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Abstract

Molecular dynamics (MD) simulations are widely used to monitor time-resolved motions
of biomacromolecules, although it often remains unknown how closely the conformational
dynamics correspond to those occurring in real life. Here, we used a large set of open-access
MD trajectories of phosphatidylcholine (PC) lipid bilayers to benchmark the conformational
dynamics in several contemporary MD models (force fields) against nuclear magnetic resonance
(NMR) data available in the literature: effective correlation times and spin-lattice relaxation
rates.

We found none of the tested MD models to fully reproduce the conformational dynamics.
That said, the dynamics in CHARMM36 and Slipids are more realistic than in the Amber
Lipid14, OPLS-based MacRog, and GROMOS-based Berger force fields, whose sampling of
the glycerol backbone conformations is too slow. The performance of CHARMM36 persists
when cholesterol is added to the bilayer, and when the hydration level is reduced. However,
for conformational dynamics of the PC headgroup, both with and without cholesterol, Slipids
provides the most realistic description, because CHARMM36 overestimates the relative weight
of ∼1-ns processes in the headgroup dynamics.

We stress that not a single new simulation was run for the present work. This demonstrates
the worth of open-access MD trajectory databanks for the indispensable step of any serious MD
study: Benchmarking the available force fields. We believe this proof of principle will inspire
other novel applications of MD trajectory databanks, and thus aid in developing biomolecular
MD simulations into a true computational microscope—not only for lipid membranes, but for
all biomacromolecular systems.
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1 Introduction

Ever since the conception of Protein Data Bank
(PDB)1,2 and GenBank,3,4 open access to stan-
dardised and searchable pools of experimental
data has revolutionized scientific research. Con-
stantly growing and improving in fidelity due
to collaborative effort,5–8 the now hundreds of
databanks9 fuel the data-driven development of
biomolecular structure determination,10 refine-
ment,11 prediction,12 and design13 approaches,
as well as development of drugs,14,15 materi-
als,16,17 and more.18,19 It is clear that open
data enables scientific progress that is far be-
yond the resources of a single research group
or institute. Consequently, the call for pub-
lic availability and conservation of data has ex-
tended to molecular dynamics (MD) simulation
trajectories of biomolecules,20–22 and the dis-
cussion on how and by whom such databanks
for dynamic structures would be set up is cur-
rently active.23–26 While there are currently no
general MD databanks in operation, individ-
ual databanks are accepting contributions on
nucleic acid,27 protein/DNA/RNA,28 cyclodex-
trin,29 G-protein-coupled receptor,30 and lipid
bilayer31 simulations.

Since 2013, the NMRlipids Project (nmrlipids.
blogspot.fi) has promoted a fully open col-
laboration approach, where the whole sci-
entific research process—from initial ideas
and discussions to analysis methods, data,
and publications—is all the time publicly
available.32 While its main focus has been
on conformational ensembles of different
lipid headgroups and on ion binding to
lipid membranes,32–34 the NMRlipids Project
has also built a databank31 (zenodo.org/
communities/nmrlipids) containing hundreds
of atomistic MD trajectories of lipid bilayers
and indexed at nmrlipids.fi.

MD databanks are expected to be particularly
relevant for disordered biomolecules, such as
biological lipids composing cellular membranes
or intrinsically disordered proteins. These, in
contrast to folded proteins or DNA strands,
cannot be meaningfully described by the co-
ordinates of a single structure alone. Realis-
tic MD simulations, however, can provide the

complete conformational ensemble and dynam-
ics of such molecules, as well as enable studies of
their biological functions in complex biomolec-
ular assemblies. Unfortunately, the current MD
force fields largely fail to capture the conforma-
tional ensembles of lipid headgroups and dis-
ordered proteins.32,34–37 Therefore, before they
can be used to draw conclusions, the quality
of MD simulations must always be carefully
assessed against structurally sensitive experi-
ments. For lipid bilayers, such evaluation is
possible against NMR and scattering data.38

Here, we demonstrate the use of a pre-
existing, publicly available set of MD trajec-
tories to rapidly evaluate the fidelity of phos-
pholipid conformational dynamics in state-of-
the-art force fields. The rate at which individ-
ual molecules sample their conformational en-
semble is traditionally used to assess if a given
MD simulation has converged. Going beyond
such practicalities, realistic dynamics are par-
ticularly desired for the intuitive interpretation
of NMR experiments sensitive to molecular mo-
tions,39 as well as to understand the dynamics
of biological processes where molecular defor-
mations play a rate-limiting role, such as mem-
brane fusion.40 The here presented comprehen-
sive comparison of dynamics between experi-
ments and different MD models at various bi-
ologically relevant compositions and conditions
is thus likely to facilitate the development of
increasingly realistic phospholipid force fields.

