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Abstract 

The human microbiome influences the efficacy and safety of a wide variety of commonly 
prescribed drugs, yet comprehensive systems-level approaches to interrogate drug-microbiome 
interactions are lacking. Here, we present a computational resource of human microbial 
genome-scale reconstructions, deemed AGORA2, which accounts for 7,206 strains, includes 
microbial drug degradation and biotransformation, and was extensively curated based on 
comparative genomics and literature searches. AGORA2 serves as a knowledge base for the 
human microbiome and as a metabolic modelling resource. We demonstrate the latter by 
mechanistically modelling microbial drug metabolism capabilities in single strains and 
pairwise models. Moreover, we predict the individual-specific drug conversion potential in a 
cohort of 616 colorectal cancer patients and controls. This analysis reveals that some drug 
activation capabilities are present in only a subset of individuals, moreover, drug conversion 
potential correlate with clinical parameters. Thus, AGORA2 paves the way towards 
personalised, predictive analysis of host-drug-microbiome interactions. 
 

Introduction 

Trillions of microbes are inhabiting our gastro-intestinal tract, with a high species and strain 
diversity between individuals depending on, e.g., sex, age, geographic and ethnic origin, 
lifestyle, and health status1. These microbes, collectively called microbiota, contribute essential 
nutrients, such as short chain fatty acid, hormones, and neurotransmitters, to human 
metabolism2. Importantly, this host-microbiota co-metabolism also extends to drug 
metabolism3. At least 15 named microbial enzymes can metabolise over 50 commonly 
prescribed drugs4 resulting in activation, inactivation, detoxification, or re-toxification 
depending on the drug3 (Figure 1). Accordingly, human gut microbes have been shown to 
metabolise 176 of 271 tested drugs5. However, the extent, to which the different species 
metabolise human-targeted drugs, remains largely unknown due to the lack of large-scale 
analysis of the distribution of drug-metabolising enzymes in microbial genomes. 
Consequently, it is currently not possible to estimate differences in drug response between 
individuals caused by different microbiota composition. Personalised therapeutic interventions 
that take diet, genetics, and the microbiome into account have been proposed as a promising 
strategy to improve treatment efficacy6. However, such a systems level approach requires 
computational, predictive modelling6.  
 
A mechanistic, data-driven systems approach that enables large-scale predictions of human and 
microbial metabolism is constraint-based reconstruction and analysis (COBRA). COBRA 
relies on biochemically detailed, molecule-resolved genome-scale reconstructions that are 
manually curated based on the available literature and represent a genomically, genetically, 
and biochemically structured knowledge base of the target organism7. These reconstructions 
can be converted into predictive computational models through the application of condition-
specific constraints8, including (meta-) omics and nutritional data. Importantly, COBRA has 
been already successfully applied for the exploration of metabolic human-microbiome co-
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metabolism9, 10, which has been facilitated by the increasing availability of genome-scale 
reconstructions for human microbial species11-13. For instance, we have assembled a semi-
automatically curated resource (AGORA1) of 773 genome-scale reconstructions of human gut 
microbe strains, representing 605 named species and 14 phyla11. To increase the microbial 
metabolic reconstruction coverage and capture more of the thousands of known species 
inhabiting humans14, a fast reconstruction tool, CarveMe, has been recently published13. 
Despite its many advantages, CarveMe does not account for manually refined genomic 
annotations and microbial drug-metabolism. 
 
Here, we present an expansion in scope and coverage of AGORA, AGORA2, consisting of 
microbial reconstructions for 7,206 strains, 1,644 species, and 24 phyla. AGORA2 summarises 
the knowledge and experimental data obtained through extensive manual comparative 
genomics analyses and literature and textbook reviews. Importantly, over 5,000 AGORA2 
reconstructions have been expanded by manually formulated microbial drug biotransformation 
and degradation reactions covering 98 drugs and 15 enzymes, which enables the prediction of 
drug degradation and biotransformation in a molecule-and strain-resolved manner. AGORA2 
follows the quality standards developed by the systems biology research community8, 15 and is 
fully compatible with the generic16 and the organ-resolved, sex-specific, whole-body human 
metabolic reconstructions17. We demonstrate the use of AGORA2 for the prediction of 
microbial drug metabolism by single strains, pairwise combinations of microbes, and 616 
personalised microbiomes. Taken together, the AGORA2 reconstructions can be used 
independently or together for investigating microbial metabolism and host-microbiota co-
metabolism in silico. 
 

