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Abstract 

Isolating causal genes from enormous genome-wide association signals of complex phenotypes 

remains an open and challenging question. SMR (Summary-based Mendelian Randomization) is a 

widely used Mendelian randomization (MR) method for inferring causal genes by using a single 

expression quantitative trait locus (eQTL). In the present study, we explored more powerful MR 

methods based on multiple eQTLs. Among six representative multiple instrumental variable (IVs) 

based MR methods, original used in the epidemiological field, not all MR methods worked for the 

causal gene estimation. But we found the maximum-likelihood based MR method and weighted 

median-based MR method were preferable to the other four MR methods in terms of valid type 1 

errors, acceptable statistical powers and robustness to linkage disequilibrium (LD) in eQTLs. Both 

of the MR methods were also much more powerful than the SMR. We recalibrated key parameters 

of the two MR methods in practices and developed a multiple IVs based MR analysis framework 

for causal gene estimation, named MACG and available at http://pmglab.top/kggsee. In the 

applications, MACG not only rediscovered many known causal genes of the schizophrenia and 

bipolar disorder, but also reported plenty of promising candidate causal genes. In conclusion, this 

study provided a powerful tool and encouraging exemplars of mining potential causal genes from 

huge amounts of GWAS signals with eQTLs. 
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Introduction 

While large scale genome-wide association studies (GWAS) have found huge amounts of single 

nucleotide polymorphism (SNP) loci associated with complex phenotypes, it still remains a 

challenge to identify causal genes from numerous phenotype-associated variants1. 

Genotype-phenotype association analysis is  a crude investigation in the complex biological 

process transmitting the DNA information to transcribed RNA, then to translated proteins and 

finally to phenotypes 2 3. Notably, most of trait-associated variant are located in non-protein 

coding regions 4 and do not affect composition of proteins. These non-coding variants often imply 

regulation of gene expression, felicitously explaining the mechanism from genotypes to 

phenotypes. Therefore, many transcription resources have been released to motivate researchers to 

decipher genetic mechanism of complex phenotypes,  including multiple large collaborative 

genes expression resources, such as GTEx4, CommonMind Consortium5, and GEUVADIS6.  

  

To make the best of these valuable and increasing gene transcription resources, advanced methods 

are urgently needed to infer causal paths according to gene expression regulation. Many methods 

are being developed to link gene expression to phenotypes. Others’ and our recent studies also 

showed that phenotype-associated genes tend to have selected expression in phenotype related 

tissues or cell-types; and gene’s selective expression was convincing evidence for prioritizing 

phenotype-associated genes and related tissues7,8. Some methods have used expression 

quantitative trait loci (eQTLs) analysis as an auxiliary instrument to interpret GWAS signals 

because GWAS hits are found to be enriched with eQTL9 and being eQTLs are prerequisite for the 

loci to regulate a phenotype by gene expression10 9. Directly based on the top cis-eQTLs, Zhu et al 

proposed a method, named SMR (Summary-based Mendelian Randomization), to infer the causal 

pathway from genotype to transcription and then to phenotype11. As a single eQTL usually has 

limited power to detect susceptibility genes, Gusev et al built a framework known as PrediXcan, 

which used multiple eQTLs to predict gene expression and then examined the association between 

the imputed expression and a phenotype 12. This framework was further extended to GWAS 

summary statistics, named S-PrediXcan13, which is flexible for large-scale GWAS samples. 

However, except for SMR, all of these methods with multiple SNPs are designed for detecting 

association rather than the causation between gene expression and complex phenotypes.    

 

Mendelian randomization (MR) is a widely used strategy to infer causal relationship between an 

exposure and an outcome14. Basically, it assumes that a genotype should be correlated to the 

outcome when genetic variants (as instrumental variables, IVs) alter the level of a modifiable 

exposure which causally changes the outcome. The causal effect of exposure on outcome is equal 

to the correlation between genotype and outcome divided by the influence of genotype on 

exposure15. Recent MR methods used two samples to infer the causality between phenotypes with 

multiple IVs16 in epidemiological fields. As the path from genetic variants to exposure and to 

outcome may also be distorted by confounding factors (e.g. variants with pleiotropy), several MR 

methods were proposed to decrease influence of the confounding factors (e.g., MR-Egger17 and 

contamination mixture MR18). To our knowledge, in genomics field, no multiple IVs based MR 

methods has been applied to infer causal gene expression of complex phenotypes. So, it is worth 

more attention to pay on the unique practical concerns in transferring the multiple IV based MR 

methods to adapt this new field. First, the sample sizes of exposures and outcomes are usually 
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very unbalanced. While GWAS summary statistics are usually generated from large-scale samples 

(say, n>10,000), the eQTLs are calculated from much smaller samples (e.g. several hundred 

subjects or even fewer in GTEx4). Second, the heritability of the cis-variants for gene expression 

(~0.2) and complex phenotypes (<0.01) is also very unbalanced19. Third, different with the 

conventional applications of MR methods, only a small number of genetic variants are available in 

eQTLs results, say, ~10-100 cis-eQTLs near a gene. By contrast, in conventional applications, 

variants for the causality inference are numerous, even from the entire genome.  

 

We hypothesized that some of existing multiple IVs based MR methods can be recalibrated to 

infer causal genes with the unbalanced samples. The present study aims to develop a more 

powerful framework to infer causal genes of phenotypes with GWAS summary statistics and 

eQTLs. Within systematic simulations and real data validations, we prioritized suitable MR 

methods from six representative MR methods and recalibrate key parameters to address the above 

new technical problems in mining causal genes from GWAS association signals. The methods 

were inverse-variance weighted (IVW) MR20, maximum-likelihood (ML) based MR16, MR-Egger 

method17, median-based MR21, mode-based MR22 and contamination mixture MR18. Based on the 

investigation, a framework with abundant eQTL resource and the best practice pipeline were then 

developed to detect potential causal genes of complex phenotypes. 

 

Results 

Overview of the Mendelian randomization framework for inferring causal genes of complex 

phenotypes 

Mendelian randomization is conventionally developed to estimate causal relationship among 

epidemiological phenotypes. Here we proposed a framework of Mendelian randomization analysis 

for causal gene inference, named MACG, with GWAS summary statistics and eQTLs (See 

workflow in Figure 1B). Figure 1A shows the overview of the assumption. Assume a number of 

variants (Z) regulate or associate with gene expression(X, exposure) in a relevant tissue of a 

phenotype (Y, outcome), as the expression subsequently contributes to the development of the 

phenotype. In addition, some other variants may directly regulate the expression and the 

phenotype simultaneously, usually called pleiotropic variants. Meanwhile, a number of 

confounding factors (U), which increase the correlation (but not causality) between expression and 

phenotypes, also regulate the expression and phenotype.  