Above all, our results demonstrate the power
of publicly available MD trajectories in creating
new knowledge at a lowered computational cost
and high potential for automation. We believe
that this paves the way for novel applications of
MD trajectory databanks, as well as underlines
their usefulness—not only for lipid membranes,
but for all biomolecular systems.

2 Methods

Lipid conformational dynamics in
NMR data.

We analyzed the veracity of phosphatidyl-
choline (PC) lipid dynamics in MD based on
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two quantities that are readily available from
published39,41–43 13C-NMR experiments and di-
rectly quantifiable from atomistic MD simula-
tions: The effective C–H bond correlation times
τe, and the spin-lattice relaxation rates R1.

Effective C–H bond correlation times τe.

In a lipid bilayer in liquid crystalline state, each
individual lipid samples its internal conforma-
tional ensemble and rotates around the mem-
brane normal. Lipid conformational dynamics
are reflected in the second order autocorrelation
functions of its C–H bonds

g(τ) = 〈P2 (~µ(t) · ~µ(t+ τ))〉, (1)

where the angular brackets depict time average,
~µ(t) is the unit vector in the direction of the
C–H bond at time t, and P2 is the second order
Legendre polynomial P2(x) = 1

2
(3x2 − 1). To

analyze the internal dynamics of lipids, the C–H
bond autocorrelation function is often written
as a product

g(τ) = gf(τ)gs(τ), (2)

where gf(τ) characterizes the fast decays ow-
ing to, e.g., the internal dynamics and rota-
tion around membrane normal, and gs(τ) the
slow decays that originate from, e.g., lipid dif-
fusion between lamellae with different orienta-
tions and periodic motions due to magic an-
gle spinning conditions (Fig. 1). Ferreira et
al.41 have experimentally demonstrated that for
all phospholipid carbons the motional correla-
tion times contributing to gf are well below
µs, and to gs well above 100 µs. This sepa-
ration of time scales gives rise to the plateau
g(1µs . τ . 100µs) = S2

CH illustrated in
Fig. 1. SCH is the C-H bond order parameter

SCH =
1

2
〈3 cos2 θ(t)− 1〉, (3)

where θ(t) is the angle between the C–H bond
and the bilayer normal. SCH can be indepen-
dently measured using dipolar coupling in 13C
or quadrupolar coupling in 2H-NMR experi-
ments. Knowing the set of SCH for all the C–H
bonds in a lipid is highly useful in order to eval-

Figure 1: C–H bond autocorrelation function
g(τ). (A) Idealised illustration of the fast
(white background) and the slow (green) mode
of the correlation function in solid-state NMR
experiments. The fast mode decays to a plateau
on which g(τ) = S2

CH, while the slow mode
gives the final descent to zero. Oscillations
at the slow mode region are due to magic an-
gle spinning. (B) Typical g(τ) obtained from
an MD simulation, showing the decay towards
S2
CH. The gray area under the curve is equal to

(1− S2
CH)τe.

uate its conformational ensemble.38

As SCH describe the conformational ensem-
ble of the lipid, the fast-decaying component gf
of the C–H bond autocorrelation function intu-
itively reflects the time needed to sample these
conformations. The complex internal dynam-
ics containing multiple timescales can be con-
veniently summarized using the effective corre-
lation time

τe =

∫ ∞
0

gf(τ)− S2
CH

1− S2
CH

dτ, (4)

which is related to the gray-shaded area below
the correlation function in Fig. 1. The τe detect
essentially an average over all the time scales
relevant for the lipid conformational dynamics.
Their relation to process speeds is intuitive: In-
crease of long-lived correlations increases τe.

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 9, 2020. ; https://doi.org/10.1101/2020.11.09.374850doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.374850
http://creativecommons.org/licenses/by-nc-nd/4.0/


Spin-lattice relaxation rates R1.

The C–H bond dynamics relate to R1, the spin-
lattice relaxation rate, through

R1 =
d2CHNH

20
[j(ωH − ωC)

+3j(ωC) + 6j(ωH + ωC)] ,
(5)

where ωH is the 1H and ωC the 13C-NMR Lar-
mor frequency, and NH the number of hydro-
gens covalently bonded to the carbon. The rigid
dipolar coupling constant dCH ≈ −2π × 22 kHz
for the methylene bond. The spectral density
j(ω) is given by the Fourier transformation

j(ω) = 2

∫ ∞
0

cos(ωτ)g(τ) dτ (6)

of the C–H bond autocorrelation function g(τ)
(Eq. (1)). Clearly the connection between
R1 and molecular dynamics is not straightfor-
ward; the magnitude of R1 does, however, re-
flect the relative significance of processes with
timescales near the inverse of ωH and ωC. These
two frequencies depend on the field strength
used in the NMR experiments: Typically R1

is most sensitive to motions with time scales
∼0.1–10 ns. (In our experimental data39,41–43

ωC = 125 MHz and ωH = 500 MHz, which
gives (2π × 125 MHz)−1 = 1.3 ns and (2π ×
625 MHz)−1 = 0.25 ns.) A change in given
R1, therefore, indicates a change in the rela-
tive amount of processes occurring in a window
around the sensitive timescale; inferring also
the direction to which the processes changed
(speedup/slowdown) requires measuring R1 at
various field strengths.