Results 

A data-driven refinement pipeline for large-scale microbial metabolic reconstructions 

To build the reconstructions of the 7,206 gut microbial strains in the AGORA2 compendium, 
we substantially revised and expanded a previously developed data-driven reconstruction 
refinement workflow11. Overall, the reconstruction workflow consists of data collection, data 
integration, draft reconstruction generation and refinement, gap-filling and debugging, and 
iterative reconstruction curation (Figure 1). After expanding the taxonomic coverage (Figure 
2a-b, Table S1, Supplemental Note 1), we generated draft reconstructions using genome 
sequences obtained from, e.g., the National Center for Biotechnology Information (NCBI, 
Table S1), and the online reconstruction tool KBase12. All reactions and metabolites of these 
draft metabolic reconstructions were translated into the Virtual Metabolic Human (VMH)18 
name space and semi-automatically refined by including the manually collected genomic, 
biochemical, and phenotypic information (Figure 1). More specifically, for 5,438/7,206 (75%) 
genomes, we manually validated and improved the annotations of 446 gene functions across 
35 metabolic subsystems using PubSEED19 (Table S2a-c). We performed an extensive 
literature search of 130 carbon sources, 30 fermentation pathways, 64 growth factors, 
consumption of 73 metabolites, and secretion of 51 metabolites resulting in information from 
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732 peer-reviewed papers and >8.000 pages of microbial reference textbooks resulting in 
information for 6,871/7,206 strains (95%) (Table S3a-e). For the remaining 336 strains, either 
no experimental data was available, or all biochemical tests reported in the literature were 
negative. A newly developed test suite ensured correct reconstruction structure, biochemical 
and thermodynamic consistency (TableS4, Supplemental Note 2). Using an unbiased quality 
measure, we determined the subset of flux and stoichiometrically consistent reactions20. The 
curated reconstructions had a significantly higher (p<1e-08) percentage of flux consistent 
reactions compared to the draft reconstructions (Figure S2) despite being larger in their 
metabolic content (Figure 2c). Consistently, the extensive refinement of the curated 
reconstruction based on genomic annotation and experimental resulted in average in the 
addition and removal of 489.84 (standard deviation (±): 421.10) and 111.02 (±61.96) reactions, 
respectively, per reconstruction (Figure S1). Note that our reconstructions represent knowledge 
bases, thus, if genetic or biochemical evidence exists for a gene or reaction, it will be included 
in the reconstruction. This approach is in contrast to other pipelines generating reconstructions 
containing only the flux consistent part (e.g., CarveMe 13, Path2Model21). This property allows 
the use of AGORA2 to rapidly identify current knowledge gaps, thereby enabling biological 
discovery. Moreover, we retrieved the metabolic structures for 1,838/3,533 (52%) metabolites 
and provide atom-atom mapping for 5,583 of the overall 7,300 (76%) enzymatic and transport 
reactions captured across all microbial reconstructions. Finally, biomass objective functions 
provided in the draft reconstructions from KBase were corrected according to gram status and 
reactions were placed in a periplasm compartment where appropriate (Supplemental Note 3). 

The metabolic models derived from the semi-automatically curated reconstructions showed a 
clear improvement in predicted aerobic and anaerobic growth on unlimited medium and on a 
Western diet and in their agreement with experimental data over models derived from the draft 
reconstructions (Figure 2c, d; Supplemental Note 2). This increased predictive capability was 
expected as the reconstructions were curated against this data during the refinement step. 
Overall, AGORA2 reflects the diversity of captured strains as they clustered by class according 
to their reaction coverage (Figures 2e, S3a, Supplemental Note 4). Several genera in the Bacilli 
and Gammaproteobacteria classes formed multiple subgroups illustrating important metabolic 
differences between them (Figures 2f-g, S3b-c, Supplemental Note 4). Cross-phylum 
metabolic differences also translated to differences in predicted growth rates in Western diet 
(Figure 2 h-k) and in their potential to consume and secrete metabolites (Figure S4a-b). Taken 
together, the AGORA2 reconstructions capture current genomic and biochemical knowledge 
of the reconstructed microbes and can be converted into condition-specific metabolic models. 

