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Abstract. Turing instabilities of reaction-diffusion systems can only arise if the diffusivities of the chemical
species are sufficiently different. This threshold is unphysical in generic systems with 𝑁 = 2 diffusing species,
forcing experimental realizations of the instability to rely on fluctuations or additional non-diffusing species.
Here we ask whether this diffusive threshold lowers for 𝑁 > 2 to allow “true” Turing instabilities. Inspired
by May’s analysis of the stability of random ecological communities, we analyze the threshold for reaction-
diffusion systems whose linearized dynamics near a homogeneous fixed point are given by a random matrix. In
the numerically tractable cases of 𝑁 6 6, we find that the diffusive threshold generically decreases as 𝑁 increases
and that these many-species instabilities generally require all species to be diffusing.

In 1952, Turing described the pattern-forming instability
that now bears his name [1]: diffusion can destabilize a fixed
point of a system of reactions that is stable in well-mixed con-
ditions. Nigh on threescore and ten years on, the contribution
of Turing’s mechanism to chemical and biological morpho-
genesis remains debated, not least because of the diffusive
threshold inherent in the mechanism: chemical species in re-
action systems are expected to have roughly equal diffusivities,
yet Turing instabilities cannot arise at equal diffusivities [2, 3].
It remains an open problem to determine how much of a diffu-
sivity difference is required for generic systems to undergo this
instability, yet this diffusive threshold has been recognized at
least since reduced models of the Belousov–Zhabotinsky reac-
tion [4, 5] only produced Turing patterns at unphysically large
diffusivity differences.
For this reason, the first experimental realizations of Turing

instabilities [6–8] obviated the threshold by using gel reactors
that reduced the effective diffusivity of one species to create the
required difference [9, 10]. (Analogously, membrane transport
dynamics can increase the effective diffusivity difference in
biological tissues [11].) Later work showed more explicitly
how binding to an immobile substrate, or more generally, a
third, non-diffusing species, can allow Turing instabilities even
if the 𝑁 = 2 diffusing species have equal diffusivities [12–14].
Such non-diffusing species continue to permeate more recent
work on the network topology of Turing systems [15, 16].
Moreover, Turing instabilities need not be deterministic:

fluctuation-driven instabilities in reaction-diffusion systems
have noise-amplifying properties that allow their pattern am-
plitude to be comparable to that of deterministic Turing pat-
terns [17], while the diffusive threshold for such stochastic
instabilities may be lower than that for deterministic instabil-
ities [18–20]. A synthetic bacterial population with 𝑁 = 2
diffusing species that exhibits patterns in agreement with such
a stochastic Turing instability, but does not satisfy the condi-
tions for a deterministic instability [21], was reported recently.
These experimental instabilities relying on fluctuations or

the dynamics of additional non-diffusing species are thus not
instabilities in Turing’s own image. Can such instabilities be

realized instead in systems with 𝑁 > 2 diffusing species?
Equivalently, is the diffusive threshold lower in such sys-
tems? These questions have remained unanswered, perhaps
because, in marked contrast to the textbook case 𝑁 = 2 and
the concomitant picture of an “inhibitor” out-diffusing an “ac-
tivator” [22, 23], the complicated instability conditions for
𝑁 > 2 [24] do not lend themselves tomuch analytical progress.
Here, we analyze the diffusive threshold for Turing insta-

bilities with 2 6 𝑁 6 6 diffusing species. Inspired by May’s
work on the stability of random ecological communities [25],
we analyze random Turing instabilities by sampling random
matrices that represent the linearized reaction dynamics of
otherwise unspecified reaction-diffusion systems. A semi-
analytic approach for 𝑁 = 3 shows that the diffusive threshold
for instability is generically reduced compared to 𝑁 = 2, and
that two of the three diffusivities are equal at the threshold
for instability. We extend these results to the remaining nu-
merically tractable cases of reaction-diffusion systems with
4 6 𝑁 6 6 and two different diffusivities, showing that the
diffusive threshold lowers further as 𝑁 increases. Finally, we
show that these many-species Turing instabilities generally re-
quire all species to diffuse.
We begin with the simplest case, 𝑁 = 2, in which species 𝑢

and 𝑣 obey

¤𝑢 = 𝑓 (𝑢, 𝑣) + 𝑑𝑢∇2𝑢, ¤𝑣 = 𝑔(𝑢, 𝑣) + 𝑑𝑣∇2𝑣. (1)

The conditions for Turing instability in this system [23] only
depend on the four entries of the Jacobian