Data acquisition and analysis.

All the experimental quantities used in
this work were collected from the literature
sources39,41–43 cited at the respective figures.

The simulation trajectories were collected
from the general-purpose open-access reposi-
tory Zenodo (zenodo.org), with the major-
ity of the data originating from the NMR-
lipids Project32,33 (nmrlipids.blogspot.fi).
The trajectories were chosen by hand based on

Table 1: Analyzed open-access MD trajectories
of pure POPC lipid bilayers at full hydration.
Note that the temperature varied across these
openly available simulation data, but in no case
was T lower than in the experiment. Thus, as
dynamics slows down when temperature drops,
any overestimation of τe by MD (as typically
seen in Fig. 2) would get worse if the simula-
tions were done at the experimental 298 K.

force field Nl
a Nw

b T c(K) tanal
d(ns) filese

Berger-POPC-0744 256 10240 300 300 [45]

CHARMM3646 256 8704 300 300 [47]

MacRog48 128 5120 300 500 [49]

Lipid1450 72 2234 303 50 [51]

Slipids52 200 9000 310 500 [53]

ECC54 128 6400 300 300 [55]

aNumber of POPC molecules.
bNumber of water molecules.
cSimulation temperature.
dTrajectory length used for analysis.
eReference for the openly available simulation files.

how well the simulation conditions matched the
available experimental data (lipid type, tem-
perature, cholesterol content, hydration), and
how precisely one could extract the quanti-
ties of interest from the trajectory (length of
simulation, system size). Table 1 lists the
chosen trajectories of pure POPC (1-palmit-
oyl-2-oleoyl-glycero-3-phosphocholine) bilayers
at/near room temperature and at full hydra-
tion; Table 2 lists the trajectories with choles-
terol; and Table 3 those with varying hydration.
Full computational details for each simulation
are available at the cited Zenodo entry.

The trajectories were analyzed using in-
house scripts. These are available on GitHub
(github.com/hsantila/Corrtimes/tree/
master/teff_analysis), along with a Python
notebook outlining an example analysis run.
To enable automated analysis of several force
fields with differing atom naming conventions,
we used the mapping scheme developed within
the NMRlipids Project to automatically recog-
nise the atoms and bonds of interest for each
trajectory.

After downloading the necessary files from
Zenodo, we processed the trajectory with Gro-
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Table 2: Analyzed open-access MD trajectories
of cholesterol-containing POPC bilayers at full
hydration.

force field POPC/cholesterol cchol
a Nchol

b Nl
c Nw

d T e(K) tanal
f(ns) filesg

Berger-POPC-0744 0% 0 128 7290 298 50 [56]
/Höltje-CHOL-1357,58 50% 64 64 10314 298 50 [59]

CHARMM3646 0% 0 200 9000 310 500 [60]
/CHARMM3661 50% 200 200 18000 310 500 [62]

MacRog48 0% 0 128 6400 310 500 [63]
/MacRog48 50% 64 64 6400 310 500 [63]

Slipids52 0% 0 200 9000 310 500 [53]
/Slipids64 50% 200 200 18000 310 500 [53]

aBilayer cholesterol content (mol %).
bNumber of cholesterol molecules.
cNumber of POPC molecules.
dNumber of water molecules.
eSimulation temperature.
fTrajectory length used for analysis.
gReference for the openly available simulation files.

Table 3: Analyzed open-access MD trajecto-
ries of PC lipid bilayers under varying hydra-
tion level.

force field lipid nw/l

a Nl
b Nw

c T d(K) tanal
e(ns) filesf

Berger-POPC-0744 POPC 40 256 10240 300 300 [45]
POPC 7 128 896 298 60 [65]

Berger-DLPC-1366 DLPCg 24 72 1728 300 80 [67]
DLPCg 16 72 1152 300 80 [68]
DLPCg 12 72 864 300 80 [69]
DLPCg 4 72 288 300 80 [70]

CHARMM3646 POPC 40 128 5120 303 140 [71]
POPC 34 128 5120 300 500 [49]
POPC 31 72 2232 303 20 [72]
POPC 15 72 1080 303 20 [73]
POPC 7 72 504 303 20 [74]