Microbial drug metabolism guided by literature and refined genome annotations 

Microbes can directly or indirectly influence drug activity and toxicity through degradation 
(e.g., hydrolysis) and biotransformation (e.g., reduction)3, 4 (Figure 3a). To account for this 
microbial capability, we performed an extensive, manual comparative genomic analysis for 25 
drug genes, encoding for 15 enzymes shown to directly or indirectly affect drug metabolism 
(Table S5), their subcellular locations, and 12 genes encoding for drug-transporter (Table S2d). 
All 5,438 analysed strains carried at least one drug-metabolising enzyme (Figure 3a, Table 
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S2c). As these enzymes are also involved in central metabolism, e.g., nucleoside metabolism, 
this high coverage was expected. We then carried out a thorough literature and database review 
of metabolite structures, formulas, and charges for 98 frequently prescribed drugs belonging to 
10 drug groups and 32 subgroups (Figure 3b). We formulated 1,440 reactions containing 363 
metabolites and added, in average, 254 reactions and 110 metabolites to the reconstructions 
depending on the genomic evidence (Table S6a-b). We validated, with an accuracy of 0.78 
(Fisher’s exact test: p=1.50e18), the drug-metabolising predictions against independent 
published experimental data for 238 drug-microbe pairs (Table S7, Figure S5-S6). The 19 false 
positive predictions may indicate non-functional genes or regulatory mechanisms, whereas the 
34 false negative predictions could be due to incompleteness of genomes or non-orthologous 
displacement in complete genomes. Taken together, this large-scale genome-annotation effort 
revealed a wide range of phyla capable of drug metabolism. 

Taxonomic distribution of drug-metabolising capabilities 

We analysed the taxonomic distribution of the annotated drug and transport genes (Figure 3c-
e, Table S2c). At least one strain in each of the 14 analysed phyla encoded for genes involved 
in drug metabolism (Figure 3e). The most widespread drug-metabolising enzymes were the 
central metabolic enzymes, cytidine deaminase and nitroreductase, which were found in 12 and 
13 phyla, respectively (Figure S7a-b). Another central metabolic enzyme, the pyrimidine-
nucleoside phosphorylase, was also widely distributed, but the monophyletic branch specific 
for the metabolism of brivudine and sorivudine22 was only found in the Bacteroidetes phylum 
(Figures 3d-e, S7c). Many drugs are detoxified by the liver through the addition of glucuronic 
acid3. The microbial β-glucuronidase removes glucuronic acid through hydrolysis thereby 
reverting the drug to its active form. This enzyme was in >99% of analysed Escherichia coli 
strains and was also widely distributed across Bacteroidetes and Firmicutes strains (Figures 
3d-e, S7d), consistent with previous analyses23. Interestingly, E. coli was the species most 
enriched in drug metabolism with >99% of all analysed strains carrying seven to ten drug 
enzymes (Table S2c). The cardiac glycoside reductase and dopamine dehydroxylase could only 
be found in Eggerthella lenta, in agreement with previous reports24, 25. Taken together, drug-
metabolising enzymes, and transporters, are widely distributed but important phyla-specific 
and strain specific differences exist. 

Drugs can serve as carbon, energy, and nitrogen sources and influence microbe-microbe 
interactions 

Next, we investigated in silico the theoretical benefit of metabolising drugs for each microbe. 
Therefore, for all 5,378 reconstructions expanded with the drug reactions and for one example 
drug per enzyme (15 in total), we computed, using flux balance analysis26, the yields for ATP, 
carbon dioxide, pyruvate, and ammonia from 1 mmol drug/gdry weight/hr (Figure 4a). Of the 5378 
strains, 3,828 could use carbon-containing drugs as a source of energy (ATP), carbon dioxide, 
and/or pyruvate (Figure 4a, Table S8). Additionally, 1,619 and 2,319 strains could use 
gemcitabine or 5-fluorocytosine, respectively, as a nitrogen source through deamination, and 
672 strains could use taurine cleaved from taurocholate as a nitrogen source (Figure 4a, Table 
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S6). These results suggest that the presence of drugs could alter the nutrient environment for 
microbes, which may have implications on interspecies growth and interactions27. To test this 
hypothesis, we simulated co-growth of 19,900 microbe-microbe pairs on three different diet 
compositions (Western diet11: alone, plus glucuronidated irinotecan (SN38G), and plus free 
glucuronic acid, (Table S9)). Mutualistic interactions increased from 22% to 33% when the β-
glucuronidase was only in one strain and the other had only the glucuronic acid pathway 
(Figure 4b). In contrast, when both microbes had β-glucuronidase and the glucuronic acid 
degradation pathway, SN38G supplementation resulted in decrease in mutualism from 15% to 
10% (Figure 4b). Taken together, the human-targeted drugs can serve in silico as nutrients to 
the microbes and may thus alter interspecies interactions. 