J =

(
𝑓𝑢 𝑓𝑣
𝑔𝑢 𝑔𝑣

)
, (2)

the partial derivatives of the reaction system at a fixed point
(𝑢∗, 𝑣∗) of the homogeneous system. This fixed point is
stable to homogeneous perturbations iff 𝐽 ≡ det J > 0 and
𝐼1 ≡ tr J < 0. A stable fixed point of this kind is unstable
to a Turing instability only if 𝑝 ≡ − 𝑓𝑢𝑔𝑣 > 0 [23]. Defining
the diffusion coefficient ratio 𝐷2 = max {𝑑𝑢/𝑑𝑣 , 𝑑𝑣/𝑑𝑢} > 1,
a Turing instability occurs iff these conditions hold along

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.09.374934doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.374934
http://creativecommons.org/licenses/by/4.0/


2

with [26]

𝐷2 > 𝐷
∗
2 ≡

( √
𝐽 +

√
𝐽 + 𝑝

min {| 𝑓𝑢 |, |𝑔𝑣 |}

)2
. (3)

There is a diffusive threshold if 𝐷∗
2 is large; to quantify this

we introduce the range 𝑅 of kinetic parameters,

𝑅 ≡ max {| 𝑓𝑢 |, | 𝑓𝑣 |, |𝑔𝑢 |, |𝑔𝑣 |}
min {| 𝑓𝑢 |, | 𝑓𝑣 |, |𝑔𝑢 |, |𝑔𝑣 |}

. (4)

Equivalently, 𝑓𝑢 , 𝑓𝑣 , 𝑔𝑢 , 𝑔𝑣 ∈ 𝐼 ≡ [−𝑅,−1] ∪ [1, 𝑅] up to
scaling, with one parameter equal to ±1 and one equal to ±𝑅.
One deduces [26] that

𝐷∗
2 6 𝐷

max
2 (𝑅) ≡

(
𝑅 +

√︁
𝑅2 − 1

)2
, (5)

as shown in Fig. 1(a). Note that 𝐷max2 → 1 as 𝑅→ 1; in this
limit, there is no diffusive threshold: 𝑅 ≈ 1 is a particular
instance of the converse fine-tuning problem for the reaction
kinetics that allows Turing instabilities at nearly equal diffu-
sivities more generally [3]. If 𝑅 � 1, then 𝐷max2 = 𝑂

(
𝑅2

)
.

This does not imply the existence of a threshold, for this does
not exclude most systems with range 𝑅 having 𝐷∗

2 � 𝐷max2 .
The existence of the diffusive threshold therefore relates to the
distribution of 𝐷∗

2 for systems with range 𝑅.
To understand this distribution, we draw inspiration from

May’s analysis of the stability of large ecological communi-
ties [25]; large random Jacobians, corresponding to equilibria
of otherwise unspecified population dynamics, are overwhelm-
ingly likely to be unstable. By analogy, we study random Tur-
ing instabilities, sampling uniformly and independently the
entries of random kinetic Jacobians corresponding to equilib-
ria of otherwise unspecified reaction kinetics, and analyze the
criteria for them to be Turing unstable. There is of course no
more reason to expect the kinetic parameters to be indepen-
dent or uniformly distributed than there is reason to expect
the linearized population dynamics in May’s analysis [25] to
be independent or normally distributed. Yet, in the absence
of experimental understanding of what the distributions of
these parameters should be (in reaction-diffusion systems and
in population dynamics), the potential of the random matrix
approach to reveal stability principles has been amply demon-
strated in population dynamics [29–37].
In Fig. 1(b), we estimate the probability distribution 𝑃(𝐷∗

2)
for different values of 𝑅, sampling the kinetic parameters inde-
pendently and uniformly from 𝐼 and setting one of them equal
to ±1 and one equal to ±𝑅 [26]. Exact calculations [26] sug-
gest that a natural quantifier of the threshold is the probability
that 𝐷∗

2 exceeds 𝑅,

P(𝐷∗
2 > 𝑅) =

∫ 𝐷max2

𝑅

𝑃(𝐷∗
2) d𝐷

∗
2. (6)

Both from the estimates in Fig. 1(b) and by com-
puting the integral in closed form [26], we find that
P(𝐷∗

2 > 𝑅) > 0.97 [Fig. 1(c)]. Thus, in the vast majority

1𝑅 𝐷max2 (𝑅)

increasing 𝑅

𝑅 202.5

𝐷∗
2

𝑃 (𝐷∗
2)

𝑅
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1
1

𝐷
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=
𝐷
ma
x

2

𝐷
∗
2 =
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FIG. 1. Turing’s diffusive threshold for 𝑁 = 2. (a) Cartoon of the
diffusive threshold and the fine-tuning (FT) problem for 𝑅 ≈ 1 and
𝑅 � 1. (b) Distribution 𝑃(𝐷∗

2), supported on the (scaled) interval
[1, 𝐷max2 (𝑅)], estimated for different 𝑅. (c) Plot of P(𝐷∗