MacRog48 POPC 50 288 14400 310 40 [75]
POPC 25 288 7200 310 50 [75]
POPC 15 288 4320 310 50 [75]
POPC 10 288 2880 310 50 [75]
POPC 5 288 1440 310 50 [75]

aWater/lipid molar ratio.
bNumber of lipid molecules.
cNumber of water molecules.
dSimulation temperature.
eTrajectory length used for analysis.
fReference for the openly available simulation files.
g1,2-dilauroyl-sn-glycero-3-phosphocholine.

macs gmx trjconv to make the molecules
whole. For the united atom Berger model, hy-
drogens were added using the Gromacs 4.0.2
tool g protonate. We then calculated the
SCH (Eq. (3)) with the OrderParameter.py

script that uses the MDanalysis76,77 Python
library. The C–H bond correlation func-
tions g(τ) (Eq. (1)) were calculated with Gro-
macs 5.1.478 gmx rotacf (note that on MD
timescales gs = 1 so that g = gf) after which the
SCH were used to normalize the gf to obtain the
reduced and normalized correlation function

g′f(τ) =
gf(τ)− S2

CH

1− S2
CH

, (7)

that is, the integrand in Eq. (4).
The effective correlation times τe were then

calculated by integrating g′f(τ) from τ = 0 until
τ = t0. Here, t0 is the first time point at which
g′f reached zero: t0 = min{t | g′f(t) = 0}. If g′f
did not reach zero within tanal/2, the τe was not
determined, and we report only its upper and
lower estimates.

To quantify the error on τe, we first estimate
the error on g′f(τ), where we account for two
sources of uncertainty: gf(τ) and S2

CH. Perform-
ing linear error propagation on Eq. (7) gives

∆g′f(τ) =

∣∣∣∣ 1

1− S2
CH

∣∣∣∣∆gf(τ)

+∣∣∣∣∣2 (gf(τ)− 1)SCH

(1− S2
CH)

2

∣∣∣∣∣∆SCH.

(8)

Here the ∆SCH was determined as the standard
error of the mean of the SCH over the Nl in-
dividual lipids in the system.32 Similarly, we
quantified the error on gf(τ) by first determin-
ing the correlation function gmf (τ) for each in-
dividual lipid m over the whole trajectory, and
then obtaining the error estimate ∆gf(τ) as the
standard error of the mean over the Nl lipids.
Importantly, this gives an uncertainty estimate
for gf(τ) at each time point τ .

To obtain the lower bound on τe, we integrate
the function g′f(τ)−∆g′f(τ) over time from τ = 0
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until τ = tl. Here

tl = min

{
{t | g′f(t)−∆g′f(t) = 0} , tanal

2

}
. (9)

That is, tl equals the first time point at which
the lower error estimate of g′f reached zero; or
tl = tanal/2, if zero was not reached before that
point.

To obtain the upper error estimate on τe, we
first integrate the function g′f(τ) + ∆g′f(τ) over
time from τ = 0 until tu = min {t0, tanal/2} .
Note, however, that this is not yet sufficient,
because there could be slow processes that our
simulation was not able to see. Although these
would contribute to τe with a low weight, their
contribution over long times could still add up
to a sizable effect on τe. That said, it is feasi-
ble to assume (see Fig. 1A) that there are no
longer-time contributions to gf than something
that decays with a time constant of 10−6 s. We
use this as our worst case estimate to assess the
upper bound for τe, that is, we assume that all
the decay of gf from the time point tu onwards
comes solely from this hypothetical slowest pro-
cess that decays with a time constant of 10−6 s.
The additional contribution to the upper bound
for τe then reads

(g′f(tu) + ∆g′f(tu))

×
∫ 10−6 s

tu

exp

(
−τ − tu

10−6 s

)
dτ︸ ︷︷ ︸

=
(
1−exp

(
tu−10−6 s

10−6 s

))
10−6 s

. (10)

The R1 rates were calculated using Eq. (5).
The spectral density j(ω) was obtained from
the normalized correlation function g′f by fitting
it with a sum of 61 exponentials

g′f(τ) ≈
61∑
i=1

αie
−τ/τi , (11)

with logarithmically spaced time-scales τi rang-
ing from 1 ps to 1µs, and then calculating the
spectral density of this fit based on the Fourier

transformation41

j(ω) = 2(1− SCH)
61∑
i=1

αi
τi

1 + ωτi
. (12)

The R1 rate of a given C–H pair was first calcu-
lated separately for each lipid m (using Eq. (5)
with NH = 1, and jm(ω) obtained for the nor-
malized correlation function g′f

m). The result-
ing Nl measurements per C–H pair were then
assumed independent: Their mean gave the R1

rate of the C–H pair, and standard error of the
mean its uncertainty. The total R1 rate of a
given carbon was obtained as a sum of the R1

rates of its C–H pairs. When several carbons
contribute to a single experimental R1 rate due
to the overlapping peaks (for example in C2 car-
bon in the acyl chains and the γ carbons), the
R1 from simulations was obtained as an aver-
age over carbons with overlapping peaks. The
segment-wise error estimates were obtained by
standard error propagation, starting from the
uncertainties of the R1 rates of the C–H pairs.

