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Summary (161 words) 
 
Developments on spatial transcriptomics (ST) are providing means to interrogate 

organ/tissue architecture from the angle of the gene programs defining their molecular 

complexity. However, computational methods to analyze ST data under-exploits the spatial 

signature retrieved within the maps. Inspired by contextual pixel classification strategies 

applied to image analysis, we have developed MULTILAYER, allowing to stratify ST maps 

into functionally-relevant molecular substructures. For it, MULTILAYER applies 

agglomerative clustering strategies within contiguous locally-defined transcriptomes (herein 

defined as gene expression elements or Gexels), combined with community detection 

methods for graph partitioning. 

MULTILAYER has been evaluated over multiple public ST data, including developmental 

tissues but also tumor biopsies. Its performance has been challenged for the processing of 

high-resolution ST maps and it has been used for an enhanced comparison of multiple public 

tissue biopsies issued from a cancerous prostate. 
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MULTILAYER provides a digital perspective for the analysis of spatially-resolved 

transcriptomes and anticipates the application of contextual gexel classification strategies for 

developing self-supervised molecular diagnostics solutions. 

Overall, the development of MULTILAYER anticipates the application of contextual gexel 

classification strategies for developing self-supervised molecular diagnostics solutions. 

 
Main text (3171 words) 
 

Introduction 

Studying complex living systems by the evaluation of the various gene programs defining 

organ/tissue architecture, is part of the current challenge on Systems Biology. In fact, while 

till recently accessing at the gene programs in tissues was performed by global (bulk) gene 

expression analyses, recent advances on single cell transcriptomics managed to move from 

an “average view” towards a single-cell gene program readouts1. This being said, cell 

dissociation by enzymatic methods - necessary for single-cell assays - tend to modify the 

transcriptional patterns2, it destroys for at least a fraction of the cells composing the tissue, 

and it does not conserve tissue architecture. 

Recent developments on “spatial transcriptomics” (ST)3, allows to circumvent the 

aforementioned technical issues related to single-cell assays, and notably the capacity to 

conserve the spatial architecture, essential for heterogeneous tissue analysis. This strategy, 

based on the use of a physical support (DNA array) for capturing local gene expression 

signatures (mRNA transcriptome) from tissue sections, behaves like a digital camera, 

allowing to obtain a “digital” view of the molecular programs composing the tissue. 

While several computational solutions are currently available for processing ST4,5, their 

analytical pipelines tend to reuse strategies applied for single-cell transcriptomics analyses, 

namely to consider each of the captured local transcriptomes as independent units during 

their comparison. Herein we describe MULTILAYER, a stand-alone package allowing to 

process ST readouts by pattern recognition within contiguous local transcriptomes. Such 

captured local transcriptomes are defined herein as gexels (gene expression elements), in 
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analogy to pixels commonly described as units composing raster images in digital imaging. 

Hence, MULTILAYER process ST maps as a digital image on which gexel patterns revealed 

from agglomerative clustering allows to highlight biologically relevant tissue substructures. 

MULTILAYER is available through https://github.com/SysFate/MULTILAYER.   

Results 

Normalization, differential Gene expression, co-expression patterns detection and 

digital tissue partitioning of ST data performed by MULTILAYER 

MULTILAYER receives as input, ST matrices composed by spatial coordinates and read 

counts per genes. These matrices are converted into a grid view, on which each spatial 

coordinate is associated to a gene expression element (or gexel), composed by read-counts 

per gene for the local transcriptome. Raw ST maps present variable total read counts per 

gexel, potentially due to technical concerns during sample preparation (e.g. uneven tissue 

permeabilization, mRNA capturing, etc). To address this problem, MULTILAYER applies a 

quantile normalization6 across Gexels, generating a uniform total read counts map over the 

whole grid (Figure 1). Normalization performance has been validated by evaluating house-

keeping gene expression levels within spatial transcriptome maps and relative to other 

alternative strategies, like SpatialDE7 (Supplementary Figure 1). 