2 > 𝑅)
against 𝑅, revealing the diffusive threshold. Markers: estimates from
the distributions in Fig. 1(b); solid line: exact result [26].

of cases, the diffusivity ratio is “large”; conversely, Tur-
ing instabilities at small diffusive threshold require fine-
tuning [Fig. 1(a)]. This expresses Turing’s threshold for two-
species systems.
To investigate how this diffusive threshold changes with 𝑁

we consider next the 𝑁 = 3 system

¤𝑢 = 𝑓 (𝑢, 𝑣, 𝑤) + 𝑑𝑢∇2𝑢, (7a)
¤𝑣 = 𝑔(𝑢, 𝑣, 𝑤) + 𝑑𝑣∇2𝑣, (7b)
¤𝑤 = ℎ(𝑢, 𝑣, 𝑤) + ∇2𝑤, (7c)

where we have rescaled space to set 𝑑𝑤 = 1. We introduce the
matrix of diffusivities and the reaction Jacobian,

D =
©«
𝑑𝑢 0 0
0 𝑑𝑣 0
0 0 1

ª®¬ , J =
©«
𝑓𝑢 𝑓𝑣 𝑓𝑤
𝑔𝑢 𝑔𝑣 𝑔𝑤
ℎ𝑢 ℎ𝑣 ℎ𝑤

ª®¬ , (8)

in which the entries of J are again the partial derivatives eval-
uated at a fixed point (𝑢∗, 𝑣∗, 𝑤∗) of the homogeneous sys-
tem. This system is unstable to a Turing instability if J is
stable, but, for some eigenvalue −𝑘2 < 0 of the Laplacian,
J
(
𝑘2

)
= J − 𝑘2D is unstable [3]. More precisely, a Turing

instability arises when a real eigenvalue of J
(
𝑘2

)
crosses zero,

i.e. when J
(
𝑘2

)
≡ det J

(
𝑘2

)
= 0, and therefore arises first at

a wavenumber 𝑘 = 𝑘∗ with J
(
𝑘2∗

)
= 𝜕J /𝜕𝑘2

(
𝑘2∗

)
= 0 [3].

Hence J , a cubic polynomial in 𝑘2, must have a double root
at 𝑘2 = 𝑘2∗ > 0, so its discriminant [28] must vanish. This
discriminant is a sextic polynomial in 𝑑𝑢 , 𝑑𝑣 ,

Δ(𝑑𝑢 , 𝑑𝑣 ) =
4∑︁

𝑚=0

4∑︁
𝑛=0

𝛿𝑚𝑛𝑑
𝑚
𝑢 𝑑

𝑛
𝑣 , (9)

where 𝛿00 = 𝛿10 = 𝛿01 = 𝛿34 = 𝛿43 = 𝛿44 = 0 and (com-
plicated) expressions for the 19 non-zero coefficients can be
found in terms of the entries of J using Mathematica (Wol-
fram, Inc.). The double root of J corresponding to (𝑑𝑢 , 𝑑𝑣 )
on the curve Δ(𝑑𝑢 , 𝑑𝑣 ) = 0 is 𝐾 (𝑑𝑢 , 𝑑𝑣 ).
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3

Determining the diffusive threshold for Turing instability in
Eqs. (7) thus requires solving the problem

minimize 𝐷3 (𝑑𝑢 , 𝑑𝑣 ) subject to
{
Δ(𝑑𝑢 , 𝑑𝑣 ) = 0,
𝐾 (𝑑𝑢 , 𝑑𝑣 ) > 0,

(10)

in which the diffusion coefficient ratio is

𝐷3 (𝑑𝑢 , 𝑑𝑣 )=max{𝑑𝑢 , 1/𝑑𝑢 , 𝑑𝑣 , 1/𝑑𝑣 , 𝑑𝑢/𝑑𝑣 , 𝑑𝑣/𝑑𝑢}. (11)

Direct numerical solution of this constrained optimisation
problem is obviously not a feasible approach, since we ul-
timately want to obtain statistics for the minimal value 𝐷∗

3 and
the corresponding (𝑑∗𝑢 , 𝑑∗𝑣 ). We therefore solve this problem
semi-analytically in what follows.
Before doing so, we must note the following: the neces-

sary and sufficient (Routh–Hurwitz) conditions for J to be
stable include 𝐼1 ≡ tr J < 0 and 𝐽 ≡ det J < 0 [23].
By definition, J

(
𝑘2∗

)
has one zero eigenvalue. The other

two eigenvalues are either real or two complex conju-
gates _, _∗. In the second case, they are both stable
since 2Re(_) = 0 + _ + _∗ = tr J

(
𝑘2∗

)
= 𝐼1 − 𝑘2∗ trD < 𝐼1 < 0.