Community modelling reveals rare and common drug-metabolising capacities among 
colorectal cancer cases and healthy controls   

We then addressed the important question on how the drug-metabolising capacities may differ 
between individuals due to different microbiota composition using a comprehensive, large-
scale metagenomic data set from a Japanese cohort of 365 colorectal cancer (CRC) patients 
and 251 healthy controls28. A total of 97% of the named species could be mapped onto the 
AGORA2 (compared to 72% for AGORA1). For each individual, we integrated all microbial 
models having a non-zero abundance in the sample into one personalised microbiome model. 
We then computed, using flux balance analysis26, each individual microbiomes’ drug-
metabolising potential (Figures 5, S8, Table S10). All drugs but digoxin and balsalazide could 
be qualitatively metabolised in silico by at least 95% of the microbiomes (Figure 5a, Table 
S10a-b), but the microbiomes’ quantitative drug-metabolising potentials varied (Figure S8). 
Digoxin could be metabolised by only 53% of the microbiomes presented the capacity to 
metabolise digoxin (Figure 5a), being strictly dependent on the presence of Eggerthella lenta 
(Figure S9). Balsalazide could be metabolised by 42% of the investigated microbiomes (Figure 
5a) with a tendency of enrichment in CRC cases (Figure 5b) (odds ratio (OR)=1.39, 95%-
CI=(0.99;1.96), p=0.056). Accordingly, the azoreductase was only found in 78 of 5,438 (1.4%) 
analysed strains (Figure 3a, Table S2c), of which only seven species were present in this cohort 
(Figure 6a, Supplemental Note 5, Table S11). The conversion of the prodrug 5-fluorocytosine 
into the active drug 5-fluorouracil and subsequent detoxification4, 29 was limited by the 
presence of certain species (Figure 6b, Supplemental Note 5, Table S11). Equally, the 
conversion of Parkinson’s Disease drug levodopa into m-tyramine25, which limits the levodopa 
bioavailability, was dependent on the presence of E. lenta in a microbiome (Figure 6c, 
Supplemental Note 5, Table S11). We found that diet altered only the predicted microbial 
community drug-metabolising potentials for 4-hydroxyphenylacetate and soriduvine 
highlighting putative diet-drug-metabolome interactions (Figure S10, Table S12). These 
examples demonstrate the added value of simulating enzymatic functions in their metabolic 
context rather than merely counting gene functions captured in a given microbiome sample. 

Drug-metabolising capacities of microbiomes are associated with age, sex, BMI, and CRC 
stages 
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Next, we investigated the statistical association pattern of age, sex, and body mass index (BMI) 
to the drug-metabolising capacities of the microbiome. Predicted secretion potentials of drug 
metabolites were clearly associated with age (Figure 5c), although the effect sizes were small 
to medium. For example, the conversion of sorivudine into a toxic byproduct showed a reverse 
U-shaped association to age with old and young individuals having lower production potentials 
than middle aged persons (Figure 5c, R2 = 0.06, p=7.67e-08). Interestingly, women had clearly 
higher fostamatinib and taurocholate metabolising capability, while slightly, but significantly, 
lower conversion potential of the chemotherapy drug gemcitabine (Figure 5e). However, the 
latter effect was not significant when adjusted for BMI indicating that the lower potential in 
women was putatively related to the sex-differences in BMI. Indeed, conversion of gemcitabine 
was positively associated with BMI measures (Figure 5c), indicating that BMI acts statistically 
as a mediator variable.  
 