Under the hypothesis that the digital tissue map under study is not homogeneous, we aimed 

at inferring changes on gene expression in a spatial context. For it, MULTILAYER computes 

gene expression levels per gexel relative to the gene expression average behavior within the 

tissue. In analogy to the terminology used on “bulk” gene expression analysis, we describe 

herein regions with higher levels as up-regulated, or down-regulated when the normalized 

read counts per gene were above or below the stated average behavior (Figure 1). While 

this analysis is performed per Gexel, MULTILAYER ranks differentially expressed genes on 

the grounds of the observed number of Gexels, hence providing the user with a quick view of 

the genes that are over-represented on the digital map on the basis of the relative expression 

behavior (Supplementary Figure 2). 
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Similar to contextual classification strategies used for image analysis from pixels information8, 

MULTILAYER detects gene expression patterns by the use of an agglomerative strategy 

over contiguous Gexels. This module generates a cleaner view of over-expressed genes 

within the tissue. Furthermore, it allows to identify multiple patterns for the same over-

expressed gene within the same tissue, which per see is lost in all other strategies relying on 

aggregating independent Gexels by applying for instance the t-distributed stochastic 

neighbor embedding (tSNE) method (Supplementary Figure 3).  

Having detected patterns for all over-expressed genes, MULTILAYER compares their spatial 

localization to infer their degree of co-expression behavior (Tanimoto and Dice similarity 

coefficient implemented; see methods on line). By expanding this analysis through the 

ensemble of over-expressed genes, MULTILAYER generates a graph structure on which 

nodes corresponds to over-expressed genes within the tissue and edges their similarity 

coefficient readouts reflecting their degree of spatial co-expression (Supplementary Figure 

4). By applying the Louvain methodology for community detection9, MULTILAYER partitions 

the digital tissue map into functionally relevant spatial Gexel substructures (Figure 1).         

 

MULTILAYER efficiently partitions digitized tissue maps into relevant functional 

substructures 

To assess the performance of MULTILAYER, we have processed public ST maps issued 

from a variety of tissues, including human developmental heart samples10 and pancreatic 

tumors11. As part of the heart study, MULTILAYER has been instrumental to decorticate the 

tissue complexity within 19 digital maps covering three described developmental stages (4.5 

and 6.5 and 9 post-conception weeks (PCW); Supplementary Figure 5). To highlight the 

performance of MULTILAYER on tissues presenting a high complexity, we have focused our 

attention on a tissue section collected at nine PCW (Section 15; Supplementary Figure 5). 

After applying quantile normalization on the raw read counts (Figure 2A), MULTILAYER 

detected several over-expressed genes within the heart section, including those coding for 

the smooth muscle actin ACTA2; one of the components of the elastic fibers (Elastin; ELN), 
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the large abundant protein composing the striated muscle Titin(TTN) or the natriuretic 

peptide NPPA (Figure 2B). The spatial gene over-expression signature for ACTA2 appeared 

concomitant with that of ELN and distinct to those observed for TTN and NPPA. This 

observation is confirmed by the spatial gene co-expression analysis performed by 

MULTILAYER, demonstrating that ACTA2 and ELN present a similarity index > 30% 

(Tanimoto distance) (Figure 2C), also observed for other factors like PXDN, BGN, S100A11, 

HTRA1, EMILIN1, CXCL12, MYH10 or TAGLN; some of them previously described as being 

expressed at the heart valve12–14. In a similar manner, TTN presented a co-expression 

signature with NPPA, as well as several other factors like NDUFA4, FHL2, CTNNA1, known 

to present a specific left ventricle over-expression (as documented on the Genotype-tissue 

expression portal 15).  

By extending the gene co-expression pattern detection over the whole tissue and applying 

spatial communities partitioning, MULTILAYER revealed the presence of five communities, 

which can be summarized within 3 major distinct tissue substructures (Figure 2D). Gexel 

communities “0” and “1” corresponds to two distinct regions, associated to the left and right 

ventricle and atrium of the heart (Figure 2E). In contrast, communities “2” and “3” present a 

redundant spatial location (Figure 2D), which were functionally related to pericardial tissue 

but also to the heart valve (Figure 2E). 