Hence Eqs. (7) are not unstable to an oscillatory (Turing–
Hopf) instability at (𝑑∗𝑢 , 𝑑∗𝑣 ), so, by minimality of (𝑑∗𝑢 , 𝑑∗𝑣 ),
the system destabilizes to a Turing instability there. Moreover,
since J has leading coefficient −𝑑𝑢𝑑𝑣 and J (0) = 𝐽 < 0,
the double root 𝐾 (𝑑𝑢 , 𝑑𝑣 ) varies continuously with 𝑑𝑢 , 𝑑𝑣 and
cannot change sign on a branch ofΔ(𝑑𝑢 , 𝑑𝑣 ) = 0 in the positive
(𝑑𝑢 , 𝑑𝑣 ) quadrant.
This last remark implies that, at a local minimum of

𝐷3 (𝑑𝑢 , 𝑑𝑣 ) on Δ(𝑑𝑢 , 𝑑𝑣 ) = 0, one of the following oc-
curs: (i) Δ(𝑑𝑢 , 𝑑𝑣 ) = 0 is tangent to a contour of
𝐷3 (𝑑𝑢 , 𝑑𝑣 ); (ii) Δ(𝑑𝑢 , 𝑑𝑣 ) intersects a vertex of a contour
of 𝐷3 (𝑑𝑢 , 𝑑𝑣 ); (iii) Δ(𝑑𝑢 , 𝑑𝑣 ) is singular. The contours of
𝐷3 (𝑑𝑢 , 𝑑𝑣 ) are drawn in Fig. 2(a) and show that tangency
to a contour in case (i) requires d𝑑𝑢 = 0 or d𝑑𝑣 = 0 or
d𝑑𝑣/d𝑑𝑢 = 𝑑𝑣/𝑑𝑢 . Since Δ(𝑑𝑢 , 𝑑𝑣 ) = 0, the chain rule
reads 0 = dΔ = (𝜕Δ/𝜕𝑑𝑢) d𝑑𝑢 + (𝜕Δ/𝜕𝑑𝑣 ) d𝑑𝑣 . Hence there
are two subcases: (a) 𝜕Δ/𝜕𝑑𝑣 = 0 or 𝜕Δ/𝜕𝑑𝑢 = 0 and (b)
𝑑𝑢𝜕Δ/𝜕𝑑𝑢 + 𝑑𝑣𝜕Δ/𝜕𝑑𝑣 = 0. In subcase (a), Δ viewed as
a polynomial in 𝑑𝑣 or 𝑑𝑢 has a double root, and so its dis-
criminant [28] must vanish. On removing zero roots, this
discriminant of a discriminant is found to be a polynomial of
degree 20 in 𝑑𝑢 or 𝑑𝑣 , respectively; complicated expressions
for its coefficients in terms of the non-zero coefficients 𝛿𝑚𝑛 in
Eq. (9) are obtained using Mathematica. Similarly, in sub-
case (b), the resultant [28] of Δ and 𝑑𝑢𝜕Δ/𝜕𝑑𝑢 + 𝑑𝑣𝜕Δ/𝜕𝑑𝑣 ,
viewed as polynomials in 𝑑𝑢 or 𝑑𝑣 must vanish. This resultant
is another polynomial of degree 20 in 𝑑𝑣 or 𝑑𝑢 . Next, in case
(ii), 𝑑𝑢 = 1 or 𝑑𝑣 = 1 or 𝑑𝑢 = 𝑑𝑣 [Fig. 2(a)], which reduces Δ
to three different polynomials of degree 6 in the single variable
𝑑𝑣 , 𝑑𝑢 , or 𝑑 = 𝑑𝑢 = 𝑑𝑣 , respectively. Finally, in case (iii), at a
singular point, Δ = 𝜕Δ/𝜕𝑑𝑢 = 𝜕Δ/𝜕𝑑𝑣 = 0, and we are back
in case (i), subcase (a). Thus, we have reduced finding candi-
dates for local minima in (10) to solving polynomial equations;
the global minimum is found among those local minima with
𝐾 (𝑑𝑢 , 𝑑𝑣 ) > 0 [38].
We implement this semi-analytical approach as described in

the Supplemental Material [26], and sample random systems
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FIG. 2. Results for 𝑁 = 3. (a) Contours of 𝐷3 (𝑑𝑢 , 𝑑𝑣 ) in the positive
(𝑑𝑢 , 𝑑𝑣 ) quadrant. (b) Smoothed distribution 𝑃(𝐷∗

3), estimated for
different 𝑅. Inset: same plot scaled to [1, 𝐷max2 (𝑅)] for comparison
to 𝑁 = 2 in Fig. 1(a). (c) Plot of P(𝐷∗

𝑁
> 𝑅) against 𝑅 for 𝑁 ∈ {2, 3},

revealing lowering of the diffusive threshold for 𝑁 = 3 compared to
𝑁 = 2. (d) Probability 𝜏∗