 

MACG adopted two multiple IVs based MR methods for causality test and casual effect 

estimation of a gene’s expression to a phenotype, median-based MR and ML-based MR. These are 

two selected methods out of six MR methods with recalibrated key parameters according to type 1 

errors, statistical power, estimation accuracy, sensitivity to pleiotropy and correlation in IVs. The 

six MR methods had different representative designs to address issues of horizontal pleiotropy or 

correlation in IVs (see detailed descriptions about the MR methods in Methods and Materials 

section). Figure 1B shows the workflow and major datatypes. MACG needs two major inputs, 

GWAS and eQTL summary statistics respectively. The GWAS summary statistics refer to the 

logarithm of odds ratio or regression coefficients and the corresponding standard errors (SEs) 

from a large-scale GWAS study, indicating the association between IVs and a phenotype. The 

eQTL summary statistics are similar to that of the GWAS, indicating association between IVs and 
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expression of genes or transcripts in a tissue or cell type. To avoid weak IV bias23, eQTLs with 

p≥1E-4 are excluded. MACG has integrated the pre-calculated cis-eQTLs in 55 tissues or 

cell-types with gene-level and transcript-level expression from GTEx24 (version 8). MACG can 

also use local expression to generate eQTLs on MACG. MACG maps the input variants onto 

genes with 1 MB window expansion away from the original gene boundaries on both sides. To 

ensure the allele coding is concordant between the GWAS variants and eQTL, MACG also checks 

the frequencies the coded alleles. The sign of coefficients will be flipped when the frequency 

difference suggests reversed coding. Using genotypes in reference populations, MACG pruned 

variants in high LD (r>0.5, see reasons for this cutoff in the following section). Finally, the 

coefficients and SEs of the IVs are analyzed by the MR methods to estimate and test causal effects 

of a gene or transcript to a phenotype. MACG has been implemented into our software platform 

KGGSEE, available at http://pmglab.top/kggsee. 

  

 
Figure 1. The diagram and workflow of the framework for inferring causal effects of gene 

expression on a phenotype. 

A) the diagram. B) the workflow of the framework.  Z denotes IVs of MR. X denotes expression 

of transcripts as an exposure of MR and Y denotes a complex phenotype as the outcome of MR. 

The gene expression directly regulates phenotypes. The complex phenotype and expression are 

also regulated by confounding factors (U). In addition, some instrument variables also directly 

regulate both the expression and phenotype (known as pleiotropy effect). The proposed approach 

aims to infer causal effect from X to Y. 

 

Type 1 error of six MR methods for identifying causal genes 

We first systematically evaluated the type 1 error rate of six widely-used MR methods for 

inferring causal genes by multiple correlated eQTLs. We explored three scenarios about IVs for 

both continuous and binary phenotypes (heritability ): an ideal scenario for MR model, 

a scenario with confounding factors (  and ), and a scenario with pleiotropy 

(  and ). Three levels of total eQTL heritability ( =0.05, 0.15 and 0.25) 

were also investigated for each scenario. For a continuous phenotype, the median-based MR 
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method and contamination mixture MR method showed inflated type 1 errors under the null 

hypothesis that a gene has no causal effect on the phenotype. The mode-based MR showed slight 

inflation when the heritability of eQTLs was as high as 0.25 in the simulated datasets. The 

remaining three MR methods, considering LD of IVs, showed reasonable type 1 errors (Figure 2). 

It should be noted that in the pleiotropy scenario half of IVs were invalid due to direct pleiotropic 

effect on gene expression and phenotypes (Figure 2c, 2f, 2i). MR-Egger method was designed to 

correct for pleiotropy 25 which could explain its validity of type 1 error in this scenario. Although 

the IVW MR method and the ML-based MR method did not specifically account for pleiotropy, 

both methods under random-effects models also worked well in the simulations. For binary 

phenotypes, all of the type 1 error patterns observed in the continuous traits were replicated 

regardless of whether the odds ratios were generated by logistic regression model (Figure S1) or 

by conventional contingency table analysis (Figure S2).  

 

Figure 2. Type 1 errors of six MR methods for inferring causal genes of a continuous phenotype. 

a), d) and g) show the type 1 error of MR methods under an ideal scenario with total eQTL 

heritability 0.05, 0.15 and 0.25 respectively. b), e) and h) show the type 1 error of MR methods 

under a scenario with confounding factors with total eQTL heritability 0.05, 0.15 and 0.25 
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respectively. c), f) and i) show the type 1 error of MR methods under a scenario with pleiotropy 

with total eQTL heritability 0.05, 0.15 and 0.25 respectively. 

 

As the inflated type 1 error in the three above MR methods might be caused by correlation in the 

IVs, we pruned the SNPs according to various LD thresholds to investigate the type 1 errors of the 

six MR methods again. For a continuous phenotype, when the LD threshold was high (say, r=0.9), 

all the five MR methods except for mode-based estimation (MBE)MR showed inflated type 1 

error rate (Figure S3). Unlike the preceding analysis, the IVW MR method and the ML-based MR 

method did not consider correlation of IVs here. As the LD-pruning threshold decreased to a 

moderate level, say r=0.5, the type 1 error of two MR methods (i.e. ML-based MR and 

median-based MR) became valid approximately. MR-Egger showed the highest inflation in type 1 

error while the MBE MR method became deflated (Figure S3). For a binary phenotype, the MR 

methods showed similar sensitivity to LD as they did for the continuous phenotype. When the 

LD-pruning threshold r was 0.5, the ML-based MR method and median-based MR method also 

showed valid type 1 error approximately (Figure S4). Other patterns of type 1 errors of the six MR 

methods based on the LD-pruned IVs for a binary phenotype were similar to that of a continuous 

phenotype. 

 

We also investigated how pleiotropic effects influenced the type 1 errors of the six MR methods. It 

turned out the ML-based MR and median-based MR methods were also insensitive to pleiotropy 

with moderately LD-pruned IVs (Figure S17). For example, when the heritability values of 

pleiotropic variants to a continuous phenotype and gene expression were 0.03 and 0.15, the two 

methods still produced approximately uniformly distributed p-values. There were no obvious 

inflation even when the heritability values of pleiotropic variants to the phenotype were as high as 

0.05. MR-Egger showed the highest inflation in type 1 error regardless of degree of pleiotropy. 

The contamination mixture MR and IVW MR showed slight inflation when there was pleiotropy. 

The MBE MR was slightly deflated no matter what degree the pleiotropy was. These pleiotropic 

patterns of binary phenotypes were similar to that of the continuous phenotypes. 

 

Therefore, the systematic simulations suggested three methods with correlation of IVs (IVW MR, 

ML-based MR, and MR-Egger) were valid to test gene’s causal expression to a phenotype by 

cis-eQTLs in terms of type 1 error. Meanwhile, ML-based MR and median-based MR were also 

valid approximately for the test when IVs were only moderately correlated (r<0.5) regardless of a 

continuous or binary phenotype.  

 

Statistical power comparison of MR approaches to infer causal effect of genes 

We then investigated statistical power of the above MR methods with valid type 1 errors under 

their corresponding scenarios. Using correlated IVs, we compared p-values of three methods for 

inferring causal gene expression to a phenotype, namely, IVW MR, ML-based MR, and MR-Egger. 

