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Abstract

Background High resolution HLA genotyping of donors and recipients
is a crucially important prerequisite for haematopoetic stem-cell trans-
plantation and relies heavily on the quality and completeness of immuno-
genetic reference sequence databases of allelic variation.
Results Here, we report on DR2S, an R package that leverages the strengths
of two sequencing technologies – the accuracy of next-generation sequenc-
ing with the read length of third-generation sequencing technologies like
PacBio’s SMRT sequencing or ONT’s nanopore sequencing – to recon-
struct fully-phased high-quality full-length haplotype sequences. Although
optimised for HLA and KIR genes, DR2S is applicable to all loci with
known reference sequences provided that full-length sequencing data is
available for analysis. In addition, DR2S integrates supporting tools for
easy visualisation and quality control of the reconstructed haplotype to
ensure suitability for submission to public allele databases.
Conclusions DR2S is a largely automated workflow designed to create
high-quality fully-phased reference allele sequences for highly polymor-
phic gene regions such as HLA or KIR. It has been used by biologists to
successfully characterise and submit more than 500 HLA alleles and more
than 500 KIR alleles to the IPD-IMGT/HLA and IPD-KIR databases.

Background

The human leukocyte antigen (HLA) genes encode key constituents of the hu-
man adaptive immune system and are amongst the most polymorphic genes
of the human genome [1]. Currently (Jan. 2021), the public immunopoly-
morphism database IPD-IMGT/HLA lists 27,059 different alleles for the six
”classical” HLA genes (A, B, C, DRB1, DQB1, DPB1 ) alone, and it is still
growing substantially at each quarterly release [2]. For haematopoetic stem-cell

1

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2020.11.09.374140doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.374140
http://creativecommons.org/licenses/by-nc/4.0/


transplantation (HSCT ), allelic matching between patients and donors for these
HLA genes is a key determinant of success [3], as each mismatch increases the
likelihood of severe complications for patients [4, 5].

The role of killer-cell immunoglobulin-like receptor (KIR) genes on HSCT
outcome is not yet well understood, although several studies report an influence
of donor KIR genotype on long-term survival after transplantation [6, 7]. With
17 genes, extensive gene copy number variation and 1,110 (Dec. 2020) described
alleles in the IPD-KIR database, the KIR region also harbours formidable ge-
netic diversity.

Large-scale sequence-based HLA and KIR genotyping is performed routinely
for stem-cell donor registries and in clinical laboratories. Due to the diver-
sity and complexity of these regions, high-resolution genotyping of the relevant
genes crucially depends on the quality and comprehensiveness of the reference
sequence databases [8, 9].

At present, for only 30% of the known HLA alleles the full genomic sequence
is known, and the reliable reference-grade characterisation of genomic sequences
of newly discovered HLA and KIR alleles remains technically challenging. The
non-coding regions of these genes may contain extensive homopolymer tracts,
i.e., stretches of single nucleotide repeats, or short tandem repeats [10]. Some
genes may harbour structural indel variation, leading to differences of up to
several kb in length between two alleles in a single heterozygous individual
(e.g., Intron 1 of HLA-DRB1*03:01:01:01, 7,994 bp, and Intron 1 of HLA-
DRB1*07:01:01:01, 10,281 bp, differ by 2,287 bp). Especially the KIR region
contains large repeats, inversions and low-complexity regions. Additionally,
due to extensive gene copy number variation in KIR, a single individual may
accommodate three or more alleles for specific KIR genes.

Here, we present DR2S (Dual Redundant Reference Sequencing), a tool de-
signed to facilitate generating full-length phase-defined haplotype sequences in
reference quality. While DR2S has been tested extensively on and optimised for
HLA and KIR genes, it can be applied to any locus. Our approach takes ad-
vantage of the respective strengths of two readily available types of sequencing
platforms: the accuracy of Illumina short-read sequencing and the read lengths
achievable by third-generation single-molecule sequencing platforms.

While short-read sequencers typically produce highly accurate sequences, the
length of a read is limited to about 300 bp. This is in many cases not sufficient to
correctly phase allelic variants and thus results in ambiguous genotypes. Third-
generation single-molecule sequencing technologies such as nanopore sequencing
by ONT (Oxford Nanopore Technologies, Oxford, United Kingdom) or SMRT
sequencing by PacBio (Pacific Biosciences, Menlo Park, California) are able
to produce contiguous reads of several thousand base pairs. Yet, sequencing
accuracy on these platforms is still severely limited and per-read error rates of
up to 10% to 15% are common, especially in regions rich in homopolymers and
repeats.