𝑁
of a random kinetic Jacobian having a

Turing instability with 𝐷∗
𝑁
6 𝑅 plotted against 𝑅, for 𝑁 ∈ {2, 3}.

similarly to the two-species case, drawing the entries of J in
Eq. (8) uniformly and independently at fixed range 𝑅.
Strikingly, 𝐷∗

3 is attained at a contour vertex, corresponding
to case (ii) above: numerically [26], we only found global
minima of this type. In particular, the minimising systems
come in two flavors: those with two “fast” diffusers and one
“slow” diffuser, and those with one “fast” diffuser and two
“slow” diffusers. Systems with a non-diffusing species are a
limit of the former; this point will be discussed below. The
latter arise for example in models of scale pattern formation
in fish and lizards [39, 40], in which short-range pigments
respectively activate and inhibit a long-range factor.
The distribution of 𝐷∗

3, shown for different values of 𝑅
in Fig. 2(b), is rather different from that of 𝐷∗

2 [Figs. 1(a) and
2(b), inset]. Even though the support of the distribution of 𝐷∗

3
does not appear to be bounded, the probability P(𝐷∗

3 > 𝑅) is
reduced compared to the two-species case [Fig. 2(c)]. Hence
the diffusive threshold lowers for 𝑁 = 3 compared to 𝑁 = 2.
A random Jacobian with 𝑁 = 3 is less likely to be Turing
unstable than one with 𝑁 = 2 (essentially because there are
more conditions on the parameters for 𝑁 = 3). However,
because the threshold for Turing instability is so high for𝑁 = 2,
and lowered for 𝑁 = 3, a random kinetic Jacobian is vastly
more likely to have a Turing instability with 𝐷∗

𝑁
6 𝑅 for

𝑁 = 3 than for 𝑁 = 2, even though the latter is more likely to
have a Turing instability of any kind.
To extend these results to 𝑁 > 3 diffusing species, we

consider the (linearized) reaction-diffusion system

¤𝒖 = J · 𝒖 + D · ∇2𝒖, (12)

where J is a random kinetic Jacobian, and D is a diagonal ma-
trix of diffusivities. Even with the semi-analytical approach
developed above, such systems cannot be analyzed for gen-
eral D: not even for 𝑁 = 4 were we able to obtain closed
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FIG. 3. Results for “binary” systems with 4 6 𝑁 6 6.
(a) P(𝐷∗

𝑁
> 𝑅) against 𝑅 for 3 6 𝑁 6 6, revealing further lowering

of the diffusive threshold compared to the case 𝑁 = 3. (b) Probabil-
ity𝜎𝑁 of a random stable kinetic Jacobian having a (binary, if 𝑁 > 3)
Turing instability plotted against 𝑁 and averaged over 𝑅. (c) Prob-
ability 𝜏∗

𝑁
of a random kinetic Jacobian having a Turing instability

with 𝐷∗
𝑁
6 𝑅 plotted against 𝑅, for 3 6 𝑁 6 6 [41].

forms of the required polynomial coefficients. To make fur-
ther progress, we therefore restrict to “binary”D inwhich the 𝑁
diffusivities take two different values only. Above, we showed
that𝐷∗

3 is attained for such binaryD. The discriminantΔ(D) of
J − 𝑘2D thus reduces to 2𝑁−1 − 1 different polynomials in one
variable, the coefficients of which we obtained in closed form
for 4 6 𝑁 6 6. Solving Δ(D) = 0 determines the threshold for
Turing instability in these binary systems as in the case 𝑁 = 3
discussed above [42].
The diffusive threshold lowers further in these binary sys-

tems with 4 6 𝑁 6 6, as shown in Fig. 3(a). The fact that
most stable random kinetic Jacobians undergo such a binary
Turing instability [Fig. 3(b)] suggests that these provide a use-
ful picture of the diffusive threshold. Since the probability
of random kinetic Jacobians being Turing unstable decreases
as 𝑁 increases, the probability of them being Turing unstable
with 𝐷∗

𝑁
also decreases, despite the lowering of the thresh-

old [Fig. 3(c)].
Again, the different species in these binary systems separate

into “fast” and “slow” diffusers. The diffusion of the slow dif-
fusers cannot however in general be ignored. Up to reordering
the species and rescaling space,

D =

(
I 0
0 𝑑I

)
, J =

(
J11 J12

J21 J22

)
, (13)

where 𝑑 < 1 is the common diffusivity of the slow dif-
fusers. If 𝑑 = 0, recent results [43] on general Turing in-
stabilities with non-diffusing species imply that det