We found MR-Egger almost always produced less significant p-values than the other two MR 

methods in all scenarios (See p-value distributions in Figure S5 in continuous phenotypes and 

Figure S6-7 in binary phenotypes). When the causal effect was as low as 0.05, both IVW MR 

method and ML-based MR method had low power with the ideal IVs because it was hard to obtain 

significant true eQTLs for the calculation in the small expression sample. As expected, when the 
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causal effect of expression on phenotype increased, the power of the MR methods increased 

accordingly. In our simulations, when the causal effect was 0.15, the power of IVW MR method 

and ML-based MR method became 80% for continues phenotype with 15000 subjects and 

expression sample of 500 subjects. The patterns of power in binary phenotypes were similar to 

that of the continuous trait regardless of whether the odds ratio and SE were generated by a 

logistic regression model or by a contingency table analysis (Figure S6 and S7 respectively). 

 

With moderately LD-pruned IVs (r<0.5), we also investigated the power of the two MR methods 

with valid type 1 errors (i.e., ML-based MR and median-based MR) for continuous phenotypes 

and binary phenotypes respectively. For continuous phenotypes, the two methods had similar 

power when the size of causal effect was moderate, say 0.2~0.6 (Figure 3). However, when the 

causal effect size was 0.1, the ML-based MR method produced smaller p-values than the 

median-based MR method in most simulated datasets, suggesting higher power of the former. 

Interestingly, median-based MR method became more powerful than ML-based MR method when 

the causal effect size was 0.7. The binary phenotypes seemed to lead to simpler patterns of power 

than the continuous phenotypes. In addition, median-based MR method tended to produce smaller 

p-values than the ML-based MR method regardless of the causal effect size (Figure 3). When the 

causal effect was 0.3, the p-values’ difference of the two methods seemed even larger than that of 

0.5 and 0.7.  

 

 
Figure 3: P-value distribution of four MR methods for inferring causal genes with LD-pruned IVs. 

The first, second, third and fourth columns correspond to the cause effects 0.1, 0.3, 0.5, and 0.7 

respectively. The first and second rows correspond to continuous phenotype and a binary 

phenotype. The total heritability by eQTLs as IVs was 0.15. 

 

Compare the power of multiple IVs based MR method with SMR 

To testify whether a multiple-IV based MR method is more powerful than that based on a 

single-IV, we finally compared the power of the ML-based MR method and Median-based MR 

method with SMR11. SMR uses a leading eQTL IV to test causal gene expression of a phenotype, 

which has been widely used in genetic field. It turned out that both of the multiple IV based MR 
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methods were much more powerful than the single IV based MR method generally (Table 1). For 

continuous phenotypes, the ML-based MR method and Median-based MR method with 

LD-pruned IVs (r<0.5) achieved around 30% more power than the SMR when the causal effects 

were over 0.3 and there was no horizontal pleiotropy. When there was horizontal pleiotropy, SMR 

had some improved power to detect a causal gene. However, it was still ~10-20% less powerful 

than the two multiple IV based MR methods. For binary phenotypes, the two multiple-IV based 

MR methods were also much more powerful than SMR. For example, when the causal effect was 

0.3, the Median-based MR method with LD-pruned IVs (r<0.5) had 55% more power than the 

SMR by IVs without horizontal pleiotropy. When there was horizontal pleiotropy, the SMR had 

also enhanced power but was still less powerful than both multiple-IV based MR methods (See 

details in Table 1). 

 

Table 1: Power of ML-based MR method, Median-based MR method and SMR for causal gene 

estimation 
Phenotype H.P.V Causal 

effects 
ML-based 

MR 
Median-bas

ed MR 
SMR 

continuous 0 0.1 0.19  0.09  0.00  
continuous 0 0.3 0.66  0.72  0.14  
continuous 0 0.5 0.78  0.82  0.39  
continuous 0 0.7 0.76  0.87  0.32  
continuous 0.01 0.1 0.19  0.12  0.06  
continuous 0.01 0.3 0.68  0.74  0.33  
continuous 0.01 0.5 0.76  0.91  0.56  
continuous 0.01 0.7 0.91  0.97  0.73  
binary 0 0.1 0.37  0.31  0.04  
binary 0 0.3 0.65  0.83  0.28  
binary 0 0.5 0.68  0.80  0.39  
binary 0 0.7 0.79  0.84  0.51  
binary 0.01 0.1 0.20  0.33  0.23  
binary 0.01 0.3 0.72  0.85  0.54  
binary 0.01 0.5 0.80  0.94  0.68  
binary 0.01 0.7 0.89  0.96  0.67  

Each power was calculated from 100 simulated datasets. The details of simulating genotypes and 

phenotypes can be seen in the results section. The p-value threshold for a significant causality test 

was 0.001. H.P.V.: Heritability of pleiotropic variants 

 

 

Estimation accuracy for genes’ causal effect 

After above performance evaluation for hypothesis test, we then asked whether the two valid and 

powerful MR methods with full set of IVs can accurately estimate the causal effect by more 

simulations. For continuous phenotypes, it turned out that the absolute value of estimated effects 

was generally smaller than that of the true effects (See Figure 4a, S8a and S8b). Note this was a 

non-conventional application of the MR methods where the size of expression samples was very 

small, equal to ~3% of the GWAS samples, in our simulation studies. The sample size ratio of 

GWAS and eQTLs was significantly associated with the bias (p<2E-16, Wald test in linear 

regression). A smaller expression sample tended to result in a larger bias (Figure S8a and S8b). In 

addition, we found that the bias was also associated with the causal effects (p<2E-16, Wald test in 

linear regression), and there were larger biases at larger causal effects. A linear regression model 
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with 2-degree polynomial of the sample-size ratio and estimated causal effect can correct the 

estimation bias for IVW MR method and ML-based MR method (Figure S8c, S8d and Figure S9). 

For binary phenotypes, we also observed similar patterns in the deviation of estimated causal 

effects from the true effects. The absolute values of estimated effects were also smaller than that of 

the true effects in general (Figure 4c, S10-13).    

 

 

Figure 4: Estimation deviation of causal effect on different types of phenotypes by ML-based MR 

a) estimation deviation causal effect for continuous phenotype with full set of correlated IVs, b) 

estimation deviation causal effect for continuous phenotype with LD-pruned IVs, c) estimation 

deviation causal effect for binary phenotype with full set of correlated IVs, d) estimation deviation 

causal effect for binary phenotype with LD-pruned IVs. The ratio refers to the size ratio of eQTLs 

expression sample and GWAS sample. The deviation refers to the difference between estimated 

effects and true effects.  

 

Two valid MR methods (i.e. ML-based MR and median-based MR) with moderately LD-pruned 

IVs also showed biased estimation. For continuous phenotypes, the absolute values of estimation 

were also smaller than the true effects (Figure 4b and S14), which was similar to that based on full 
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set of IVs. The smaller sample size ratio of expression sample to GWAS sample led to larger 

estimation deviation (p<2E-16, Wald test). In addition, the deviations also increased generally as 

true effects became larger (p<2E-16, Wald test). Among the two methods, the ML-based MR 

method showed lower deviation than median-based MR method. For instance, when the 

expression sample size was relative large (say, n>1500) and true effect was moderate (say, ±0.2), 

the estimate causal effect was very close to the true effects, ~±0.18 (Figure 5a and 5b). However, 

for binary phenotypes, the absolute values of most estimations were larger than the true effects 

when the sample size ratio was not small, say >10%, corresponding to 2000 subjects (Figure S15, 

5c and 5d). However, in a scenario close to practical scenario in which the sample size of eQTLs 

was 500 (corresponding to the ratio 2.5:100), the estimated effect sizes by ML-based MR method 

and median-based MR method were 20% and 40% smaller than of the true effects respectively.       