To gain some qualitative insight on the time
scales at which the main contributions to the
R1 rates arise, we also calculated ’cumulative’
R1 rates, R1(τ), which contained those terms of
the sum in Eq. (12) for which τi < τ . Note that
here the g′f averaged over lipids was used; there-
fore, the ’cumulative’ R1(τ →∞) does not nec-
essarily have exactly the same numerical value
as the actual R1.

Finally, we note that the fit of Eq. (11) pro-
vides an alternative to estimating τe, because

τe =

∫ ∞
0

g′f(τ) dτ ≈
∑
i

αiτi. (13)

When the simulation trajectory is not long
enough for the correlation function to reach the
plateau, integrating g′f gives a lower bound esti-
mate for τe, while the sum of Eq. (13) includes
also (some) contribution from the longer-time
components via the fitting process. However,
in practice the fit is often highly unreliable in
depicting the long tails of the correlation func-
tion, and thus we chose to quantify τe using the
area under g′f , and estimate its uncertainty as
detailed above.
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3 Results and Discussion

Using open-access MD simulation trajectories,
we benchmark phospholipid conformational dy-
namics in six MD force fields. We start with
pure POPC bilayers in their liquid crystalline
fully hydrated state (see Table 1 for simulation
details and Fig. 2 for the data), and then pro-
ceed to check the changes in dynamics when
cholesterol is added to the bilayer (Table 2 and
Fig. 4) and when the hydration level is reduced
(Table 3 and Fig. 5). Our yardsticks are the
effective correlations times τe (Eq. (4)) and the
R1 rates (Eq. (5)) measured at 125 MHz 13C
(500 MHz 1H) Larmor frequency; an MD model
with correct rotational dynamics in a window
around ∼1 ns will match the experimental R1

rates, whereas the τe reflect all the sub-µs time
scales (Fig. 1).

Pure POPC at full hydration:
Slipids and CHARMM36 repro-
duce τe excellently.

The top panels of Fig. 2 compare the effective
correlation times τe obtained for fully hydrated
POPC bilayers in experiments (black) and in
six different MD force fields (color). We see
that—as implied by the discussion leading to
Eq. (10)—sub-µs MD simulations typically lead
to asymmetric error bars on τe; if these open-
access trajectories were extended, the τe values
would more likely increase than decrease. Qual-
itatively, every force field captures the general
shape of the τe profile: Dynamics slows down
towards the glycerol backbone in both the head-
group and the tails.

Quantitatively, most MD simulations tend
to produce too slow dynamics in the glyc-
erol region (Fig. 2). This is consistent with
previous results for the Berger model,41 and
with the insufficient conformational sampling of
glycerol backbone torsions observed in 500-ns-
long CHARMMc32b279,80 simulations of a PC
lipid.81

The best overall τe-performance is seen in
Slipids and in particular CHARMM36 (Fig. 2).
This is in line with CHARMM36 reproducing
the most realistic conformational ensembles for

the headgroup and glycerol backbone among
the MD simulation force fields benchmarked
here.32,34 Indeed, it is important to keep in
mind that the conformational ensembles greatly
differ between force fields and are not exactly
correct in any of them.32,34 Consequently, the
calculated τe times and R1 rates depict the dy-
namics of sampling a somewhat different and
incorrect phase space for each model. To this
end, we try to avoid overly detailed discussion
on the models and rather concentrate on com-
mon and qualitative trends. That said, there
are a few carbon segments in the data for which
the experimental order parameters, R1, and τe
are all (almost) reproduced by simulations, sug-
gesting that both the conformational ensemble
and the dynamics are correctly captured by MD
in these cases. For example, Slipids performs
well at the β and α, and CHARMM36 at the
g3, g2, and C2 segments. These are, however,
exceptions.

An excellent τe may be accompa-
nied by a poor R1, or vice versa.

The lower panels of Fig. 2 compare the ex-
perimental and simulated R1 rates under the
same conditions that were used for the τe above.
Notably, there are several instances where the
R1 comparison distinctly differs from what was
seen for τe.

There are cases where a matching R1 is ac-
companied by a larger-than-experimental τe.
MacRog for the β, α, and g1 segments provides
a prominent example of this. Such a combina-
tion suggests that MD has the correct relative
weight of 1-ns-scale dynamics, but has too slow
long-time dynamics.