To further illustrate the performance of MULTILAYER on other type of tissues, we have 

analyzed Pancreatic ductal adenocarcinoma ST maps11. For it, we have first normalized the 

publicly available ST map (Figure 2F), then MULTILAYER detected a variety of spatially 

over-expressed genes, among them the mucin family member MUC5B, the S100 Calcium 

Binding Protein A6 (S100A6) or the serine protease PRSS1 (Figure 2G). Notably, these 

three over-expressed genes present a completely distinct spatial behavior, further confirmed 

by their gene co-expression patterns as inferred by MULTILAYER (Figure 2H). Such distinct 

spatial pattern behavior is in agreement with their previously described functional role, since 

MUC5B has been over-expressed on pancreatic duct16, S100A6 has been associated to 

pancreatic cancer development17 and PRSS1 is expressed on normal pancreas tissue since 
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it codes for trypsinogen, the enzyme secreted by this organ. Beyond these three distinct 

regions, MULTILAYER inferred up to 6 gexel communities (Figure 2I), which can be 

summarized on 4 functionally relevant regions. Gexel community “0”, has been associated to 

functional terms like Pancreatitis, or abnormal enzyme activity, most likely due to the fact that 

mutation on  PRSS1 were associated with hereditary pancreatic disorders18. This spatial 

region has been characterized as “normal pancreas tissue”  as part of the histological 

annotation described by Moncada et al11 , which is in agreement with the MULTILAYER 

functional annotation, devoid of tumor-related terms (Figure 2J). In contrary, gexel 

community “3” has been strongly associated to disease terms like “Adenocarcinoma”, “tumor 

progression”, or “Neoplasm metastasis”; in agreement with the histological annotation 

described by Moncada et al11. Similarly, gexel communities “2” and “1” were associated to 

“cancer related terms”, but with a lower confidence, in agreement with the aforementioned 

histological differences (Gexel community “1” described as duct epithelium, and “2” as 

Stroma11). 

Overall, MULTILAYER allowed to perform an automated tissue stratification, presenting 

relevant functional roles and coherent with the findings revealed on the studies from which 

we have collected the data. It is worth to highlight that, in contrary to the previous studies, 

MULTILAYER partitions the digital map on the grounds of the contiguous gexel information, it 

provides to the user ranked lists of over-expressed genes and relevant gene co-expression 

patterns; thus enhancing the molecular characterization of the spatial information in a self-

supervised manner, similar to those used for tissue image segmentation (reviewed in19). 

 

MULTILAYER allows to process high-resolution ST maps by incorporating a super-

Gexel agglomerative compression module 

Most of the current available ST maps are issued from glass slides on which barcoded-polyT 

DNA probes are printed. The manufacturing constraints of these DNA arrays provide a 

resolution of ~100 μm (equivalent to ~10-40 cells per gexel) with a number of spots ranging 

between ~1000 to ~5000 (when considering the recent commercial upgrade of the original 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.09.374660doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.374660


7 
 

ST protocol), covering a surface of ~6x6 mm 3. An alternative strategy, based on the use of 

uniquely DNA-barcoded beads deposited onto a glass coverslip enhanced the ST resolution 

to 10 μm. This methodology known as Slide-Seq, allowed to generate high-resolution ST 

maps within a circular surface of 3 mm of diameter and ~70 000 uniquely DNA-barcoded 

beads20.  

Aiming to use MULTILAYER to analyze high-resolution Slide-Seq maps, but concerned by 

the technical constraints related to (i) the low number of read counts per gene retrieved 

within Gexels (Supplementary Figure 6) and (ii) the high number of Gexels within the ST 

map impacting the computational performance (including the display functionalities); we have 

implemented a complementary script allowing to reduce the ST map complexity. This ad-hoc 

module, called “MULTILAYER compressor”, generates super-Gexels by agglomerating 

contiguous gexels defined by a user-provided compression factor. This approach, previously 

described for image segmentation strategies21, allowed to enhance the number of counts per 

gene within super-Gexels to even comparable levels as those retrieved on regular ST maps 

(Supplementary Figure 6). Furthermore, it reduced the computation performance, such that 

MULTILAYER could decorticate the functionally relevant digital tissue complexity. This last 

aspect has been highlighted by the analysis of public Slide-Seq data, including mouse 

hippocampus and sagittal cortex maps20,22. In both cases, raw Slide-Seq maps composed by 

~ 70 000 high-resolution gexels, were compressed by factors of 60x, 100x and 175x 

respectively, leading to grid sizes compatible with the performance of MULTILAYER 