Currently, DR2S utilises data from targeted experiments, i.e., sequencing of
full-length amplicons of the genes of interest. Separate fastq files from each
sequencing experiment in combination with a generic reference sequence serve
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as input for DR2S.

Implementation

DR2S is implemented as an R package [11]. It relies heavily on Bioconductor

[12] and requires bwa [13], minimap2 [14] and IGV [15] to be installed on the
system. The use of system-wide installed samtools [16] is recommended, but
the Rsamtools package may be used as a fallback [17]. DR2S is open source and
available from GitHub (https://github.com/DKMS-LSL/dr2s). The framework
of the DR2S pipeline and its major modules are described below. All mappings
of short-reads are carried out using the mem algorithm of bwa whilst long-reads
are mapped using minimap2.

Setup

The starting points for a DR2S analysis are gene-specific long-reads (PacBio or
ONT) and short-reads (Illumina) of one or more samples provided as fastq files
and a generic reference sequence of the gene that is analysed. It is also possible
to rely exclusively on long-reads for haplotype separation and consensus calling,
although this might not allow resolving repeat regions or homopolymers at a
quality sufficient for submission to a reference database. In the case of HLA and
KIR genes, providing the locus name as part of the initial run configuration is
sufficient, for other genes a fasta file containing a reference sequence is required.
All steps of the analysis workflow can be configured interactively in R or via
YAML or JSON configuration files.

Filtering and Variant Definition

In a first step, a sample-specific reference sequence is created by mapping the
short-reads to the generic reference sequence and calling the consensus (Fig.
1A). In this step, it is possible to reduce the sequencing coverage by sub-sampling
the reads. The sub-sampling step is applied after the initial mapping and reads
are sampled based on the coverage, and not on the number of reads alone.
Consensus sequences are always inferred from the mapping by extracting the
consensus matrix and subsequently calling a majority-rule-based consensus se-
quence.

Next, both, long-reads and short-reads, are re-mapped to the sample-specific
reference sequence (Fig. 1B and C, Fig. 2).

Optionally, the long-read mapping may be used to winnow out low-quality
long-reads, where ”read quality” is assessed as similarity to a Position Weight
Matrix (PWM) derived from the same mapping. The short-read mapping is
used to infer the coordinates of non-gap heterozygous positions (HPs) with a
minor allele frequency above a defined threshold (default 0.2; Fig. 1D).

The short-read-derived HP coordinates are then used to pinpoint heterozy-
gous positions in the long-read mapping (Fig. 1E). The genotype at each non-
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A.Create sample-specific 
reference

C. Map long-reads 
and filterB. Map short-reads 

F. Define linkage
between HPs and select
true variants

G. Cluster reads 
into alleles

D. Define heterozygous 
positions in short-reads

E. Get genotype of 
long-reads at HPs

H. Iteratively create intermediate 
allele-specific mappings from long-reads

I. Polish intermediate consensus sequences
with short-reads

Figure 1: Workflow: Top panel: (A) The short-reads are mapped to the
generic reference and a consensus is called to serve as a sample-specific reference.
Short-reads (B) and long-reads (C) are mapped to the sample-specific reference.
Left panel : Heterozygous positions (HPs) are defined in the short-reads (D) and
used to infer the genotype at these positions in the long-reads (E). ”True” HPs
are distinguished from artefacts by linkage analysis (F) and only true HPs are
clustered into alleles (G). Right panel : Haplotype-specific long-reads are used
to iteratively define draft haplotype consensus sequences (H) which are polished
by the short-reads to call final haplotype consensus sequences (I).
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Figure 2: Read coverage and heterozygous positions in the primary
mapping: The initial coverage of short-reads (SR) and long-reads (LR) against
a generic locus-specific reference. Heterozygous positions (HP) and indels are
colour-coded. HPs are shown by two colours, where both should, ideally, cover
half of the height at a position. In this example, most HPs are present at
the same position in both short-reads and long-reads. Observations of HPs
that differ between short- and long-reads are common and are usually caused
by differing allele imbalances between the two sequencing experiments. The
clustering into two haplotypes is based on these HPs.

gap HP is inferred for each long-read separately. Long-reads which do not cover
at least 90% of HPs and HPs which are not covered by at least 30% of the
long-reads are discarded.