 

 
Figure 5: The estimated causal effects by different methods. a) the true effect was 0.2 for 

continuous phenotypes, b) the true effect was -0.2 for continuous phenotypes, c) the true effect 

was 0.2 for binary phenotypes d) the true effect was -0.2 for binary phenotypes. Each data point 

was an averaged estimation in 100 simulated datasets. The outcome phenotype was a continuous 

phenotype. 

 

Case studies 

Schizophrenia 

Using GWAS summary statistics of schizophrenia, we investigated how the LD, gene boundary 

extension and expression type influenced causal gene estimation. Unexpectedly, we found the MR 

methods using LD matrix with a full set IVs detected much more significant genes than the usage 

of moderately LD-pruned IVs although they had valid type 1 errors in our simulated data. For 

instance, the ML-based MR with the full IVs and moderately LD-pruned IVs (threshold r=0.5) 

based on the 1 MB extension and gene level expression detected 663 and 89 significant genes 

(p<2.5E-6) respectively. Only 34 out of the 663 and 89 significant genes were overlapped. We 
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found 232 of the 663 significant genes’ p-value equal to zero because of unreasonably large 

estimated causal effects (>1) and/or very small standard error (<1E-3), which may be caused by 

un-matched LD matrixed. In contrast, the most significant gene among the 89 gene was C4A 

(causal effect beta= 0.156±0.0145, p=4.45E-27) , an well-established causal gene of schizophrenia 

in recent years26 27. It was also the most significant genes prioritized by the median-based MR 

method (causal effect beta= 0.14±0.008, p=1.9E-60). Therefore, to produce more reliable results, 

we used the moderately LD-pruned IVs (threshold r=0.5) by the ML-based MR and median-based 

MR (the two methods with valid type 1 error with LD-pruned IVs according to our preceding 

simulation studies) in the subsequent analyses with the real data.  

 

There were three additional interesting patterns in the MR analysis with schizophrenia GWAS 

summary statistics. First, the usage of eQTLs based on gene-level expression and transcript-level 

expression output very different significant gene lists. For example, among the 76 and 65 

significant genes respectively (p<2.5E-6) prioritized by the median-based MR method using 

eQTLs according to transcript-level and gene-level expression with 1 MB extension, only 35 

genes (∼50%) were overlapped. Therefore, although the transcript-level expression led to slightly 

more significant genes, it was still necessary to also use gene-level expression for causal gene 

estimation. Second, when the gene boundary extension was over 1MB, further extension can 

moderately increase the number of significant genes. Based on transcript level expression, we 

found the 2MB upstream and downstream extension only output 1 and 2 more significant genes 

than 1 MB extension by the ML-based MR method and median-based MR method respectively 

(Figure 6). When the extension decreased to 100 KB from 1MB, the number of significant genes 

reduced substantially. For instance, the number of significant genes prioritized by median-based 

MR method according to transcript-level expression with the two different extension decreased by 

44, from 76 to 32. Third, the ML-based MR method detected more significant genes than the 

median-based MR method. As shown in Figure 4, the ML-based MR method always detected 20 

or more significant genes than the median-based MR method at various boundary extensions. The 

percentage of overlapped significant genes by the two methods were moderate, ~60% on average. 

One reason for the difference is that median-based MR method cannot work for genes with less 

than 3 eQTLs while ML-based MR can do. We also noticed that the p-values of top three genes 

prioritized by median-based MR method were more significant than that of ML-based MR method, 

which was consistent with the power evaluation results in the preceding simulation. 

 

 

Figure 6: Number of significant causal genes for schizophrenia. a) MR analyses based on 
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gene-level expression; b) MR analyses based on transcript-level expression. The X axis denotes 

the length of gene boundary extension to cover more potential regulatory eQTLs.  

 

We then looked into details of significant genes prioritized by the two valid MRs based on the 

1MB extension and LD-pruned IVs (r=0.5). The ML-based MR method and the median-based 

MR method based on gene-level expression detected 89 and 64 significant genes (p<2.5E-6) 

respectively. Among these significant genes, 25 and 20 genes had at least one hit paper that 

mentioned the gene symbol and schizophrenia in abstracts in PubMed (See details in Excel Table 

S1). Eleven genes, including 4 MHC genes (C4A, HLA-B, HLA-C, and HLA-DQA1) and 7 

non-MHC genes (NT5C2, FURIN, GLT8D1, NOTCH4, GATAD2A, NEK4, and MAPK3), had 

over 5 hit papers. The MHC gene C4A was prioritized as the top gene by both MR methods 

according to the p-values, which is also a well-known causal gene of schizophrenia 28. Figure 7a 

visualizes relationship of the association signals in a scatter plot. The estimated causal effects 

0.156±0.0145 (p=4.45E-27, by ML-based MR) suggested its over expression increased the risk of 

schizophrenia, which was consistent with a very recent finding 28. Among the 8 non-MHC genes, 

the most significant one was GATAD2A, p=9.18E-24 by ML-based MR method. GATAD2A 

encodes GATA zinc finger domain and is a transcriptional repressor. It has been suggested as an 

associated gene of schizophrenia 29. The estimated negative causal effect (causal effect beta= 

-0.093±0.009) suggested the gene’s expression may have protective effect on schizophrenia 

(Figure 7b). Consistently, Huckins et al also estimated a negative causal effect of this gene on 

schizophrenia 30. The second most significant gene by median-based MR method was VARS2 

(p=3.26E-38). VARS2 encodes a mitochondrial aminoacyl-tRNA synthetase. Fromer et al also 

prioritized it as an important associated gene of schizophrenia 31. Nevertheless, most of the 

estimated causal genes (Excel Table S2) are new for schizophrenia and are subject to validation in 

independent samples or by biological experiments. 

 
Figure 7:  Scatter plots of genetic association with gene expression in schizophrenia. a) eQTL 

and GWAS summary statistics in C4A; b) eQTL and GWAS summary statistics in GATAD2A. A 

dot on the plots denotes an IV.  

 

As a comparison, based on transcript-level expression, the ML-based MR method and the 

median-based MR method detected 106 and 76 significant genes respectively (p<2.5E-6 after 
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Bonferroni correction for the number of transcripts within a gene). Among these significant genes, 

36 and 28 genes had at least one hit paper in PubMed database respectively (Excel Table S3). 