(
J−𝑘2D

)
=

det J22 det
(
j−𝑘2I

)
, with j= J11−J12J−122 J21. Additionally, Tur-

ing instability at 𝑑 = 0 requires J22 to be stable: if it is not,
instabilities arise at arbitrarily small and therefore unphysical
lengthscales [43]. In that case, det J22 ≠ 0, and there is a
Turing instability with 𝑑 = 0 only if j has a positive eigen-
value. Although the proportion of Turing unstable systems
with 𝑛 > 2 fast diffusers that could in principle still undergo a
Turing instability with 𝑑 = 0 increases with 𝑁 [Fig. 4(a)], the
proportion of systems for which j has a positive eigenvalue is
small [Fig. 4(b)]. Hence the Turing instabilities with 𝑁 > 3

3 4 5 6
0

0.5

1

binary
#

5#

3 4 5 6
0

0.01
0.02
0.03

#

A#(a) (b)

FIG. 4. “Slow” diffusers in binary Turing instabilities with 3 6
𝑁 6 6. (a) Proportion 𝑓𝑁 of Turing unstable systems with 𝑛 > 2
“fast” diffusers plotted against 𝑁 , averaged over 𝑅. (b) Proportion
𝑟𝑁 of systems for which j has a positive eigenvalue, plotted against
𝑁 , averaged over 𝑅 [41].

species considered here generally require all species to diffuse,
and are more general than the instabilities of systems with non-
diffusing species realized in gel reactors [6–8] and analyzed
recently [43].
In this Letter, we have analyzed random Turing instabilities

to show how the diffusive threshold that has hampered experi-
mental efforts to generate “true” Turing instabilities in systems
of 𝑁 = 2 diffusing species is lowered for 𝑁 > 3. All of this
does not, however, explain the existence of a “large” thresh-
old in the first place—even though Turing instabilities at equal
diffusivities are impossible [2, 3], there is no a priori reason
why the threshold should be “large”. This can be understood
asymptotically: Let J = 𝑂 (1) be a Turing unstable kinetic
Jacobian, with an eigenvalue _ destabilising at nearly equal
diffusivities D = I+dwith d = 𝑜(1). Because J− 𝑘2I has a sta-
ble eigenvalue _ − 𝑘2 and −𝑘2d � J − 𝑘2I, the corresponding
eigenvalue of J− 𝑘2D =

(
J− 𝑘2I

)
− 𝑘2d can only be positive if

_ − 𝑘2 = 𝑜(1) i.e. if _ = 𝑜(1) and 𝑘2 = 𝑜(1) since Re(_) < 0.
Hence J and J − 𝑘2I have a zero eigenvalue at leading order.
Additionally, the eigenvalue correction from −𝑘2d = 𝑜

(
𝑘2

)
must be 𝑂

(
𝑘2

)
at least. This occurs iff the (leading-order)

zero eigenspace of J − 𝑘2I and J is defective [44, 45]. This
extends an argument of Ref. [3]. The generic case is therefore
J = J0 +𝑂 (Y), where Y � 1 and J0 has a defective double zero
eigenvalue, so that J has two𝑂 (

√
Y) eigenvalues [44], assumed

to be stable. With 𝑘 = 𝑂 (Y^ ), d = 𝑂
(
Y𝛿

)
, destabilizing one of

these requires, by the above,−𝑘2d & 𝑂 (Y) and−𝑘2I . 𝑂 (
√
Y),

i.e. 2^ + 𝛿 6 1 and ^ > 1/4. Hence 𝛿 6 1/2; in particular,
D− I & 𝑂 (

√
Y) � 𝑂 (Y) = J−J0, and so the diffusive threshold

is “large” in this asymptotic limit. Understanding the mecha-
nism by which the threshold arises more generally and lowers
as 𝑁 increases remains an open problem, as do extending pre-
vious work [16, 46] on the robustness of Turing patterns to
𝑁 > 3 and identifying chemical or biological pattern forming
systems with 𝑁 > 3 in which the “true” Turing instabilities
discussed here can be realized experimentally.
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This Supplemental Material is divided into two sections.
The first section provides details of calculations for 𝑁 = 2. The
second section gives details of the numerical implementation.

I. DETAILS OF CALCULATIONS FOR 𝑵 = 2

A. Derivation of Eq. (3)

The form of the condition for Turing instability in Eq. (3)
follows from that in Eq. (2.26) on page 85 of Vol. II of Ref. [S1]
which, in our notation, reads

𝑓𝑢 + 𝑑𝑔𝑣 > 2
√
𝑑𝐽, (S1)

a quadratic in 𝑑 = 𝑑𝑢/𝑑𝑣 . Hence

√
𝑑 ≷

√
𝐽 ±

√
𝐽 − 𝑓𝑢𝑔𝑣

𝑔𝑣
if 𝑔𝑣 ≷ 0. (S2)