Lastly, we investigated whether drug-metabolising capacities were associated with the CRC 
stage. Interestingly, conversion potential of the antibiotic chloramphenicol was clearly reduced 
in late stage CRC (p=0.003), which would result in increased toxicity (Figure 3a). For the other 
drugs, including the cancer drugs, no clear differences in drug-metabolising capacities could 
be observed, despite the reported enrichment in 29 species in CRC metagenomes30. 
Nonetheless, individual differences, regardless of disease status, due to distinct microbiota 
composition existed (Figure S8). In conclusion, AGORA2 in conjunction with metagenomic 
data and clinical parameters enables the investigation into the physiological and 
pathophysiological traits associated with drug-metabolising capacities.  

Discussion 

Here, we introduced AGORA2, a resource of 7,206 genome-scale reconstructions for human-
associated microbes with unprecedented coverage, scope, and curation effort. AGORA2 is 
freely available to the scientific community both as a knowledge base and a metabolic 
modelling tool18. AGORA2 accurately captures biochemical and physiological traits of the 
target organisms and includes manually refined, strain-resolved drug-metabolising capabilities.  

Computational modelling of microbial consortia is increasingly recognised as a 
complementary method to in vitro and in vivo experiments and has the potential to generate 
efficiently experimentally testable hypotheses10, 31. Our knowledge about gut microbes remains 
limited and thus, any in silico reconstruction will be inherently incomplete and require regular 
updates32. Consequently, AGORA2 currently does not yet capture the breath of microbial drug 
and secondary metabolism, e.g., for plant polyphenols33. However, this information may be 
added once a strain-and enzyme-resolved understanding is obtained, as it has been done for 
bile acid metabolism in AGORA134. When modelling microbial consortia, it is important that 
any reconstruction bias (e.g., set of pathways included) is consistent as it is the case for 
AGORA2. Moreover, as AGORA2 uses the same metabolite and reaction nomenclature18 as 
the human metabolic reconstruction16 and the whole-body metabolic reconstructions17, the 
microbiome-level reconstructions (and models) can be used to predict host-microbiome co-
metabolism35, up to their potential contribution to human organ-level metabolism17. Available 
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software tools36, 37 allow for the contextualisation of microbial and human metabolic models 
with omics data, thereby allowing for condition-specific and personalised modelling17 and for 
modelling of the gut (e.g.,38), lung39, tumor40, wound41, and bioremidiation42. 

The taxonomic extension of AGORA2 (Figure 2a, b) covers all 83 named microbes in the 
Broad Institute-OpenBiome Microbiome Library43, all strains in the human gastrointestinal 
bacteria culture collection44, 99 of 100 named species in 92,143 metagenome-assembled 
genomes from 11,850 human gut microbiomes45 as well as 477 of the 573 named species (83%) 
in a resource of over 150,000 microbial genomes46. Furthermore, AGORA2 accounts also for 
species pre-dominantly found in non-Western populations and in disease states, which we 
demonstrated by investigating metagenomic samples of Japanese CRC patients and controls 
(Figure 5-6, Figure S8-10). AGORA2 also captures almost 500 currently uncultured and/or 
uncharacterised strains, and 127 mouse-associated strains (Figure 2a, Table S1). Together, this 
extension increases the prediction fidelity of microbiome-level models and will further broaden 
its application areas.  

Using AGORA2, we predict that gut microbes could use a broad range of frequently prescribed 
drugs (Figure 3b) as energy, carbon, and nitrogen sources (Figure 4a). In fact, depending on 
drug and microbes, the microbe-microbe interactions were altered, which may introduce 
changes in the microbial ecology (which cannot be readily predicted using the COBRA 
approach). The predicted changes in interspecies interactions through liberation of sugars from 
drugs is similar to cross-feeding networks in the gut mediated by polysaccharides47. 
Competitive and mutualistic interactions, which were influenced by the presence of glucuronic 
acid and SN38G (Figure 4b), have been shown to destabilise microbial communities48. These 
predictions underpin increasing reports of the extent, to which gut microbes may alter the 
bioavailability and toxicity of human-targeted drugs49. The microbial communities could only 
be modelled on the species level, in the absence of strain-level abundances28. However, the 
well-described strain-level differences for, e.g., E. lenta24, were captured by AGORA2 (Tables 
S2c, S11). To harness the full potential of AGORA2 as a predictive tool, metagenomic 
sequencing on the strain-level would be valuable. 