There are also cases where τe matches exper-
iments, but R1 does not, such as the β and α
segments in CHARMM36. Therein a cancella-
tion of errors occurs in τe: The overestimation
of the relative weight of 1-ns-scale dynamics is
compensated by wrong dynamics at the other
time scales. As CHARMM36 overall performs
rather well for C–H bond order parameters, R1,
and τe, we proceed to study this shortcoming on
the headgroup R1 rates in some more detail.
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Figure 2: Effective correlation times (τe, top) and R1 rates (bottom) in experiments39 (black) and
MD simulations (colored) of POPC bilayers in Lα phase under full hydration. Inset shows the
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Conformational dynamics of PC
headgroup segments in MD.

Figure 3A zooms in on the headgroup (γ, β,
α) segments, whose τe were not clearly visi-
ble on the scale of Fig. 2. We see that for
γ, no force field provides both τe and R1, but
Slipids comes closest. For β and α, Slipids cap-
tures both measurables near perfectly. In other
words, among the benchmarked force fields
Slipids gives the most realistic description of
the conformational dynamics in the headgroup
region. CHARMM36, e.g., overestimates (R1)
the relative weight of timescales around ∼1 ns.

To investigate closer how the differences be-
tween force fields arise, Fig. 3B shows the ’cu-
mulative’ R1(τ), where the ranges of steepest
increase indicate time scales that most strongly
contribute to R1 rates.

For the γ segment, Fig. 3B shows that for
models that overestimate the R1 rate (MacRog,
CHARMM36, and Slipids, see Fig. 3A) the ma-
jor contribution to R1 arises at τ > 50 ps,
whereas for models that underestimate R1

(Lipid14 and ECC) the major contribution
comes from τ < 50 ps. This also manifests
in the distribution of fitting weights (αi in
Eq. (11)) in Fig. 3C: The later non-zero weights
occur, the larger is the resulting R1 of γ.

For the β and α segments, Fig. 3B shows
that the main contribution to R1 rates arises
from processes between 100 ps and 1 ns.
CHARMM36 has the largest relative weights
of all models in this window (Fig. 3C), which
explains its overestimation of R1 of β and α.
All the other models have R1 rates close to
experiments, but only Slipids simultaneously
gives also the τe correctly. Notably, Slipids has
its largest weights at τ < 100 ps. Indeed, the
considerable weights at short (< 10 ps) time
scales in all models except MacRog and at long
(> 10 ns) time scales in MacRog and Berger
hardly manifest in R1. However, the latter con-
tribute heavily to τe, which is thus considerably
overestimated by MacRog and Berger (Fig. 2).

It would be highly interesting to identify the
origins of the observed artificial timescales, par-
ticularly for the 0.1–1 ns window over-presented
in CHARMM36, and propose how to correct
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Figure 3: Contributions to the dynamics of the
headgroup segments. (A) Zoom on the head-
group τe (left panel) and R1 (right). (B) ’Cu-
mulative’ R1(τ) of the γ (top panel), β (mid-
dle), and α (bottom) segments. R1(τ) is ob-
tained, as detailed in Methods, by including in
the sum of Eq. (12) only terms with τi < τ .
Consequently, at τ →∞ the R1(τ) approaches
the actual R1. (C) Prefactor weighs αi from
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tom). Note that panels B and C show a sliding
average over 3 neighboring data points.

those in the simulation models. However, the
connection between the fitted correlation times
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and the correlation times of distinct motional
processes, such as dihedral rotations and lipid
wobbling, turns out to be highly non-trivial; we
thus refrain from further analysis here.

Effect of cholesterol.

An essential component in cell membranes,
cholesterol has various biological functions. It
is well known to order the acyl chains in lipid
bilayers, but its effect on the headgroup is
more controversial.58,82 For example, it has
been proposed that lipid headgroups reorga-
nize to shield cholesterol from water.82 How-
ever, while acyl chains do substantially order,
NMR experiments show no significant confor-
mational changes in the headgroup upon addi-
tion of even 50% of cholesterol—which suggests
that the tail and head regions behave essen-
tially independently.32,58 In principle, the head-
groups could shield cholesterol from water even
without changing their conformational ensem-
ble: By reorienting only laterally on top of the
cholesterol. In this case, one would expect the
rotational dynamics of headgroup segments to
change when cholesterol is added.

Top panels of Fig. 4A depict the experimen-
tal effective correlation times τe in pure POPC
bilayers and in bilayers containing 50% choles-
terol. The τe at the glycerol backbone slow
down markedly when cholesterol is added. Tail
segment dynamics slows down too, most no-
tably close to the glycerol backbone. In stark
contrast, τe of the headgroup segments (γ, β,
α) remain unaffected. Furthermore, cholesterol
induces no measurable change in the headgroup
β and α segment dynamics at short (∼1 ns)
time scales, as demonstrated by the experimen-
tal R1 rates (Fig. 4A, bottom panels). That
said, there is a small but measurable impact
on R1 at γ. In summary, these experimental
findings support the idea39 that the acyl chains
and the headgroup can respond almost inde-
pendently to changes in conditions and compo-
sition.

