Supplementary Figure 1 a, 1b). A joint distribution of parameters is presented in 
Supplementary Figure 1c, showing that there was no obvious parameter collinearity in the 
model by visual inspection, supporting that the model was fitting the data well. 
 
The RLDMM revealed that the posterior probability of drift rate scaling for the KO rats was 
significantly greater than that for the WT rats (see Figure 4 a1 and b1, E(KO-WT) = 0.889, Crl = 
[0.123, 3.589]; d = 0.500, P(KO>WT) = 0.993, P(WT>KO) = 0.007). In addition, the posterior 
probability of positive learning rate for KO rats was less than that for the WT rats (see Figure 
4 a4 and b4, E(KO-WT) = -1.258, Crl = [-2.822, -0.392]; d= 0.226, P(KO>WT) = 0.001, P(WT>KO) = 0.999). 
No substantial evidence was found for genotype influences on the decision threshold (a), 
negative learning rate (neg_alpha), or non-decision time (t) (see Figure 4 ; a: E(KO-WT) = 0.110, 
Crl = [-0.227, 0.445], d= 0.033, P(KO>WT) = 0.755, P(WT>KO) = 0.245; neg_alpha: E(KO-WT) = 1.40, Crl 
= [-2.522, 5.004], d= 0.162, P(KO>WT) = 0.792, P(WT>KO) = 0.208; t: E(KO-WT) = 0.013, Crl = [-0.160, 
0.235], d = 0.040, P(KO>WT) = 0.517, P(WT>KO) = 0.483). The results above indicate that KO rats 
had a higher drift rate scaling but lower positive learning rate than WT rats. 
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Supplementary Figure 1. Posterior predictive check. (a) The plot shows the ratio of correctly 
classified stimuli throughout the learning process. The predicted data (yellow) closely follows 
the observed data (blue) except for over-predicting performance in the early phase. The 
uncertainty of the predicted data is captured by the 90% credible interval of the mean across 
the simulated datasets. (b) Density plot of observed and predicted response time (RT). The 
RT of the lower boundary selection (incorrect category selection) is set to negative so that the 
upper and lower boundary responses can be separated. (c) Scatter plot and density of group 
parameter estimates from posterior distributions. pos_alphs = learning rate for positive 
prediction errors (PEs), neg_alpha = learning rate for negative PEs, t = nondecision time, a = 
decision threshold, v = drift rate scaling. 

a b

c
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Figure 4. Reinforcement learning drift-diffusion model (RLDDM) analysis on category 
learning. (a1-a5) Density plots showing posterior distributions for WT and KO rats. (a1) drift 
rate scaling, (a2) boundary separation, (a3) non-decision time, and (a4) positive and (a5) 
negative learning rates. The learning rates were transformed by an inverse logit function to 
0<alpha<1 for estimating normal distributions. (b1-b5) Posterior distributions of differences 
between KO and WT rats (KO-WT). Contrasts between KO and WT rats with at least 95% of 
the posterior distribution on either side of zero are considered significantly different. The 95% 
credible intervals are marked with shaded distributions. (b1) drift rate scaling, (b2) boundary 
separation, (b3) non-decision time, and (b4) positive and (b5) negative learning rates.  
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More KO rats were interfered with irrelevant information during stimulus generalization 
We used the general recognition theory to estimate the decision bound in generalization data 
(Figure 5a). Subjects’ responses were fitted with the model using orientation as information 
(Ori model) and also fitted with the model using both orientation and frequency as 
information (Ori-Fre model). Akaike's information criterion (AIC) value was used to determine 
which model fitted to the subject's responses better. The proportion of subjects’ responses 
that best fit with the Ori model is shown in Figure 5b.   0.78 of KO and 0.89 of WT rats in 
session one; 0.67 of KO and 0.89 of WT in session two; 0.78 of KO and 1 of WT rats in session 
three; 0.89 of KO and 0.89 of WT rats in session four; 0.78 of KO and 1 of WT rats in session 
five were fit best by a model that assumed a single-orientation-dimensional rule. Mixed-
effects logistic regression confirmed that there was a significant genotype effect on the type 
of best fit model (χ2

(1) = 3.848, p = 0.0498). The other effects were not significant (session: 
χ2

(1) = 0.5745, p = 0.448; session*genotype: χ2
(1) = 0.1328, p = 0.716). The results indicate that 

the responses of KO rats were less likely to be fit best by the Ori-model than WT rats. It could 
be that more rats in the KO group were interfered by the spatial frequency of stimuli, i.e., 
irrelevant information (spatial frequency), than WT rats. 
 

 
 
 
Figure 5. Decision bound analysis on stimulus generalization. (a) Estimated decision bound 
of each subject in the best fitted model. Blue dots represent orientation and frequency 
information of stimuli. The decision bounds of each rat of each session are denoted as the 
lines. (b) Proportion of subjects’ responses that best fit the Ori model in each session. A higher 
proportion indicates that more subjects favored making decisions based on orientation 
information and ignored the frequency information. 
 