(Supplementary Figure 6-9 and Figure 3). Normalization and differential gene expression 

analysis performed on the hippocampus map (reduction factor of 60x), allowed to identify 

spatially distinct over-expression signatures for factors like PPP3CA (Protein Phosphatase 3 

Catalytic Subunit Alpha), the Purkinje Cell Protein 4 (PCP4) or the Synaptosome Associated 

Protein 25 (SNAP25) (Supplementary Figure 7 & Figure 3B), This has been further 

supported by a global tissue stratification issued from the comparison of gene co-expression 

patterns retrieved over the whole tissue (43 Spatial communities: Figure 3C). The use of 

higher compression factors (100x and 175x) did not affect the observed over-expression 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.09.374660doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.374660


8 
 

signature for PPP3CA, PCP4 or SNAP25, and increased their related read-counts and 

differential over-expression levels, in agreement with the agglomerative strategy used for 

generating super-Gexels (Supplementary Figure 7C & Figure 3B). Furthermore, it reduced 

the number of detected spatial gexel communities (13 and 8 spatial communities for 100x 

and 175x respectively), but retained the global digital tissue substructures (Figure 3C, E & 

G). Finally, the functional relevance of the various spatial gexel communities were confirmed 

by Gene Ontology enrichment analysis (ARCHS4 tissue database23) assessed for the 

described three compression factor conditions. (Figure 3D, F and H). 

A Similar analysis performed on the cortex map (reduction factor of 60x), allowed to identify 

spatially distinct over-expression signatures for factors like the gene Transthyretin (TTR) and 

the Calcium/Calmodulin Dependent Protein Kinase II Inhibitor 1 (CAMK2N1) 

(Supplementary Figure 8), Their gene expression association to the mouse cortex has 

been confirmed by gene ontology term analysis performed over the spatially co-expressed 

genes at different digital compression factor reduction levels (100x and 175x in addition to 

60x) (Supplementary Figure 8E-I). The extension of the co-expression pattern detection 

over all genes within the tissue map allowed to infer > 40 super-gexel communities on the 

cortex map issued from a 60x compression factor (Supplementary Figure 9A). A gene 

ontology analysis performed by MULTILAYER (ARCHS4 tissue database) revealed the 

enrichment for terms like cerebral cortex, superior frontal gyrus, dentate granule cell, motor 

neuron, neuronal epithelium, dorsal striatum, spinal cord (Supplementary Figure 9D). The 

use of a compression factor of 100x reduced the digital tissue stratification to 15 communities 

(Supplementary Figure 9B) and only to 7 communities when a 175x compression factor 

has been applied (Supplementary Figure 9C). In both cases, the major spatial tissue 

stratification remained visible, further supported by their associated Gene ontology terms 

(Supplementary Figure 9E-F). 

Overall, MULTILAYER allowed to stratify high-resolution but sparse ST maps, by the use of a 

super-Gexel agglomerative compression strategy.  
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Comparing multiple digitized tissue maps to infer common substructures  

A major question to address when counting with multiple tissues issued from related samples 

is whether their inferred substructures (herein referred as spatial communities) share 

commonalities enhancing our understanding of their molecular inter-relationship. Recently, 

Berglund and colleagues have generated ST maps from twelve  spatially separated biopsies 

issued from a cancerous prostate, for which a pathological annotation – based on a 

histological analysis (Gleason Grading) – has been performed (Figure 4A)24. To address this 

question, we have implemented within MULTILAYER a “batch mode”, allowing to process 

multiple ST maps, but in addition compare all biopsies on the basis of their stratified spatial 

communities. MULTILAYER inferred spatial community substructures within all 12 sections 

and revealed their significantly enriched disease-gene associations (Figure 4B and 

Supplementary Figure 10).  