Now, if 𝑔𝑣 ≷ 0, then | 𝑓𝑢 | ≷ |𝑔𝑣 | because 𝐼1 < 0 and 𝑝 > 0.
Equation (3) then follows, since

𝑔𝑣√
𝐽 −

√
𝐽 + 𝑝

=

√
𝐽 +

√
𝐽 + 𝑝

𝑓𝑢
. (S3)

B. Derivation of Eq. (5)

Equation (3) shows that 𝐷∗
2 is continuous on 𝐼4, so attains

its maximum value on that domain. Since 𝑝 > 0 and 𝐽 > 0,
𝑞 ≡ − 𝑓𝑣𝑔𝑢 > 0, so that 𝐽 + 𝑝 = 𝑞. Now 𝐷∗

2 only depends on
𝑓𝑣 , 𝑔𝑢 through 𝑞, and, by direct computation from Eq. (3),

𝜕𝐷∗
2

𝜕𝑞
=

𝐷∗
2√︁

𝐽 (𝐽 + 𝑝)
> 0. (S4)

Hence 𝐷∗
2 increases with 𝑞, so ( 𝑓𝑣 , 𝑔𝑢) = ±(𝑅,−𝑅) at the

maximum.
Now assume that | 𝑓𝑢 | > |𝑔𝑣 |. Since 𝐼1 < 0 and | 𝑓𝑢 | > |𝑔𝑣 |,

it follows that 𝑓𝑢 < 0 and 𝑔𝑣 > 0. Then

𝜕𝐷∗
2

𝜕 𝑓𝑢
=

√
𝐽 +

√
𝑞

𝑔𝑣
√
𝐽

> 0,
𝜕𝐷∗

2
𝜕𝑔𝑣

= −
(√

𝐽 +
√
𝑞
)3

𝑔3
𝑣

√
𝐽

< 0, (S5)

and so ( 𝑓𝑢 , 𝑔𝑣 ) = (1,−1) at the maximum. If | 𝑓𝑢 | 6 |𝑔𝑣 |,
we similarly find that ( 𝑓𝑢 , 𝑔𝑣 ) = (−1, 1) at the maximum.
Substituting these values into Eq. (3) yields Eq. (5).

C. Calculation of PPPP(𝑫∗
2 < 𝑹)

There are 48 ways of assigning values ±1 and ±𝑅 to two
of the entries 𝑓𝑢 , 𝑓𝑣 , 𝑔𝑢 , 𝑔𝑣 of J. Integrating the conditions
for Turing instability of the remaining entries in each of these
cases using Mathematica (Wolfram, Inc.) gives the area of
parameter space in which a Turing instability arises,

⨌
𝐼 4
𝟙

©«
𝐽 > 0, 𝐼1 < 0

𝑝 > 0
max |J| = 𝑅

min |J| = 1

ª®®®¬ dJ = 12(𝑅 − 1)2, (S6)

where we use the shorthand dJ = d 𝑓𝑢 d 𝑓𝑣 d𝑔𝑢 d𝑔𝑣 . To analyze
the condition 𝐷∗

2 < 𝑅, we note that the expression for 𝐷∗
2 in

Eq. (3) shows that we may swap 𝑓𝑢 , 𝑔𝑣 and 𝑓𝑣 , 𝑔𝑢 . Hence the
48 cases reduce to 4 cases (corresponding to the entries ±1 or
±𝑅 being on the the same or on different diagonals):

(1) | 𝑓𝑢 | = 𝑅, |𝑔𝑣 | = 1; (2) | 𝑓𝑣 | = 𝑅, |𝑔𝑢 | = 1;
(3) | 𝑓𝑢 | = 𝑅, | 𝑓𝑣 | = 1; (4) | 𝑓𝑢 | = 1, | 𝑓𝑣 | = 𝑅.

Moreover, since 𝑞 > 0, we may take 𝑓𝑣 > 0 and 𝑔𝑢 < 0 without
loss of generality. We now discuss these cases separately.

(1) 𝐼1 < 0 implies 𝑓𝑢 = −𝑅, 𝑔𝑣 = 1, and so

𝐷∗
2 =

(√︁
𝑞 +

√︁
𝑞 − 𝑅

)2
> 𝑅. (S7)

(2) 𝑓𝑢𝑔𝑣 = −𝑅 since 𝑞 > 0, so 𝐽 = 𝑓𝑢𝑔𝑣 + 𝑅.

(3) 𝑓𝑢 = −𝑅 because 𝐼1 < 0. Now 𝑝, 𝑞 > 0, and so
0 < 𝐽 = −𝑅 |𝑔𝑣 | − |𝑔𝑢 | < 0. This is a contradiction.