Thirteen genes had over 5 hit papers, in which 4 genes were in the MHC region. Compared to 

significant genes according to gene-level expression, five out of the 13 genes were unique 

according to transcript-level expression, namely, MAPT, HSPA1B, SDCCAG8, TSNARE1 and 

PCNT. The C4A gene remained the most and the fourth most significant gene by the 

median-based and ML-based MR methods respectively. Among the 13 genes, SDCCAG8 had 

third most significant p-value by the ML-based MR method. SDCCAG8 encodes a 

centrosome-associated protein that may be involved in organizing the centrosome during 

interphase and mitosis. Its significant transcript was ENST00000463042, p=5.80E-11, in which 

the higher expression had a protective effect on the risk of schizophrenia (causal effect beta= 

0.135±0.021). Consistently, William and Murray found predicted expression of SDCCAG8 was 

associated with higher risk of schizophrenia in the DLPFC 32. Similar to the estimation based on 

the gene-level expression, many genes with fewer and even no hit papers might be also promising 

causal genes (Excel Table S4). For example, GNL3 only had two hit papers. It was the second and 

fourth most significant gene by the ML-based MR method and median-based MR method 

respectively. Its isoform ENST00000394799 achieved a p-value p= 1.65E-39 (causal effect beta= 

0.115±0.009) by ML-based MR method. A very recent study suggested that eQTLs may regulate 

expression of GNL3 and further influence risk of psychiatric disorders 33.  

 

Bipolar disorder 

The general patterns of significant genes in bipolar disorder were similar to that of schizophrenia 

in general. The 1MB gene boundary extension seemed also sufficient to cover most cis-eQTL to 

detect most significant casual genes. The number of significant genes based on 1MB extension 

was very similar to that of 2MB extension, e.g., 55 vs. 57 by the ML-based MR method with 

gene-level expression. A further decrease in the bounder to 100KB substantially reduced the 

number of significant genes (Figure 8). The ML-based MR method still detected more significant 

genes than the median-based MR method. However, the difference in the number of significant 

genes between the two methods in this disease was much larger than that of schizophrenia, e.g., 55 

vs. 19 by the ML-based MR method and median-based MR method respectively with 1 MB 

extension based on gene-level expression. The transcript-level expression output smaller number 

of significant genes than the gene-level expression in bipolar disorder. Again, the percentage of 

overlapped significant genes based on the two different levels of expression were not high either, 

<50%. Finally, compared to the above schizophrenia results, the number of significant genes in the 

bipolar disorder dataset was smaller. For example, given 1MB extension and gene level expression, 

the ML-based MR method detected 55 significant genes for bipolar disorder while it detected 91 

significant genes for schizophrenia. Probably, this was because the GWAS sample of bipolar 

disorder was smaller than that of schizophrenia, 46,582 vs. 117,498. 
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Figure 8: Number of significant causal genes for bipolar disorder.  a) MR analyses based on 

gene-level expression; b) MR analyses based on transcript-level expression. 

 

The ML-based MR method and the median-based MR method using gene-level expression and 

1MB gene boundary extension detected 55 and 19 significant genes respectively. Probably 

because bipolar disorder is less studied than schizophrenia, among the significant genes, the genes 

with one or more hit papers in PubMed database (9 and 4 for the two methods) were much fewer 

than that of schizophrenia (Table S5). Only three genes (C4A, FADS1 and NEK4) among all the 

significant genes had 3 or more hit papers. Similar to schizophrenia, C4A was also the most 

significant causal gene of bipolar disorder, p=3.24E-15, by ML-based MR. But its estimated effect 

in bipolar disorder was smaller than that of schizophrenia, 0.048±0.006 vs. -0.16±0.015 

respectively. Melbourne et al found C4A mRNA expression in peripheral blood mononuclear cells 

could predict the presence and severity of delusions in bipolar disorder with psychosis 27. FADS1 

was the third most significant genes according to the ML-based MR, p=8.74E-15. It encodes a 

member of the fatty acid desaturase gene family. Ikeda et al detected a significant locus close to 

this gene associated with bipolar disorder in a Japanese sample 34. They also found the top 

association SNP (rs28456) was a strong eQTL with causal effect on FADS1 in brain regions 

multiple from independent datasets by SMR method. The association between this gene and 

bipolar disorder was also found in a Chinese sample 35. The ML-based MR estimated its over 

expression had protected effect on bipolar disorder, causal effect beta= -0.14±0.018. NEK4 

encodes a serine/threonine protein kinase for normal entry into replicative senescence. Its 

overexpression is estimated to increase risk of bipolar disorder, causal effect beta=0.186±0.028 by 

ML-based MR method. Recently, Yang et al showed biological evidences for the causal effects of 

NEK4 and adjacent genes on psychiatric disorders 33. Nevertheless, most of the genes (Excel 

Table S6) are new for bipolar disorder and are subject to further validation.  

 

The ML-based MR method and the median-based MR method based on transcript-level 

expression and 1MB gene boundary extension detected 44 and 13 significant genes respectively. 

Only 6 and 3 of the significant genes had one or more hit papers in PubMed database respectively 

(Table S7). There were four genes with 3 or more hit papers, FADS1, C4A, GNL3 and S100B. 

The latter 2 genes were overlooked by the analysis based on gene-level expression. C4A were the 

fourth and the second most significant causal gene of bipolar disorder by ML-based MR method 

and the median-based MR method. GNL3 was the fourth most significant causal gene by 

ML-based MR method. It encodes the G protein nucleolar 3. Interestingly, two transcripts of this 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.09.374298doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.374298


gene were estimated to have opposite casual effects, ENST00000394799:0.16±0.02 and 

ENST00000468146:-0.26±0.048. This may be the reason why the MR analysis based on gene 

level expression (which was the averaged expression of transcripts) overlooked this gene. A very 

recent study showed that GNL3 knockdown and overexpression led to aberrant neuronal 

proliferation and differentiation 36. S100B encodes a member of the S100 family of proteins 

containing 2 EF-hand calcium-binding motifs. Serum S100B protein has been used as an 

important biomarker of bipolar disorder 37. Serum S100B protein’s expression level was increased 

in patients with bipolar disorder 38 while decreased after treatment in bipolar patients in a manic 

phase 39. Consistently, its most significant transcript ENST00000397648 had a positive effect on 

bipolar disorder, causal effect beta=0.20± 0.035, p=4.84E-9. Our analysis further suggested that 

S100B might be more than a biomarker of this disease. Many genes (See details in Excel Table S8) 

without hit paper were also promising causal genes for bipolar disorder. For example, GOLGA2P7 

was the most significant gene by the median-based MR method with a causal effect beta=0.4±0.06 

at its transcript ENST00000559668, p=3.43E-11. GOLGA2P7 is a pseudogene of GOLGA2. A 

very recent study reported the association between GOLGA2P7 and bipolar disorder 40. The 

significant causal effects of other genes and transcripts are subject to be validated. 

 

Discussion 

This is the first study so far, to our knowledge, evaluating the performance of six widely-used MR 

methods original designed for epidemiological studies in a new type of application — inferring 

causal genes with a small-scale expression data and a large-scale of GWAS data in the post-GWAS 

era. Through systematical evaluation study with both simulated and real data, we prioritized 

ML-based MR out of the six methods as the most robust and suitable approach. When the IVs are 

correlated, the ML-based MR had valid type 1 error and sufficient power in simulated data. The 

ML-based MR method also worked with LD-pruned IVs according to a small or moderate cutoff 

r<0.5. More importantly, it was able to generate a reasonable number of significant genes and 

“rediscover” many known susceptibility genes of schizophrenia and bipolar disorder in real 

datasets. The median-based MR method could also work with LD-pruned IVs but produce fewer 

significant genes in real data analysis. The mode-based MR method and contamination mixture 

MR method cannot model LD between IVs and had inflated type 1 errors while IVW MR method 

had inflated type 1 error with moderately LD-pruned IVs. The MR-Egger method had low power 

with LD-corrected IVs and had inflated type 1 error with moderately LD-pruned IVs. Moreover, 

we also explored a best practice pipeline for causal genes inference with GWAS summary 

statistics and eQTLs. We found the 1MB gene boundary extension may be sufficient to cover most 

regulatory variants for a powerful inference. Probably due to different efficiency in detecting 

eQTLs, it is necessary to use eQTLs of both gene- and transcript-level expression for the inference. 