Inter-tissue comparison was performed by constructing a graph, where spatial communities 

per tissue are associated to their relevant gene co-expression patterns. Such inter-tissue 

graph has been partitioned (Louvain methodology9) on 9 “classes”, highlighting the 

relationship between tissue substructures retrieved among all 12 biopsies (Figure 4C). In-

despite of the histological classification, MULTILAYER partitioning revealed that all tissues 

present molecular signatures related to prostate cancer progression on at least one 

substructure (Supplementary Figure 10, Figure 4C&D). For instance, tissue biopsies 

histologically classified as “normal glands” (P1.1, P2.1, P3.2, P4.1, P4.2 and P4.3), 

presented gene co-expression patterns associated to factors like the membrane cell-junction 

protein Claudin-4 (CLDN4; known to be over-expressed on primary and metastatic prostate 

cancer25), the growth/differentiation factor-15 (GDF-15; its over-expression has been 

associated with prostate cancer progression26), The gene ACPP coding for the prostatic acid 

phosphatase, associated to prostatic hyperplasia, but also observed in prostate carcinoma 

(as revealed on the human protein Atlas database), the Kallikrein Related Peptidase 2 

coding for a trypsin-like serine protease (KLK2; primarily expressed in prostate and its over-

expression is considered as a prognostic marker for prostate cancer risk27), or the activating 
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transcription factor 3 (ATF3), shown to be upregulated on oncogenic stress, and described 

as a tumor suppressor response notably by its inhibitory effect on androgen receptor 

signaling28 (Supplementary Figure 10). Similarly, the tissue P3.1, classified as 

“inflammation” has been stratified on 6 spatial community substructures, among them 4 

being associated to inter-tissue classes functionally enriched to cancer related terms (class 

2: communities 0, 1 and 2; class 1: community 3) (DisGeNET29 analysis; Figure 4D & F). 

This annotation is supported by the finding of gene co-expression patterns related to factors 

like the Fos protein FOSB (known to form transcriptionally active heterodimers with the Jun 

proteins, and reported as being over-expressed on prostate cancer cell lines30, but also on 

prostate cancer biopsies24) or the Kallikrein Related Peptidase 2,KLK2 (Figure 4E). 

Furthermore, while the “inflammation” classification has been supported by the local over-

expression of the gene Aquaporin-3 (AQP3; community “0”) (Figure 4E), the gene co-

expression analysis for this factor revealed the presence of other players within the same 

community, including the Serine Peptidase Inhibitor Kazal Type 1 (SPINK1), previously 

described as a marker for a molecular subtype of prostate cancer31 (Supplementary Figure 

10). Finally, the spatial communities “4” and “5” appeared devoid of major cancer related 

terms (which supports their association to class “3”), but still presenting molecular signatures 

related to prostate cancer incidence, like sever sepsis (Figure 4F). Indeed, community “4” 

present the gene co-expression signature related to the Colony Stimulating Factor 3 (CSF3); 

known to regulate the generation of infection-protective granulocytes and macrophages32, an 

aspect that is in support of the histological classification of this tissue as “inflammation”. 

Finally, the tissue biopsies histologically classified as cancer, did not systematically present 

all spatial communities related to cancer-related terms. Tissues P1.3 and P3.3 displayed 

some of their community substructures associated to class “3”, like P3.1 (histologically 

classified as “inflammation”), and P2.1 (histologically classified as “normal glands”), further 

supporting the necessity of molecular tissue stratification for better defining tumor 

progression.   
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Discussion  

While the use of single-cell transcriptomics for studying the molecular complexity of tissues is 

gaining in popularity, spatial transcriptomics strategies are anticipated to take-over in the 

following years, notably with efforts to democratize the access to the required physical 

supports. In fact, while ST is systematically considered a “non-single cell resolution” assay, in 

reality all single-cell “omics” approaches converge to aggregate multiple cell readouts into 

clusters to infer their functional relevance. Similarly, most of the computational algorithms 

applied on ST maps, process gexels as independent units (i.e. by applying clustering 

strategies classically used on single-cell “omics” assays), thus under-exploring the available 

spatial information. 

Inspired by the efforts on digital image processing relying on contiguous pixels aggregation, 

we developed MULTILAYER, a stand-alone package, which considers a ST map as an 

ensemble of gexels, representing a digital view of the processed tissue. Hence 

MULTILAYER, “rationalize” the spatial information, by analyzing the presence of contiguous 

gexels presenting the same gene expression behavior, leading to the stratification of the 

digital map into molecular tissue substructures. 

MULTILAYER provides for the first-time a self-supervised strategy for processing ST maps. It 

highlights relevant over-expressed gene patterns, which leads to spatial tissue partitioning 

and infers their functionally relevant Gene ontology associations. Due to its “MULTILAYER” 

architecture, it provides means to process all types of ST maps, including high-resolution 

data. Furthermore, it provides means for comparing multiple ST maps, an aspect that is 

currently limited by the few studies presenting the required data, but is anticipated of extreme 

interest for instance in the context of developmental or molecular diagnostic studies.    