(4) 𝑓𝑢 = 1 as 𝐼1 < 0. Since 𝑔𝑣 6 −1, it follows that

𝐷∗
2 =

(√︁
−𝑔𝑢𝑅 +

√︁
−𝑔𝑢𝑅 − 𝑔𝑣

)2
> 𝑅. (S8)

In this way, 𝐷∗
2 < 𝑅 quantifies the diffusive threshold in a

natural way. In particular, 𝐷∗
2 < 𝑅 is only possible in case (2).

Since 𝐽 > 0, we require 𝑓𝑢𝑔𝑣 +𝑅 > 0 in that case. Now 𝐼1 < 0
and 𝑝 > 0, so 1 < 𝑓𝑢 < −𝑅/𝑔𝑣 or 1 < 𝑔𝑣 < −𝑅/ 𝑓𝑢 depending
on 𝑓𝑢 > 0, 𝑔𝑣 < 0 or 𝑓𝑢 < 0, 𝑔𝑣 > 0. Assume without loss
of generality that | 𝑓𝑢 | > |𝑔𝑣 |. Then 𝑓𝑢 < 0, 𝑔𝑣 > 0 as 𝐼1 < 0.
Moreover, using Eq. (3), 𝐷∗

2 = 𝑅 if and only if 𝑔𝑣 = 2 + 𝑓𝑢/𝑅.
From Eqs. (S5), 𝐷∗

2 decreases as 𝑔𝑣 increases. Hence

𝐷∗
2 < 𝑅 ⇐⇒ 2 + 𝑓𝑢/𝑅 < 𝑔𝑣 < −𝑅/ 𝑓𝑢 and 𝑓𝑢 + 𝑔𝑣 < 0,

(S9)
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S2

using the conditions derived previously. Note that −𝑅/ 𝑓𝑢 < 𝑅

and 2 + 𝑓𝑢/𝑅 > 1 for −𝑅 < 𝑓𝑢 < −1. If | 𝑓𝑢 | < |𝑔𝑣 |, 𝑓𝑢 , 𝑔𝑣
are swapped in these conditions. Moreover, since 𝑞 > 0, case
(2) corresponds to 4 of the 48 cases. Hence we obtain, again
using Mathematica,

⨌
𝐼 4
𝟙

©«
𝐽 > 0, 𝐼1 < 0
𝑝 > 0, 𝐷∗

2 < 𝑅

max |J| = 𝑅

min |J| = 1

ª®®®¬ dJ = 4
(
2𝑅(1 − 𝑅)

1 + 𝑅
+ 𝑅 log 𝑅

)
.

(S10)

Eqs. (S6) and (S10) imply

P
(
𝐷∗

2 6 𝑅
)
=

𝑅 [2(1 − 𝑅) + (1 + 𝑅) log 𝑅]
3(1 − 𝑅)2 (1 + 𝑅)

. (S11)

In particular, P
(
𝐷∗

2 6 𝑅
)
= 𝑂 (log 𝑅/𝑅) � 1 for 𝑅 � 1.

D. Nondimensionalization

We close by remarking on the (absence of) nondimension-
alization of the reaction system. Indeed, up to rescaling time,
one among 𝑓𝑢 , 𝑓𝑣 , 𝑔𝑢 , 𝑔𝑣 can be set equal to ±1. Moreover,
one more parameter can be set equal to ±1 by rescaling 𝑢, 𝑣

differently. However, if we made those choices, we could no
longer sample from a fixed interval.

II. NUMERICAL DETAILS

A. Numerical implementation

Implementing the semi-analytical approach for 𝑁 > 3 de-
rived in the Letter numerically takes some care as the co-
efficients of the polynomials that arise can range over many

orders of magnitude. Our python3 implementation therefore
uses the mpmath library for variable precision arithmetic [S2].

To determine the positive real roots of the polynomials
that arise in the semi-analytical approach, we complement
the Durand–Kerner complex root finding implemented in the
mpmath library [S2] with a test based on Sturm’s theorem [S3],
to ensure that all positive real roots are found. Those systems in
which root finding fails—either because the Durand–Kerner
algorithm fails to converge or because it finds an incorrect
number of positive real roots—are discarded, but included in
error estimates where reported.

B. Numerical samples

Table S1 gives the number of random Turing unstable sys-
tems from which distributions, averages, and probabilities
were estimated for each 𝑅 ∈ {2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20}.
TABLE S1. Number of random Turing unstable systems used to
estimate distributions, averages, and probabilities in the main text for
the different values of 𝑁 .

𝑁 binary / non-binary #(Turing unstable systems)
𝑁 = 2 non-binary 107

𝑁 = 3 non-binary 104

𝑁 = 3 binary 105

𝑁 = 4 binary 105

𝑁 = 5 binary 2 · 104

𝑁 = 6 binary 2 · 103

SUPPLEMENTAL CODE

The online Supplemental Material also includes parts of the
python3 code that implements the semi-analytical approach
for 𝑁 > 3.
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