Some HPs may be sequencing or mapping artefacts and should thus not be
used for allocating reads to alleles. Such non-informative HPs are identified by
linkage analysis (Fig. 1F), where linkage is measured as Cramér’s V between
all pairs of HPs. The matrix of pairwise linkage measures is used to cluster
HPs into two groups, one with high intra-cluster linkage and the other with low
intra-cluster linkage (Fig. 1F left and Fig. 3). HPs in the group with lower
linkage are excluded if the mean intra-cluster linkage values between the two
groups differ by more than a set threshold (Fig. 1F right and Fig. 4).

Based on the remaining long-reads and HPs, reads are categorised into
haplotype-specific long-read sets (Fig. 1G). The number of possible haplotypes
is not limited to two, as expected for single-copy heterozygous genes, but DR2S
can also deal with cases of multiple gene copies as encountered, for example, in
the KIR region or in polyploid organisms.

Long-Read Clustering

To generate haplotype-specific long-read sets, the genotype of each HP in each
long-read is used to construct a Position-Specific Distance Matrix (PSDM). A
PSDM can be derived from a PWM by weighting the distance between two reads
by the nucleotide weights at each polymorphic position such that differences in
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Figure 3: Linkage of heterozygous positions: Correlation matrix of pair-
wise linkage between all HPs. The order of positions in this plot is based on a
hierarchical clustering of pair-wise distances. Positions with a low correlation
to many other positions (indicated by a light color) are most likely sequencing
artefacts and excluded from long-read clustering.

Figure 4: Linkage of heterozygous positions: Linkage between HPs mea-
sured by Cramér’s V. Several potential HPs are not linked to other HPs and are
thus excluded from long-read clustering.
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major genotypes at a position count more towards distance than differences
between major and minor genotypes. As an example, consider a heterozygous
position with a distribution of 50% A, 45% G and 5% T nucleotides. Here,
the position should contribute more heavily to the overall sequence distance
between two reads if the reads feature A and G, respectively, while a T is more
likely to derive from a sequencing error.

Hierarchical clustering is applied to the PSDM and the cut height, i.e., the
most likely number of clusters is inferred using adaptive branch pruning as im-
plemented in the dynamicTreeCut package [18]. If this approach yields more
clusters than the expected number of alleles, only the most distant clusters are
retained. All reads are then re-scored with respect to the PWMs derived from
the retained clusters generating haplotype membership coefficients. Finally, only
a fraction of reads best representing each cluster based on haplotype membership
coefficients are retained for further processing (see Fig. 5). This strategy ef-
fectively eliminates chimeric reads formed during PCR and other amplification
or sequencing artefacts from interfering with downstream haplotype reconstruc-
tion, as long as chimeric reads stay less abundant than reads true to the actual
alleles present in a sample.

Consensus Calling

The long-reads retained for each cluster are now considered to be derived from
distinct alleles and stored in separate fastq files to serve as input for generating
draft haplotype-specific reference sequences.

For that purpose, each haplotype-specific long-read set is mapped iteratively
to a consensus sequence created at the previous iteration (Fig. 1H). The con-
sensus sequence for the first iteration is derived from the initial mapping step
by extracting a consensus matrix from the mapping and keeping only reads
of the haplotype. The iterative refinement of the consensus sequences allows
the resolution of haplotype-specific indel variants. Two iterations are generally
sufficient for long-reads to converge on a draft reference sequence (see Fig. 6).

In the final step, these draft references are corroborated or polished as nec-
essary using the short-read data.

Consensus Polishing

To polish the long-read-derived haplotype-specific draft reference sequences,
short-reads are also classified based on their putative haplotype of origin.

To that end, short-reads that cover an HP are assigned to a haplotype cluster
based on the respective long-read cluster. Short-reads that do not cover HPs
are distributed to all haplotype clusters. Finally, short-reads are mapped to the
long-read-derived haplotype-specific draft reference sequences obtained in the
previous step. The final consensus sequences are derived from these short-read
mappings (Figs. 1I and Fig. 7). Remaining ambiguities that are covered by
clustered short-reads reads should be resolved after this step.
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Figure 5: Long-read clustering: A Histogram of the haplotype membership
coefficient of clustered long-reads. A negative value suggests a read membership
in haplotype B, a positive value suggests a read membership in haplotype A.
The dashed vertical lines mark heuristically determined thresholds for retaining
long-reads to iteratively generate haplotype-specific consensus sequences. B
Hierarchical clustering dendrogram. Each leaf represents a long-read. The blue
horizontal line indicates the adaptively chosen cut-height for separating reads
into two clusters.
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Figure 6: Iterative mapping of long-reads: Haplotype-specific references
for alleles A and B are created iteratively. While some ambiguities remain in
the long-read pileup after an initial round of mapping (mapIter1), alignment
accuracy is significantly improved by remapping the reads sets against consensus
sequences derived from the first mapping (mapIter2). The majority of HPs
in the mapping are resolved at the end of the iterative mapping (lower panel).
Some positions still harbour deletions, denoted by the purple bars, which need
to be resolved by short-reads in the final mapping step.