All four benchmarked force fields (Fig. 4B)
qualitatively reproduce the experimental in-
crease in τe: Slipids and CHARMM36 give
rather decent magnitude estimates, while

MacRog grossly overestimates the slowdown
of glycerol, C2, and C3 segments. Notably,
MacRog appears to predict slowdown also for
the headgroup (β and α), for which experiments
detect no change. Note that while CHARMM36
correctly shows no change in τe of the γ, β, and
α segments, it does predict an erroneous ∆R1

for all three, indicating some inaccuracies in the
headgroup rotational dynamics. Such inaccura-
cies might be reflected in the recent findings83

(obtained using CHARMM36) that the head-
groups of PCs neighboring (within 6.6 Å) a lone
cholesterol spend more time on top of the said
cholesterol than elsewhere. Interestingly, the
tail ∆R1 seem to be qualitatively reproduced
by all three all-atom force fields, whereas Berger
fails to capture the trend at the oleoyl double
bond. All these findings are in line with the
general picture obtained from C–H bond or-
der parameters:38 MD simulations capture the
changes in acyl chain region rather well, but
changes in and near the glycerol backbone re-
gion can be overestimated. Of the benchmarked
force fields, CHARMM36 appears most realis-
tic in reproducing the effects of cholesterol on
the glycerol backbone—and Slipids on the PC
headgroup—conformational dynamics.

Effect of drying.

Understanding the impact of dehydration on
the structure and dynamics of lipid bilayers is
of considerable biological interest. Dehydrated
states are found, e.g., in skin tissue. Most
prominently, the process of membrane fusion
is always preceeded by removal of water be-
tween the approaching surfaces, and thus the
dehydration-imposed changes can considerably
affect fusion characteristics, such as its rate.

Figure 5A shows how a mild dehydration af-
fects C–H bond dynamics in the PC head-
group and glycerol backbone; the plot com-
pares the experimental effective correlation
times τe measured for POPC at full hydra-
tion and for DMPC (1,2-dimyristoyl-sn-glycero-
3-phosphocholine) at 13 waters per lipid. The
τe are the same within experimental accuracy,
which suggests two conclusions. Firstly, the
headgroup (γ, β, α) τe are rather insensitive
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Figure 4: Effect of cholesterol on POPC confor-
mational dynamics. (A) Experimental effective
correlation times τe (top panels) and R1 rates
(bottom) in 100/0 and 50/50 POPC/cholesterol
bilayers at full hydration, see Ref. 39 for further
details. (B) The change in τe (∆τe, top panels)
and R1 (∆R1, bottom), in NMR (black) and
MD (color), when bilayer composition changes
from pure POPC to 50% cholesterol. Error es-
timates for the simulated ∆τe are the maximal
possible based on the errors at 0% and 50%
cholesterol; for other data regular error propa-
gation is used. The Berger ∆τe is not shown,
because the available open-access trajectories
were too short to determine meaningful error
estimates. Table 2 provides further simulation
details; for segment labeling, see Fig. 2.

to the chemical identities of the tails. This
is analogous to what was seen experimentally
when adding cholesterol (Fig. 4A): Structural
changes in the tail and glycerol regions do not
(need to) affect the headgroup dynamics. Sec-

ondly, a mild dehydration does not alter the τe
in the headgroup and glycerol regions.

Figure 5B shows the effects of dehydration in
three MD models. Combination of the unreal-
istically slow dynamics, especially in the glyc-
erol backbone (Fig. 2), and the relatively short
lengths of the available open-access trajecto-
ries (Table 3) led to large uncertainty estimates;
thus we only point out qualitative trends here.
For all headgroup and glycerol segments, the
simulated τe indicate slowdown upon dehydra-
tion. This is manifested in the increase in the
magnitude of the error estimate (cf. the Berger
data for β and α) as well as in the increase of
the lower limit of the error. For CHARMM36
the lower error estimates stay almost constant
all the way until 7 w/l, whereas for Berger and
MacRog they hint that a retardation of dynam-
ics starts already between 15 and 10 w/l.