Overall, we anticipate that MULTILAYER corresponds to the first version of algorithms 

dedicated to process “molecular tissues”, which combined with other strategies like single-

cell “omics” might allow to reconstitute digital maps of all organs within the human body, but 

also contribute to the development of molecular diagnostics strategies to be applied within 

the future progress on personalized medicine. 
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Figure legends 
 
Figure 1. The Molecular Tissue Digitalization Analyzer (MULTILAYER) workflow. 

MULTILAYER requires as input spatial transcriptomics matrices composed by spatial 

coordinates harboring read-counts per genes. Each of such coordinates are defined as 

gexels (gene expression elements) in analogy to pixels composing digital images. At first, 

MULTILAYER corrects for differences on total read-counts per gexel since such variations 

are considered as artifactual. Normalized matrices are used for computing differential gene 

expression relative to the average expression over the whole tissue. Similar to digital image 

processing, an agglomerative strategy is applied to reveal gene patterns defined by 

contiguous gexels, which are then compared to reveal spatial gene co-expression patterns, 

expected to host functionally relevant information. A global comparison of all gene co-

expression patterns leads to the partition of the initial spatial transcriptomics map into 

functionally relevant spatial community regions. 

 

Figure 2. Inferring Functionally relevant tissue substructures with MULTILAYER. (A) 

MULTILAYER normalization of spatial transcriptomics data issued from developing human 

heart tissue (9 post-conception weeks; M. Asp et al.). (B) Differential gene expression 

signature (relative to the average behavior within the tissue) for the genes ACTA2, ELN, TTN 
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and NPPA as revealed after normalization.  (C) Spatial gene co-expression analysis 

performed by MULTILAYER for ACTA2 and TTN. Gexels colored in red corresponds to the 

location of the target genes (ACTA2 or TTN); while the other colored gexels reveals their co-

expression pattern (Tanimoto similarity index). (D) Spatial community tissue stratification 

issued from a gene co-expression analysis performed over the whole tissue and all over-

expressed genes. The developing human heart tissue map has been stratified on 5 spatial 

communities (from “0” to “4”), from which two of them present a highly redundant spatial 

localization pattern (“2” & “3”).  (E) Gene ontology analysis (ARCSH4 tissue database) for 

each of the spatial communities retrieved within the developing human heart tissue, as 

performed by MULTILAYER. (F) MULTILAYER normalization of spatial transcriptomics data 

issued from pancreatic ductal adenocarcinoma tissue (Moncada et al.). (G) Differential gene 

expression signature for the genes MUC5B, S100A6 and PRSS1 after tissue normalization. 

(H) Spatial gene co-expression analysis performed by MULTILAYER for MUC5B, S100A6 

and PRSS1. Gexels colored in red corresponds to the location of the target genes; while the 

other colored gexels reveals their co-expression pattern (Tanimoto similarity index). (I) 

Composite view of the 6 spatial communities detected on the pancreatic adenocarcinoma 

tissue from a gene co-expression analysis performed over the whole tissue and all over-

expressed genes. (J) Gene ontology analysis (DisGeNET database) for each of the spatial 

communities displayed in (I), as performed by MULTILAYER. ARCHS4 tissues: GO terms 

database issued from Massive Mining of Publicly Available RNA-seq Data from Human and 

Mouse (Lachmann A. et al; Nat. Comm. 2018). DisGeNET: Disease-Gene association 

discovery platform (Piñero J. el al; NAR 2020).      