Figure 7: Final mapping of long-reads and short-reads to the refined,
haplotype-specific references: Heterozygous positions (HP) and indels are
colour-coded. Purple bars in the coverage plot (e.g. at position ∼400 bp in
haplotype B) visualise deletions that are present in the short-read mappings of
both haplotypes and indicate spurious insertions or positions that are hard to
resolve using long-reads alone. Bicoloured positions denote existing ambiguities
in the final mapping, in this example caused by positions where short-reads
are not clustered with the two haplotypes as expected (e.g. at position 790 in
haplotype A). It is still possible to resolve such positions using long-reads, even
if they were not used for the initial haplotype clustering. The final consensus
sequences are derived from these mappings.
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Figure 8: Sequence logo of heterozygous positions: Most positions clearly
distinguish the two haplotypes A and B. Only few positions in both haplotypes
are of low bit-wise information content.

Reporting and Editing

During a run, statistics and diagnostics plots are created at each step to aid eval-
uating the quality of haplotype reconstruction. A coverage plot is created for
each mapping, highlighting heterozygous positions, indels and positions that
do not match the reference (Fig. 2, Fig. 6 and Fig. 7). Each step of the
long-read clustering is documented by plots such as the dendrogram of the hi-
erarchical clustering analysis and the sequence logo of the HP matrix for each
haplotype (Fig. 8). Potential problems and artefacts, such as positions that
remain heterozygous in the final haplotype-specific mappings or longer inser-
tions that cannot be resolved automatically, are reported and may need to be
corrected manually. To aid manual correction, configuration files for IGV are
created that allow quickly visualising the long-read and short-read mappings
at positions deemed ambiguous by the software (Fig. 9). The consistency of
homopolymer runs is checked separately for positions that exceed a configurable
homopolymer run length. Here, distributions of homopolymer lengths over indi-
vidual reads are calculated and plotted for each haplotype, and the mode value
is compared to the homopolymer length of the final consensus sequence of the
respective haplotypes (see Fig. 10).

Manual edits are made in a preliminary alignment file of the haplotype con-
sensus sequences (Fig. 11). To evaluate the effects of manual edits, functions
are provided to remap haplotype-specific reads to the updated references (Fig.
12) and to visualise the remapping results. This allows for a straightforward
iteration over problematic positions that the software could not resolve auto-
matically. Once the user has asserted the correctness of the haplotype reference
sequences, they can be ”checked out” into final fasta files.

Results and Discussion

We developed DR2S specifically to address the challenge of assembling and ascer-
taining novel HLA and KIR allele consensus sequences using easy-to-generate
next-generation sequence data from heterozygous samples. We have been using
DR2S routinely and successfully to create several hundred high-quality, fully-
phased, reference allele sequences for HLA and KIR genes for submission to the
IPD-IMGT/HLA and IPD-KIR databases [19].

We compared the performance of DR2S to two existing haplotype assem-
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Figure 9: Alignments of long-reads and short-reads against one inferred
haplotype: This screenshot from IGV (Integrative Genomics Viewer) shows
PacBio reads (upper panel) and Illumina reads (lower panel) aligned to one of
the inferred haplotype sequences prior to manual correction. The alignments are
easily visualised using configuration files automatically generated by DR2S. This
example demonstrates remaining ambiguities in the short-reads at positions 790
and 809. These positions were also observed in the final mapping plot. The long-
reads at these positions are unambiguous and can be used to guide the manual
edit.
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Figure 10: Example of homopolymer visualisation: Short-reads that cover
a homopolymer exceeding a set length are visualised by histograms. The true
length of a homopolymer is usually the mode value, i.e. the length supported
by most reads. In this example, haplotype A has a homopolymer length of 14
at position 7553, while haplotype B has a homopolymer length of 17 at position
7016.