These simulational findings suggest that
experiments reducing hydration levels below
10 w/l would also show an increase in τe. This
prediction is in line with the exponential slow-
down of the headgroup conformational dynam-
ics upon dehydration that was indicated by
2H-NMR R1 measurements of DOPC bilayers:
R1 ∼ exp(−nw/l/4).84 The slowdown was at-
tributed to the reduced effective volume avail-
able for the headgroup84 as it tilts towards the
membrane upon dehydration; such tilt is ob-
served via changes of the lipid headgroup order
parameters,85 and is qualitatively reproduced
by all the simulation models.32

Figure 5C shows a collection of experimental
13C-NMR R1 rates for the headgroup segments
at different water contents; in addition to the
full hydration POPC data from Fig. 2, DMPC
at 13 w/l,42 and POPC at 20 and 5 w/l43 are
shown. Experimentally, an increasing trend
with decreasing hydration is observed for all
three segments, indicating changes of head-
group dynamics at short (∼1 ns) time scales.
Interestingly, only CHARMM36 captures this,
whereas Berger and MacRog give decreasing R1

rates for β and α.
The slowdown characteristics discussed here

are of significance not only for computational
studies of intermembrane interactions, such
as fusion, but also when simulating a bilayer
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Figure 5: Effect of drying on PC headgroup and glycerol backbone conformational dynamics. (A)
Experimental effective correlation times τe for DMPC at low hydration (from Ref. 42) do not
significantly differ from the τe for POPC at full hydration (from Ref. 39). (B) Calculated τe
for POPC at decreasing hydration in three MD models. Symbols indicate the mean of segment
hydrogens if τe could be determined for all of them; otherwise, only the error bar (extending from the
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and simulations: Experiments indicate an increasing trend upon dehydration. Experimental POPC
data at 28 w/l is from Ref. 39 (�), POPC at 20 and 5 w/l from Ref. 43 (�), and DMPC at 13 w/l
from Ref. 42 (�). See Table 3 for simulation details.

(stack) under low hydration: Slower dynamics
require longer simulation times for equilibra-
tion, for reliably quantifying the properties of
the bilayers, and for observing rare events.

4 Conclusions

We have here demonstrated that open access
databanks of MD trajectories enable the cre-
ation new scientific information without run-
ning a single new simulation. More specifically,
we have benchmarked (against published NMR
data39,41–43) the conformational dynamics of a
wide range of phosphatidylcholine MD models

using existing open-access trajectories from the
Zenodo repository, in particular those belong-
ing to the NMRlipids Databank (zenodo.org/
communities/nmrlipids).

We found that every MD model captures the
13C-NMR effective correlation time (τe) pro-
file of POPC qualitatively, but that most are
prone to too slow dynamics of the glycerol back-
bone C–H bonds (Fig. 2). While no force field
perfectly reproduces all the experimental data,
CHARMM36 and Slipids have overall impres-
sive τe. This is a particularly exciting finding
concerning CHARMM36, as it is also known
to reproduce quite well the experimental con-
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formational ensemble.32 That said, we do find
that CHARMM36 struggles with the balance
of dynamics in the headgroup region: The R1

rates, sensitive for ∼1-ns processes, are too high
for the γ, β, and α segments (Fig. 3). In fact
Slipids, which also reproduces the experimental
headgroup order parameters,32 appears to out-
perform CHARMM36 when it comes to head-
group conformational dynamics (Fig. 3).

Further, we found that when cholesterol is
mixed into a POPC bilayer, MD qualitatively
captures the slowdown of conformational dy-
namics in the tail and glycerol regions (Fig. 4).
However, the benchmarked force fields overes-
timate the changes in the ∼1-ns dynamics of
the headgroup—except Slipids, which captures
well the effects of cholesterol on PC headgroup
conformational dynamics.

Finally, we found that upon reducing the wa-
ter content below 10 waters per lipid, MD ex-
hibits slowdown of headgroup and backbone dy-
namics in qualitative agreement with experi-
mental data. That said, only CHARMM36 (but
not Berger or MacRog) qualitatively captures
the experimentally detected increase of R1 rates
upon dehydration (Fig. 5).

While work is still needed in capturing even
the correct phospholipid conformations,32 real-
istic dynamics will be an essential part of de-
veloping MD into a true computational micro-
scope. Here we gathered a set of published
experimental 13C-NMR data on phosphatidyl-
choline dynamics, and charted the typical fea-
tures of the existing MD models against it,
thus laying the foundation for further improve-
ment of the force fields. Importantly, our work
demonstrates the potential of open-access MD
trajectories in achieving such benchmarks at
a reduced computational and labor cost. A
pool of well indexed and documented open-
access data provides an ideal platform for au-
tomation, which in turn will facilitate faster
progress in pinpointing the typical failures of
the existing force fields, in identifying key dif-
ferences in models describing chemical varia-
tions of the same molecule type (such as differ-
ent lipid headgroups), and in developing better
models through data-driven approaches.
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Gelṕı, J. L.; Orozco, M. Surviving the del-
uge of biosimulation data. WIREs Com-
putational Molecular Science 2020, 10,
e1449.

(27) Hospital, A.; Andrio, P.; Cugnasco, C.;
Codo, L.; Becerra, Y.; Dans, P. D.; Battis-
tini, F.; Torres, J.; Goñi, R.; Orozco, M.;
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(57) Höltje, M.; Förster, T.; Brandt, B.; En-
gels, T.; von Rybinski, W.; Höltje, H.-D.
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