 
Figure 3. high-resolution hippocampus spatial transcriptomics map analyzed by 

MULTILAYER. (A) Raw hippocampus Slide-seq map displaying the presence of at least one 

read-count per position. (B) Differential expression spatial signatures associated to the 

factors PPP3CA, PCP4 and SNAP25, after applying a compression factor (c.f.) of 60x and 

100x respectively. (C) Spatial communities revealed on hippocampus ST map after applying 
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a compression factor of 60x. MULTILAYER compressor reduced the complexity of the 

original map (displayed in A) to a grid composed by 110x110 super-Gexels which has been 

processed by MULTILAYER. (D) Gene ontology enrichment analysis performed on the 43 

spatial communities displayed in (C). (E & G) Spatial communities revealed on hippocampus 

ST map after applying a compression factor (c.f.) of 100x and 175x respectively. (F & H) 

Gene ontology enrichment analysis performed on the spatial communities displayed in (E) & 

(G) respectively. ARCHS4 tissues: GO terms database issued from Massive Mining of 

Publicly Available RNA-seq Data from Human and Mouse (Lachmann A. et al; Nat. Comm. 

2018).  

 

Figure 4. Comparing multiple prostate cancer tissue biopsies to infer common 

molecular substructures. (A) Skim representing the spatial location of 12 tissue biopsies 

collected from a cancerous prostate and colored in agreement to the histological 

classification, as described by Berglund et al. (B) Spatial transcriptome maps issued from the 

biopsies illustrated in (A) and processed by MULTILAYER to infer spatial community 

molecular substructures (color-coded; NA: Non assigned). (C) Inter-tissue comparison 

performed by MULTILAYER (Batch-mode) organizing all spatial communities (round nodes) 

around 9 “Classes” (green hexagonal nodes). In addition, the tissue biopsy of origin is 

displayed (rounded-square nodes). Nodes are colored in agreement to the histological 

classification described by Berglund et al. (D) Relevant gene-disease association inferred for 

the spatial community classes displayed in (C). (E) Example of gene co-expression patterns 

detected on tissue P3.1 at different spatial communities. Gexels in red correspond to the 

query gene, while others correspond to gene co-expression similarity patterns (Tanimoto 

index in percent). (F) Relevant gene-disease association analysis for each of the spatial 

communities retrieved on tissue P3.1. The corresponding spatial community classes are also 

displayed (light blue). DisGeNET: Disease-Gene association discovery platform; Gs: 

Gleason Score for cancer staging; Com: community.  
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STAR Methods  

Normalization 

MULTILAYER corrects for differences on total read-counts within gexels since such 

variations are considered technical artifacts issued from the sample preparation. For it, 

quantile normalization methodology (previously described for correcting technical variations 

within RNA-seq assays6) is applied as following: a pseudo-count of 1 is added to all gexels to 

avoid handling null values. Read-counts per gene within gexels are sorted on the basis of 

their frequency, then the average read-counts across all ranked gexels is computed based 

on their raking order (i.e. average within the highest, middle or lower values respectively). 

Finally, the average read-counts are incorporated instead of the original counts and the read-

counts distribution is reorganized as initially. As consequence, when adding all read-counts 

per gexel after normalization, a constant value is retrieved across all gexels, corresponding 

to an ideal situation in which all coordinates within the digitized tissue are composed by the 

same sequencing coverage levels.  

Spatial Differential gene expression 

Under the hypothesis that the tissue under study is not homogenous, MULTILAYER 

performs a differential expression analysis for identifying over/under-expressed genes 

relative to the global behavior within the tissue. For it, the average of the read counts per 

gene within the tissue is computed, then the read counts per gene within gexels are 

expressed relative to the average value (log2). Differentially expressed genes within gexels 

are defined by a threshold value of two folds (1 or -1 in log2) as a default parameter. As part 

of the “differential expression” panel, MULTILAYER displays a raking of induced or 

repressed genes based on the number of gexels within the tissue, allowing to identify most 

relevant over-expressed genes in an intuitive manner.  

Gene expression pattern detection 
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Like in digital image processing, MULTILAYER applies an iterative agglomerative 

strategy(sklearn.cluster.AgglomerativeClustering) over contiguous gexels associated to a 

given upregulated gene. At the end of the process, gene patterns presenting a user-defined 

minimal number of contiguous gexels are retained for downstream processing (default 

threshold: 10 contiguous gexels). The parameters in use within the agglomerative clustering 

method are: number of clusters (n_clusters): None; affinity: Euclidean; linkage : single; 

distance threshold (distance_threshold) : 1.5. 

Gene co-expression patterns similarity 

Having detected gene patterns over the whole tissue, MULTILAYER compares their 

localization to assess their relevant spatial co-expression. For it, two similarity metrics are 

implemented on MULTILAYER: Tanimoto/Jaccard and Dice/Sorensen similarity index. 