Figure 11: The preliminary alignment of all haplotypes: Sequences of
all haplotypes can manually be edited in a text editor and can be checked by
remapping reads to the changed sequence. In this example, ambiguous positions
at positions 790 and 809 in haplotype A are denoted by the IUPAC codes S and
Y, and need to be manually checked and corrected.
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Figure 12: The remapping of short-reads and long-reads to manually
updated references: All heterozygous positions and indels have been resolved
and the final sequences are fully phased. The ambiguous positions in haplotype
A are still shown as the composition of reads is not changed during the reporting,
but the long-reads show a correct consensus sequence.

bly tools, WhatsHap [20] and HapCUT2 [21]. These tools were chosen based on
their ability to utilise both short-read and long-read genomic data as input and
their reported performance relative to alternative solutions. Note that both
WhatsHap and HapCUT2 require BAM/CRAM files containing reads aligned to a
genomic reference and a VCF file containing corresponding variant calls (SNVs
and indels) as input. It is left to the user to generate these input data from un-
mapped sequence data, although a recommended workflow exists for WhatsHap
(https://whatshap.readthedocs.io/en/latest/guide.html).

We evaluated the three phasing tools using HLA sequence data created by
long-range whole-gene amplification followed by fragmentation for shotgun se-
quencing on an Illumina MiSeq instrument and direct long-read sequencing on
PacBio’s Sequel II and ONT’s MinION platforms with R10.3 flow cells, respec-
tively, as described previously [19]. Five samples were sequenced for six HLA
genes (HLA-A, -B, -C, -DRB1, -DQB1, and -DPB1 ) on the Illumina and ONT
platforms. Five additional samples were sequenced for five HLA genes (HLA-
A, -B, -C, -DQB1, and -DPB1 ) on the Illumina and PacBio platforms. To
phase these samples with WhatsHap and HapCUT2, we followed WhatsHap’s rec-
ommended workflow, using bwa mem and minimap2 for the initial short-read and
long-read mapping, respectively, followed by variant calling on short-reads alone
using the FreeBayes variant caller [22]. All analyses were carried out using the
default parametrisation of the respective tool.

Since for none of these samples independent allele sequence data were avail-
able, we established ”ground truth” haplotype sequences by performing an ini-
tial run of DR2S followed by a careful visual inspection and manual curation of
all resulting allele sequences. We used these curated sequences as the basis for
calculating the error rates of each tool without manual curation. The haplotypes
assembled by each tool for each sample and gene were attributed to their target
ground truth haplotype by overall similarity. The accuracy of the haplotype
reconstruction was assessed using mismatch error rate and phase switch error
rate as metrics. We defined mismatch errors as single variants or indels not
matching the target ground truth haplotype nor attributable to the alternative
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Figure 13: Benchmarking DR2S against two other haplotype assembly
methods. Mismatch and phase switch error rates for different HLA genes
(A) and average error rates across all genes (B). The panels show results
for ONT long-reads in combination with Illumina short-reads (ONT), PacBio
long-reads in combination with Illumina short-reads (PacBio) and simulated
ONT or PacBio long-reads in combination with simulated Illumina short-reads
(simu ONT and simu PacBio). Note that different samples were used with both
long-read sequencing technologies and that no PacBio long-read data were avail-
able for HLA-DRB1.

ground truth haplotype, and phase switch errors as single variants or runs of
consecutive variants attributable to the alternative ground truth haplotype per
sample per gene. Error rates were calculated by considering the total number
of deviating positions of a ground truth haplotype to the gene-specific generic
reference sequence used in the initial mapping step of each tool, as the maxi-
mum number of possible errors. For both, PacBio and ONT long-reads, DR2S
reconstructed the most accurate haplotypes both with respect to mismatch and
phase switch errors (Fig. 13).

In addition to real HLA sequence data sets, we also compared the perfor-
mance of DR2S, WhatsHap and HapCUT2 using simulated sequencing data. This
should mitigate the potential biases arising from using DR2S for creating ground
truth sequences in the first place. To simulate benchmark data we used the
ground truth sequences derived from the real data sets as seeds. Simulations of
Illumina MiSeq data were carried out using InSilicoSeq [23] with a targeted
read depth of 2000 and the miseq model file provided. PacBio and ONT data
were simulated with PBSIM2 [24]. We used the P5C3 model for PacBio data
and R10.3 for ONT data, respectively. The parameters for sequencing error
ratios were used as suggested by PBSIM2, i.e. a mean accuracy of 85% and a
substitution/insertion/deletion ratio of 6/50/54 and 23/31/46 for PacBio and
ONT, respectively. Both tools were chosen for their ability to simulate reads
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Figure 14: Coverage of the benchmarked samples: Boxplot of observed
sequencing coverage by gene and sequencing platform.

without the need to first build empirical error models based on supplemented
sequence data, which again might have introduced a bias towards DR2S. Again,
for both, simulated PacBio and simulated ONT long-reads, DR2S delivered the
most accurate haplotypes of all three tools with regard to mismatch and phase
switch errors (Fig. 13). For DR2S, we found that all remaining mismatching
positions were flagged by the tool as potentially problematic, thus facilitating
manual curation.