In real data analysis, as the MR methods are sensitive to noises in LD matrix, the usage of 

LD-pruned IVs will lead to more reasonable estimation than the full set IVs. Based on the 

prioritized methods (the ML-based MR and median-based MR) and the optimized pipeline, a 

powerful tool integrated with whole-genome eQTLs at over 50 tissues or cell types, named 

MACG, was developed for causal genes inference by using GWAS summary statistics, available 

at http://pmglab.top/kggsee. 

 

This is also the first study so far to investigate how the expression of different levels (gene vs. 
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transcript) influenced the causal genes estimation. We found only less than 50% of significant 

genes based on the two different levels of expression were overlapped. Theoretically, there are 

pros and cons for the usage of different levels of expression. As the amount of gene expression is 

larger than that of the transcript, the former will lead to more significant eQTLs for the inference. 

Consequently, the MR methods would be more powerful to detect some causal genes with 

homogeneous expression. However, the gene-level expression essentially is just an averaged 

expression of multiple transcripts. When there is large heterogeneity among the transcripts’ 

expression, the averaged expression will neutralize opposite effects of transcripts (if available) and 

then decrease the power of MR analysis (see an example at GNL3 for bipolar disorder). With the 

transcript-level expression, the MR methods will have higher power to detect some risk transcripts 

of heterogeneous expression. In the real data analysis, the MR methods with transcript level 

expression rediscovered a known schizophrenia susceptibility gene, SDCCAG8, which was 

overlooked by MR analysis based on gene level expression. SDCCAG8 had 2 transcripts and only 

one of transcripts achieved a significant p-value 5.8E-11. Therefore, we recommend using both 

levels of expression to generate eQTLs, if available, for the causal genes inference.  

 

Our study is different from existing methods integrating gene expression for genetic mapping. 

First, our framework, MACG, is different from an alternative MR approach, SMR 11. It only used 

a single IV (usually the top SNP) in the analysis, although for the same purpose. In contrast, 

MACG uses multiple variants simultaneously to infer causal genes based on MR. We showed that 

more IVs increased the power to detect the causal genes (Table 1). Barbeira et al. also pointed out 

that the χ��  statistics of SMR tended to be deflated under null hypothesis13. Second, our 

framework is also different from some recent multi-variants based integrative association methods, 

e.g. S-TWAS 41 and S-PrediXcan 13. These methods were designed to examine association between 

phenotypes and imputed gene expression in which multiple cis-eQTLs were used to predict gene 

expression. However, these methods only detected association per se but not causation.  

 

Our simulation study suggested that the correlation of IVs had worse influence on performance of 

the MR methods than the pleiotropy. When full set IVs in LD were used for the MR analysis, the 

methods that were unable to model the correlation had inflated type 1 error. We found the 

ML-based MR method and median-based MR method were less sensitive to LD, and thus they had 

valid type 1 error with moderately LD-pruned IVs approximately. There are at least two reasons 

why the pleiotropy in IVs had weak effect on the performance of the MR methods. First, for 

complex phenotypes of polygenic model 42, the heritability of individual SNPs for gene expression 

is unlikely large (<1%) while the sample sizes for eQTLs calculation are usually small or 

moderate, n<1000. Therefore, many pleiotropic SNPs may not survive the hypothesis test on 

eQTLs. Second, some methods were designed to tolerate moderate pleiotropy. For instance, the 

median-based MR’s weighted median can provide a consistent estimate if at least 50% of the 

weight comes from valid IVs 21. The random-effects models of ML-based MR may be robust to 

the pleiotropic IVs to some extent. We found ML-based MR became inflated with pleiotropic IVs 

when it was carried out under a fixed effect model (Figure S16). 

 

In the proof-of-principle examples, the ML-based MR method and median-based MR method 

estimated many potential causal genes for schizophrenia and bipolar disorder. Among the 
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significant genes, quite a few genes are known susceptibility genes of the corresponding diseases, 

e.g., C4A, GATAD2A, MAPK3 for schizophrenia and FADS1, S100B for bipolar disorder. Note 

that there are also many genes which are new for the diseases. Functional validation of these genes 

is indispensable to confirm their causality although this is beyond the scope of the present paper. 

However, we also noticed that some known susceptibly genes of the diseases were not significant 

in our analysis, e.g., NRG1 for schizophrenia 43. This may be related to the power of the MR 

methods. In our analysis, the expression dataset only had 592 subjects. To reduce weak IVs bias 23, 

we excluded many eQTLs with p> 1E-4. For median-based MR method, genes having less than 3 

IVs were excluded, which may also overlook some causal genes. In addition, gene expressions are 

variable in different brain regions and development stages. Our previous study showed that 

multiple brain regions were highly related to schizophrenia and bipolar disorder besides the frontal 

cortex 7. Due to limited sources of expression data, we only used the dorso-lateral prefrontal 

cortex regions. Probably, by only using the gene expression in dorso-lateral prefrontal cortex, 

other related brain regions’ causal genes may be overlooked by this study. .  

 

It is unexpected that the consideration of LD correlation in real data analysis led to numerous false 

positive discoveries although it worked well in simulated data. We compared the details in 

estimation with LD correction with that of LD pruning. A main problem was that the former 

usually had extremely small SE of the estimated causal effect than that of the latter, e.g., <1E-4 for 

former vs. >0.01 for latter. The calculation of SE with LD correction includes inversion and 

multiplication of the LD matrix. In this study, we used the 1KG genotypes as a proxy dataset to 

approximate LD matrix of the large-scale GWAS meta-analysis for schizophrenia and bipolar 

disorder. It is very likely that there are noises from the LD matrix due to smaller sample sizes and 

incompletely matched ancestry. Therefore, the usage of noised LD matrix may lead to a very small 

SE, which subsequently resulted in an inflated z score or type 1 error. In the simulation, we used 

the sample itself rather than a proxy to calculate the LD matrix so that the estimated SEs were 

correct. In practice, it is infeasible to merge all genotypes of a large GWAS meta-analysis study to 

calculate the LD matrix as we did in simulation. Therefore, ML-based MR method and 

median-based MR method had valid type 1 error even with moderately LD-pruned IVs according 

to reference sample, and thus may be more realistic options for inferring causal genes. 