Specifically, gene co-expression pattern similarity is evaluated as following: 

Tanimoto index =GA ∩ GB / GA ∪ GB 

Dice index = 2* (GA ∩ GB) / (GA ∪ GB) 

where GA & GB correspond to the number of gexels associated to Gene A and Gene B 

respectively. All figures presented on this article were obtained using Tanimoto / Jaccard 

similarity index. 

Within the gene co-expression patterns panel of MULTILAYER, over-expressed gene 

patterns are ranked on the basis of the number of contiguous gexels. Furthermore, the gene 

co-expression similarity analysis display gexels colored on the basis of their co-expression 

similarity index, allowing to visualize the extent of co-expressed patterns with the queried 

gene. In addition, MULTILAYER provides the possibility to perform a Gene Ontology 

enrichment analysis on the basis of their inferred co-expressed genes (see below).   

Tissue communities’ identification by gene co-expression patterns partitioning 
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Gene co-expression patterns detected over the whole tissue are represented within 

MULTILAYER as a major network composed by nodes representing the assessed gene 

patterns and edges revealing their degree of similarity. This Complex graph is stratified in  

high modularity community partitions by applying the Louvain hierarchical clustering 

algorithm9. Due to the non-deterministic nature of the Louvain algorithm, MULTILAYER 

partitions the graph multiple times (15 events by default), then it selects the most frequent 

community partitions outcome (the frequency of the community partitions are displayed in the 

terminal), for their display within the tissue map where gexels are colored in agreement to 

their associations to the inferred communities. In addition, the communities’ panel within 

MULTILAYER displays the list of over-expressed genes composing the patterns associated 

to the illustrated communities  

Arguments for Louvain partitioning: (i) Weight: allows to include the similarity index computed 

within the co-expressed genes as a weight argument; (ii) Multiple iterations: Allows to 

perform 15 consecutive partitioning with the Louvain algorithm and select the most 

represented for the downstream analyses. 

Gene ontology analysis 

MULTILAYER counts with a Gene Ontology enrichment analysis implemented within the 

“gene co-expression patterns detection” and “Gexel communities” panels. For it, a collection 

of GO terms has been collected from the Enrichr libraries suite. MULTILAYER infers the GO 

terms enrichment confidence by comparing the list of genes issued from the gene co-

expression patterns detection or within a spatial community, with those retrieved within the 

GO database (one-sided Fisher Exact test).  

As outcome, MULTILAYER provides a confidence barplot per enriched GO terms, as well as 

a heatmap matrix displaying the list of genes associated to the enriched GO terms. 

MULTILAYER Compressor ad-hoc module 
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Multilayer Compressor is an ad-hoc module for generating super-Gexel maps by aggregating 

the raw read counts of contigous gexels prior processing. This strategy allows to convert a 

larger matrix, like those retrieved in the case of high-resolution Slide-Seq data20, to a 

compressed format, counting with less number of gexels within the grid but with an enhanced 

number of read-counts per gexel. According to the user-defined compression factor 

parameters (number of gexels on X & Y coordinates), Multilayer Compressor transforms an 

input data (3 columns format composed by gexel coordinate, Gene ID and read counts per 

gene), into a data-frame compatible with MULTILAYER (matrix format composed by gexel 

coordinates on columns and Gene ID on rows). We recommend to use the MULTILAYER 

Compressor when raw ST maps are bigger than 120x120 gexel grids.   

 

Data availability 

All processed spatial transcriptomics data within this article were obtained from public 

repositories and converted into a uniform format compatible with MULTILAYER requirements. 

Human heart development data generated by Asp. M. et al10; and prostate cancer data 

generated by Berglund et al24; were obtained from the Spatial Research portal. 

Hyppocampus and Cortex high-resolution Slide-seq maps20 were obtained from the 

SpatialDB database22. Pancreatic ductal adenocarcinoma data generated by Moncada et 

al33; were obtained from GEO database (GSE111672). Compatible MULTILAYER versions of 

these data are accessible via https://github.com/SysFate/MULTILAYER.  

 

Code availability 

MULTILAYER and MULTILAYER Compressor are available at 

https://github.com/SysFate/MULTILAYER.   
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