We reported associations between CRC patient-specific microbial drug conversion capabilities 
and clinical parameters, such as age and BMI (Figure 5). The example of balsalazide, an anti-
inflammatory drug utilised in treating inflammatory bowel disease (IBD), showcases how 
AGORA2 could be used to inform clinical research, and potentially facilitate personalisation 
of treatment. Balsalazide has high numbers need to treat (NNT) metrics for inducing remission 
(NNT:10) and maintenance (NNT:6) in ulcerative colitits50, indicating that most patients do 
not profit from the drug. Consistently, less than half of the analysed microbiomes activated the 
drug (Figure 5a). Whether this ratio holds in IBD cohorts is yet to be shown, but we revealed 
that the required azobond reduction is a rare capacity among the gut microbiota, suggesting a 
role in limiting efficacy of balsalazide treatment. Thus, AGORA2 in conjunction with 
metagenomics could be utilised to decide on an individual’s benefit of balsalazide treatment. 
Naturally, follow-up clinical trials would be needed to validate such stratification of 
inflammatory bowel patients into responders and non-responders. The finding that drug-
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metabolising capabilities are varying over age-groups, BMI, and sex (Figure 5e, f) 
demonstrates that AGORA2 in conjunction with community modelling can be utilised in large 
epidemiological cohort studies, by mapping the drug-metabolising capacities across diseases 
and risk factors, and thereby opening new research possibilities to understand the role of the 
microbiome in drug metabolism.  

We demonstrated the theoretical drug-metabolising potential of human microbes. Drug 
response to realistic drug concentrations will require hybrid modelling approaches, e.g., 
integrating constrained-based modelling with physiological-based pharmacokinetic 
modelling51, 52 and using a constrained-based model of organ-resolved whole-body metabolism 
with integrated gut microbial community17. In a first step, we showed that the diet plays a role 
for the drug conversion potential of, e.g., sorivudine (Figure S10). Dietary supplements, 
probiotics, antibiotics, or drugs targeting microbial enzymes, which have been shown to 
attenuate side effects of drugs3, could be predicted and validated using such hybrid modelling 
approach51. Taken together, AGORA2 paves the way for an integrative, multi-scale modelling 
approach that may enable in silico clinical trials51 and contribute to precision medicine.  
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Material and methods 

Selection of newly reconstructed organisms and retrieval of whole-genome sequences 

First, we retrieved 4,185 genomes of human gut-associated strains that were available on 
PubSEED53 (Supplemental Note 6). To expand the species coverage, we performed an 
extensive literature search of species isolated from or detected in the human microbiome with 
available whole-genome sequences (Table S1). This search led to the addition of further 1,324 
strains, which included 127 genomes of mouse-associated strains. The corresponding whole-
genome sequences were retrieved in FASTA format from the NCBI FTP site 
(ftp://ftp.ncbi.nlm.nih.gov/). Moreover, we included 26 genomes of Eggerthella lenta strains54 
provided through personal communication. Finally, we retrieved 761 human microbial 
genomes from the Human Gastrointestinal Bacteria Culture Collection (HBC)44 in FASTQ 
format from https://www.ebi.ac.uk/ena/data/view/PRJEB23845 and 
https://www.ebi.ac.uk/ena/data/view/PRJEB10915. Together with AGORA1.03, which was 
obtained from the VMH18, these combined efforts resulted in 7,206 strains and 1,644 species 
included in AGORA2. 

Manual refinement of metabolic pathways and gene annotations through comparative 
genomics 

Of the 7,206 analysed strains, 5,438 bacterial strains and three archaeal strains were present in 
the PubSEED resource53, 55 (Supplemental Note 6) and could be re-annotated for their 
metabolic functions through comparative genomics. 34 metabolic subsystems that had been 
reconstructed previously for a smaller subset of gut microbial strains11, 34, 56-58 , as well as a 
newly created drug metabolism subsystem, were considered for the analysis. All subsystems 
are available at the PubSEED website. 
 
Curation of subsystems: We used the subsystems for biosynthesis of amino acids, B-vitamins, 
quinones, and nucleotides, as well subsystems for central carbon catabolism, biotransformation 
of bile acids, respiration, activation of N-acetylglucosamine, fermentation of amino acids,  and 
drug metabolism (Table S2a for a comprehensive list of subsystems).  For annotation of the 
genes in each subsystem, the PubSEED platform was used53. Functional roles for each 
subsystem were annotated based on the (1) prescribed functional role for the protein, (2) 
sequence similarities of the protein to proteins with previously confirmed functional role, and 
(3) genomic context (Supplemental Note 7).   
 