 
Discussion 
 
In the current study, we find that KO rats applied more of an exploitation versus exploration 
strategy to make decisions than WT rats. Furthermore, KO rats showed a lower learning rate 
than WT rats during category learning. This may be because KO rats focused more on stimulus 
details. Attention to detail could include attention to irrelevant features like the spatial 
frequency and might result in irrelevant information interfering with category decisions. This 
is consistent with our finding that during stimulus generalization more KO rats were worse in 
using only relevant stimulus information for generalizing choice-making.  
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During category learning, both KO and WT rats reached the learning criterion, indicating that 
KO 5-HTT in rats were able to categorize the stimuli successfully. This is consistent with the 
finding that people with ASD successfully learned to categorize stimuli (in a rule-based 
category task) similar to typical developed people 15. However, the prediction error and 
exploitation-exploration trade-off may affect category learning in people with ASD 13,34.  For 
5-HTT KO rats, a reinforcement learning drift diffusion model revealed that KO rats had a 
decreased learning rate for positive feedback compared to wild type rats. This indicates that 
KO rats adapted to reward expectations slower than WT rats. In addition, KO rats had a higher 
drift rate scaling than WT rats, indicating that the level of exploitation versus exploration in 
KO rats was higher than in WT rats. A reduction in 5-HTT availability may contribute to the 
development of ASD through the tendency towards a higher level of exploitation versus 
exploration trade-off during rule-based category learning. In addition, the repetitive behavior 
associated with reduced function of 5-HTT in people with ASD 1 may lead to a preference for 
an exploitation strategy. Further studies are needed to confirm such findings in humans.  
 
People with ASD have been shown to exhibit an impairment in generalization 16,17. We found 
that KO rats tended to respond faster to stimuli than WT rats during the stimulus 
generalization test. Also, more KO rats than WT rats were likely interfered by irrelevant 
information during stimulus generalization. However, the majority of KO rats performed well 
in stimulus generalization. This indicates that 5-HTT KO rats may not have a robust 
impairment in generalization. The alternative explanation is that KO rats might form a 
memory trace where the reward irrelevant information (e.g. frequency of the stimuli) is linked 
to the reward relevant information (e.g. orientation of the stimuli). However, KO and WT rats’ 
accuracy of response choices were similar. In summary, 5-HTT KO rats might only have a mild 
impairment in stimulus generalization.  
 
Serotonergic neurons are thought to signal the average reward information across trials 35. A 
recent study showed that serotonin neurons are activated by reward prediction errors during 
reversal learning 36. Further, learning the reward-predicting stimuli shapes the activity pattern 
of serotonin neurons gradually 37. All these findings indicate that serotonin plays an important 
role in reward related learning. In our current study, rats were learning to categorize stimuli 
to obtain a reward, in which 5-HTT KO rats (leading to elevated serotonin levels in the brain 
22,38) reduced the learning rate compared to WT rats. During category learning, rats were 
facing an exploitation/exploration dilemma to correctly categorize the stimuli. To learn to 
distinguish the relevant (orientation) and irrelevant information (frequency), rats may explore 
all options to make decisions: a single source of information (orientation or frequency) or 
different sources of information combined (orientation and frequency joined). Rats may also 
exploit only one option to make decisions: orientation only, frequency only or orientation and 
frequency joined. The current study showed that 5-HTT KO rats applied more of an 
exploitation versus exploration decision strategy to categorize stimuli than WT rats did. This 
is in line with a recent finding that optogenetic activation of serotonergic neurons promotes 
an active exploitation strategy 39. Further generalization tests revealed that more KO rats' 
decisions were interfered by the irrelevant frequency information. The current model we use 
only reveals the decision bounds in rats during stimulus generalization. Other models are 
required to analyze generalization, such as whether KO rats have wide or narrow 
generalization 18. With narrow generalization, organisms might lack the ability to generalize 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 9, 2020. ; https://doi.org/10.1101/2020.11.09.373886doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.373886
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

the learned information to relevant situations; while with wide generalization, organisms 
might generalize the learned information to irrelevant situations.  
 
The present findings may explain other phenotypes observed in the 5-HTT KO rats, such as 
reduced social interaction 40, lower ultrasonic communication during food exploration 41 and 
repetitive behavior 12, which are characteristic of ASD-like behaviors. More specifically, KO 
rats may have a reduced tendency to explore novel stimuli in their environment, and instead 
exploit stimuli they are familiar with, such as themselves (leading to less social interaction), 
previous food location and known objects, respectively. 
 
Taken together, our study revealed that 5-HTT KO rats displayed more of an exploitation 
versus exploration strategy for decision during category learning. With this strategy, 5-HTT 
KO rats also displayed a mild impairment in stimulus generalization.  
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