All tools exhibited comparatively large heterogeneity in error rates across
HLA genes, especially with the real data sets (Fig. 13A). This likely reflects
the fact that data quality across samples and loci varied widely, especially with
regard to read coverage (compare Fig. 14), the sequence complexity of the spe-
cific alleles found in a sample, and the distance of specific alleles to the reference
sequence used for the initial mappings. Overall, we found little difference in er-
ror rates with regard to the two long-read sequencing technologies used (Fig.
13B). This indicates that the generally larger per-read error rates of nanopore
reads relative to PacBio reads are not necessarily an impediment to accurate
haplotype reconstruction, at least if used in conjunction with highly accurate
short-reads.

Overall, even without manual curation, DR2S showed a reduction of approxi-
mately 60% in mismatch error rate over both HapCUT2 and WhatsHap (Fig. 13B).
This is likely due to the heavy emphasis put by DR2S’s workflow on iteratively
refining the reference used for read mapping, and the aggressive pre-selection of
sequence reads used for haplotype reconstruction according to their haplotype
membership coefficient (compare Fig. 5). Thereby DR2S arguably achieves at
a cleaner base for assembling the two haplotypes harboured by a heterozygous
sample. In contrast, HapCUT2 and WhatsHap leave it to the user to provide a read
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mapping and a set of variants to be phased. The recommended workflow for
these tools does not provide any guidelines as to how to prepare or pre-process
the sequence data for potentially improved results.

Moreover, in contrast to HapCUT2 and WhatsHap, DR2S exhibited no phase
switch errors for any of the analysed samples (Fig. 13). Again, this is likely
due to the read pruning strategy employed by DR2S when assigning long-reads
to allele clusters, which effectively eliminates or reduces artefacts such as PCR
chimeras or low-quality reads that otherwise may interfere with haplotype as-
sembly.

These results demonstrate that DR2S can be used to create haplotype se-
quences for highly polymorphic genes such as the HLA genes with very high
accuracy. However, it is also clear that for any haplotype assembly tool, de-
pending on the raw data quality and the complexity of the region of interest,
occasional errors will be introduced. If the aim is to submit the resulting consen-
sus sequences to a database, confidence in the resulting sequences is of particular
importance and some degree of visual sequence validation is inevitable. Extant
tools do not explicitly cater for this need, thus requiring expert bioinformat-
ics knowledge to create custom workflows for inspection and validation of their
results. In contrast, DR2S implements a number of post-processing features to
alert the user to potentially dubious positions, to facilitate visual inspection of
the alignment data using preconfigured IGV plots, and to iteratively edit and
re-evaluate haplotype reference sequences. The easy manual inspection of map-
pings and problematic positions ensures highly trustworthy final sequences.

In our environment, DR2S is used in a compute cluster and a single sam-
ple/gene usually needs between 5 and 20 minutes to finish on 8 cores, depending
on sequencing coverage and gene length.

Conclusions

DR2S is a largely automated workflow designed to create high-quality fully-
phased reference allele sequences for highly polymorphic gene regions such as
HLA or KIR. Designed to work with a combination of short-read and long-read
amplicon data from a region of interest, it shows superior performance to com-
parable tools both in terms of mismatch errors and phase switch errors. In
addition, DR2S offers supporting tools to appraise the quality of the resulting
haplotypes, perform manual edits, and assess the consequences of these edits.
DR2S has been used by biologists to successfully characterise and submit more
than 500 HLA alleles and more than 500 KIR alleles to the IPD-IMGT/HLA
and IPD-KIR databases.

Availability and requirements

Project name: DR2S
Project home page: https://github.com/DKMS-LSL/dr2s
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Operating system(s): Linux
Programming language: GNU R
Other requirements: Samtools, BWA, minimap2, IGV
License: MIT
Any restrictions to use by non-academics: None

Abbreviations

HLA: Human Leukocyte Antigen
KIR: Killer-cell Immunoglobulin-like Receptor
HSCT: Haematopoetic stem-cell transplantation
HP: Heterozygous Position
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