 

A limitation of the present study is lack of validation for new causal genes. We did not validate the 

estimated significant causal genes of schizophrenia and bipolar disorders in additional samples or 

biological experiments. Therefore, it is unknown how many significant genes are true causal genes 

although we rediscovered a number of known susceptibility genes for schizophrenia and bipolar 

disorders respectively. Most of the significant genes are recommended to be investigated and 

validated by independent genetic samples or functional experiments. Therefore, we shared the 

significant genes and their causal effects in the supplementary Tables (S1-4), which may be 

valuable reference of candidate causal genes for follow-up studies in the future.    

 

Methods and Materials 

Mendelian randomization methods 

The following six popular MR methods were investigated by comparing their type 1 error rates 

and powers for causal gene inference. The first three MR methods can be used to adjust for 
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correlation of IVs while the other three MR methods cannot do. In addition, the last four methods 

were designed to account for horizontal pleiotropy in IVs by different strategies. The R codes of 

the six methods implemented in the MendelianRandomization R package （version 0.4.2）44 were 

called by MACG for analyses in the present study. The following is a brief description of the six 

MR methods.  

 

The inverse-variance weighted (IVW) MR 

The causal effect was estimated by using generalized weighted linear regression with the 

associations with the phenotype and with the gene expression, in which the intercept was set to 

zero and weights were the inverse-variances of the associations with the phenotype 20. The 

genotypic correlations of variants (known as IVs) were used to correct relatedness of associations 

with phenotypes. The random-effects model with correlated IVs was adopted, in which the main R 

code was "mr_ivw(mr_input, correl=TRUE, model=’random’)". In other testing scenarios, the LD 

pruned IVs according to various LD cutoffs were input into a random-effects model, in which the 

R code was "mr_ivw(mr_input, penalized=TRUE, robust=TRUE,  weights=‘delta’ , 

model=’random’)". 

  

The maximum-likelihood (ML) based MR 

The causal effect was estimated by a likelihood function of the bivariate normal distribution for 

the associations of each genetic variant with gene expression and with the phenotype. The mean of 

the association with the phenotype was taken as the mean association with the expression 

multiplied by the causal effect parameter. A random-effects model was also adopted. Compared to 

the IVW MR method, this MR method may have advantages of incorporating uncertainty in the 

genetic associations with the expression. The main R code was "mr_maxlik(mr_input, 

correl=TRUE, model=’random’)". LD pruned IVs were tested and the used main R code was 

"mr_maxlik(mr_input, model=’random’)". 

  

MR-Egger method 

MR-Egger method was proposed by Bowden et al (2015) 25 for the scenario where genetic 

variants were not all valid IVs. MR-Egger intercept test can be used to estimate directional 

pleiotropy. This method is supposed to provide an unbiased test for a causal effect when the 

instrument strength independent of direct effect (InSIDE) assumption holds 25. The main code of 

this method in the MendelianRandomization R package was "mr_egger(mr_input, correl=TRUE)". 

LD pruned IVs were tested by the R code "mr_egger (mr_input, penalized=TRUE, 

robust=TRUE)". 

 

Mode-based MR 

The mode-based estimation (MBE) MR method was proposed by Hartwig et al 22. It takes the 

variant-specific ratio estimates from each genetic variant in turn, and calculates the model by a 

kernel-smoothed density out of the ratio estimates. Like the MR-Egger, the method was developed 

to relax the IV assumptions. As it cannot be used to correct the relatedness between IVs, we tested 

the method with the full set of IVs and LD pruned IVs separately with the same R code, 

"mbe(mr_input, stderror = ‘delta’)". 
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Median-based MR 

The weighted median MR method calculated the median of the ratio IV and used weighted median 

estimator for combining data on multiple genetic variants into a single causal estimate 21. While 

working for moderately invalid IVs, it also has greater robustness to individual genetic variants 

with strongly outlying causal estimates compared other MR methods. It also cannot be used to 

correct the relatedness between IVs. The full set of IVs and LD pruned IVs were tested separately 

with the same R code "mr_median(mr_input)".  

 

Contamination mixture MR 

The contamination mixture MR method was proposed by Burgess et al (2020) 18. It was built on a 

likelihood function of a product of two component mixture normal distributions for valid 

instruments and invalid instruments respectively. The contribution to the likelihood for each 

genetic variant as a valid instrument and as an invalid instrument was calculated respectively. The 

obtained contribution was then compared to configure valid and invalid instruments that maximize 

the likelihood for the given value of the causal effect. The detailed model and algorithm can be 

seen in Burgess et al (2020) 18. As it cannot be used to correct the relatedness between IVs, the full 

set and LD pruned IVs were tested separately by the same main R code "mr_conmix(mr_input ,  

CIMin = -1, CIMax = 5, CIStep = 0.01)". 

 

Summary data–based Mendelian randomization (SMR) 

We also compared the above multiple eQTLs based MR methods with a single eQTL based MR 

method, SMR11. SMR was designed to infer causal genes of a phenotype also by using GWAS 

summary-level data and eQTLs. The causal effect is estimated by a ratio of coefficients in the least 

squares regressions and the sampling variance of the estimate is approximated by the Delta 

method. A χ� statistics is then built to test the causality of gene expression to a phenotype. In our 

analysis, the summary statistics of eQTLs and phenotype associated variants calculated from 

simulated data were formatted and input into the tool SMR (version 1.03) with default parameters 

for the causality test by the χ� statistics. The test p-values were extracted from the output results 

for the power comparison.  

 

Simulation of genotypes and phenotypes 

To investigate the statistical type 1 error, power, and accuracy of the MR methods for inferring 

causal genes, extensive computer simulations were performed. A 3MB region which mimicked the 

length of highly expanded gene was randomly drawn from human genome. In the EUR panel of 

1000 Genomes Project 45, this region contains 2371 common variants (MAF>0.01). Genotypes of 

the variants were simulated given allelic frequencies and LD correlation matrix in the according to 

the HapSim algorithm 46. The genotypes were encoded by the number of alternative alleles, s. The 

SNPs’ genotypes (s) contributing to the phenotypes were then standardized as, 

g � �� � 2�	 
2��1 � �	⁄ , where q was the allele frequency of alterative allele. Phenotypes were 

simulated under a polygenic model of random effect 42. One hundred twenty-one independent 

variants were extracted from the 2371 variants according to stringent LD pruning (r2<0.05). Given 

the heritability (h2) of a trait and the number of independent causal variants (m), the effect size of a 

variant followed a normal distribution N(0, h2/m). For gene expression, it was assumed m1 
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independent causal variants (total heritability 
��) and mc independent pleiotropic variants (total 

heritability 
��� ) had effect size β�,� and ��,� on gene expression respectively. There were no 

overlapped variants between the m1 and mc variants. In addition, common confounding factors 

also contributed to �� fraction to the gene expression. Therefore, the expression of a gene was 

simulated according to the formula: 

X � ∑ ����,��
�

��� � ∑ ����,��
�

��� � ��� � ��， 

 

where ��,�~��0, 
��/��	, ��,�~��0, 
��� /��	, �~��0, 1	 and ��~��0, 1 � 
�� � 
��� � ���	. 
 

For a phenotype, it was assumed m2 causal variants (total heritability 
��) and mc pleiotropic 

variants (total heritability 
��� ) had effect size β�,� and α�,� on the phenotype respectively. In 

addition, the same common confounding factors also contributed to �� fraction to the phenotype. 

The above gene expression also contributed δ to the phenotype. The phenotype value was 

simulated according to the formula: 

Y � δX � ∑ ����,��
�

��� � ∑ ����,��
�

��� � ��� � ��， 

 

where ��,�~��0, 
��/��	, ��~��0, 
��� /��	, and ��~��0, 1 � 
�� � 
��� � ��� �!�	.  

 

Here Y was a continuous phenotype. For a binary phenotype, a cutoff t was set according to a 

given disease prevalence K under standard normal distribution and the liability threshold model 47. 

Subjects with simulated Y values ≥t were set as patients and others were set as normal controls. A 

large population of 50 million subjects as simulated for each parameter setting. Subjects (N=20,00) 

were randomly drawn (sampling without replacement) from the large population to form samples 

for association analysis by linear regression at the gene expression and phenotype respectively. 

Similar to real situations in practice, there were no overlapped subjects in the samples for the two 

association analyses. Summary statistics of the association analyses were input to MACG for the 

MR analysis to infer causal genes. 

  

For binary phenotype, both logistic regression and contingency table analysis were used to 

calculate the odd ratio (OR) and SEs. The logarithm of OR was converted into effect size under a 

liability threshold model 47. Under the liability threshold model for a binary phenotype, the OR of 

variants was converted to the equivalent effect size estimation on the liability level. According to 

Gillett et al. 47, the liability level effect size can be approximated by 

�"	�
��	��
 # $�� %& '() ' �

���
* � ()+,-*. � $�� %& /() ' �

���
*0.  and the variance is 

var4�"	�
��	��
5 � ��������

�����
var6()+,- 7, where $ and 8 are c.d.f and p.d.f of the standard normal 

distribution respectively, 9 is the disease prevalence, L is the standardized logistic function and c 

is the corresponding quantile for the cumulative probability of K under the standard normal 

distribution. 

 

Validation on Real datasets 
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GWAS summary statistics dataset 

We download real GWAS summary statistics data of two common psychiatric disorders 

(schizophrenia and bipolar disorder) from public database for further validation. The summary 

statistics of schizophrenia were derived from a large GWAS meta-analysis [Ref], in which there 

were 53,386 European cases and 77,258 European controls. The summary statistics of bipolar 

disorder were also derived from another large GWAS meta-analysis 48, in which there were 20,352 

European cases and 31,358 European controls. The combined ORs and SEs from meta-analysis 

were used for the validation analysis. The details of sample sources and data quality controls 

methods can be seen in the original papers 49 48. Genotypes in CEU panel from 1000 Genomes 

Project 45 were used to correct for relatedness of the summary statistics. 

  

eQTL summary statistics dataset 

The summary statistics of eQTLs were calculated based on genotypes and dorsolateral prefrontal 

cortex gene expression downloaded from CommonMind Consortium. We did not use GTEx 

eQTLs because there were less than 200 samples for most brain regions (V8). To increase overlap 

of eQTLs with GWAS summary statistics, the imputed genotypes were used after quality control 

with INFO score >0.5. After matching genotype data and expression data (in files 

cmc_isoform-adjustedsva-datanormalization-includeancestry-adjustedlogcpm.tsv.gz and 

cmc_gene-adjustedsva-datanormalization-includeancestry-adjustedlogcpm.tsv.gz), 527 subjects 

were retained. To reduce effects of confounding factors, a linear regression model was built in 

which co-variables (such as disease status, age, sex and so on) were used to adjust the expression. 

The adjusted gene expression values were used to estimate the effect size and SEs of an eQTL in a 

simple linear regression model. In the model, the alleles were encoded as 0, 1, and 2, which were 

in accordance with the coding for the GWAS summary statistics. The allele frequencies were used 

to assist to flip discordant alleles of variants between the eQTL and GWAS datasets. 
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Figure Titles and Legends 
Figure 1. The diagram and workflow of the framework for inferring causal effects of gene 

expression on a phenotype. A) the diagram. B) the workflow of the framework.  Z denotes IVs of 

MR. X denotes expression of transcripts as an exposure of MR and Y denotes a complex 

phenotype as the outcome of MR. The gene expression directly regulates phenotypes. The 

complex phenotype and expression are also regulated by confounding factors (U). In addition, 

some instrument variables also directly regulate both the expression and phenotype (known as 

pleiotropy effect). The proposed approach aims to infer causal effect from X to Y. 

Figure 2. Type 1 errors of six MR methods for inferring causal genes of a continuous phenotype. 

a), d) and g) show the type 1 error of MR methods under an ideal scenario with total eQTL 

heritability 0.05, 0.15 and 0.25 respectively. b), e) and h) show the type 1 error of MR methods 

under a scenario with confounding factors with total eQTL heritability 0.05, 0.15 and 0.25 

respectively. c), f) and i) show the type 1 error of MR methods under a scenario with pleiotropy 

with total eQTL heritability 0.05, 0.15 and 0.25 respectively. 

Figure 3: P-value distribution of four MR methods for inferring causal genes with LD-pruned IVs. 

The first, second, third and fourth columns correspond to the cause effects 0.1, 0.3, 0.5, and 0.7 

respectively. The first and second rows correspond to continuous phenotype and a binary 

phenotype. The total heritability by eQTLs as IVs was 0.15. 

Figure 4: Estimation deviation of causal effect on different types of phenotypes by ML-based MR 

a) estimation deviation causal effect for continuous phenotype with full set of correlated IVs, b) 

estimation deviation causal effect for continuous phenotype with LD-pruned IVs, c) estimation 

deviation causal effect for binary phenotype with full set of correlated IVs, d) estimation deviation 

causal effect for binary phenotype with LD-pruned IVs. The ratio refers to the size ratio of eQTLs 

expression sample and GWAS sample. The deviation refers to the difference between estimated 

effects and true effects.  
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Figure 5: The estimated causal effects by different methods. a) the true effect was 0.2 for 

continuous phenotypes, b) the true effect was -0.2 for continuous phenotypes, c) the true effect 

was 0.2 for binary phenotypes d) the true effect was -0.2 for binary phenotypes. Each data point 

was an averaged estimation in 100 simulated datasets. The outcome phenotype was a continuous 

phenotype. 

Figure 6: Number of significant causal genes for schizophrenia. a) MR analyses based on 

gene-level expression; b) MR analyses based on transcript-level expression. The X axis denotes 

the length of gene boundary extension to cover more potential regulatory eQTLs.  

Figure 7:  Scatter plots of genetic association with gene expression in schizophrenia. a) eQTL 

and GWAS summary statistics in C4A; b) eQTL and GWAS summary statistics in GATAD2A. A 

dot on the plots denotes an IV.  

Figure 8: Number of significant causal genes for bipolar disorder.  a) MR analyses based on 

gene-level expression; b) MR analyses based on transcript-level expression. 

 

 

Tables 

Table 1: Power of ML-based MR method, Median-based MR method and SMR for causal gene 

estimation  Each power was calculated from 100 simulated datasets. The details of simulating 

genotypes and phenotypes can be seen in the results section. The p-value threshold for a 

significant causality test was 0.001. H.P.V.: Heritability of pleiotropic variants 
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