Metabolic pathways considerations for comparative genomics analysis: Absence of gene(s) 
for one or more enzymes in a pathway may result in blocked reactions in a metabolic 
reconstruction. To avoid this, we estimated the completeness of metabolic pathways during the 
genome annotation. For each potentially synthesised metabolite, all the biosynthetic pathways 
were collected in agreement with the KEGG PATHWAY resource59 and genes of the 
subsystem were attributed to corresponding steps of the metabolic pathways. Absence of the 
consequent reactions was determined as a gap. Only pathways with no more than two gaps 
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with gap length of no more than one step (Supplemental Note 8) were further gap-filled and 
used for generation of reactions. 
 
Sequence-based gap-filling: For the gapped pathways, the bidirectional best-hit (BBH) 
method60 was used: (1) The gene corresponding to the gap and present in the genome for the 
related organisms (belonging to the same species, genus, or family) was used as a query for a 
BLAST search in the genome with the gap. (2) Possible BBHs were defined as homologs for 
that alignment with the query protein having an e-value ≤ e-50 and protein identity ≥ 50%. (3) 
For each possible BBH, the reverse search was done for the genome that was a source of the 
query protein. (4) If the query protein and its best homolog in the analysed genome formed 
BBH pair, the gap was filled. (5) A similar genomic context for the query protein and its 
ortholog was considered as an additional confirmation for orthology of the identified BBH pair. 

Annotation of the drug metabolic genes: To annotate drug-metabolising genes, we used the 
following pipeline. (1) Identify genes known to encode for drug-metabolising enzymes in a 
range of microbial organisms, from the scientific literature (Table S5). (2) Using the amino 
acid sequences of these known drug-metabolising genes as queries, we performed a BLAST 
search for every analysed genome. (3) The resulting best BLAST hit was then used as a query 
for the BLAST search in the genome having known drug-metabolising gene to confirm that 
the known protein sequence and its best BLAST hit form a pair of best bidirectional hits 
(BBHs). (4) All proteins being BBHs were used for the construction of a rooted maximal-
likelihood tree. (5) All previously known proteins were mapped onto the tree, and all 
monophyletic branches containing known drug-metabolising enzymes were determined 
(Figure S11). (6) All annotated proteins in these branches were considered as orthologs of the 
known drug-metabolising proteins. All the proteins not being in branches with known drug-
metabolising proteins were considered as proteins with other function and were excluded from 
further analysis. After the exclusion of the later, a tree was constructed again for orthologs of 
the known drug-metabolising proteins. (7) For two of the drug-metabolising genes, being the 
L-tyrosine decarboxylase (TdcA, EC 4.1.1.25) and the cytidine deaminase (cCda, EC 3.5.4.5), 
we found that genomic context is conserved between species. For these two proteins, we also 
analysed the genomic context. If genomic context of a candidate gene was similar to that of a 
known drug-metabolising gene, the candidate was considered as an ortholog of the known 
protein. Otherwise, it was considered to as a false-positive prediction and excluded from further 
analysis (Supplemental Note 9, Figure S11). As for (6), the tree was constructed again for only 
the orthologs of the known proteins. (8) For each tree, including only the orthologs of the 
known genes, we defined the monophyletic branches containing proteins derived from only 
one species. For each of such species-specific branch, we predicted subcellular localisation 
(Supplemental Note 10), using the CELLO v.2.5 system (cello.life.nctu.edu.tw). (9) For 
cytoplasmic enzymes, drug transporters were predicted based on genomic context 
(Supplemental Note 11, and Table S2d). 

 

Tools. The PubSEED platform53, 55 was used to annotate the subsystems. To search for BBHs 
for previously known proteins, a BLAST algorithm61 implemented in the PubSEED platform 
was used. Additionally, the PubSEED platform was used for analysis of the genomic context. 
To analyse the protein domain structure, we searched the Conserved Domains Database 
(CDD)62 using the following parameters: an e-value £0.01 and a maximum number of hits 
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equal to 500. For the prediction of protein subcellular localisation, the CELLO63 web tool was 
used. Alignments were performed using MUSCLE v.3.8.3164. For every multiple alignment, 
position quality scores were evaluated using Clustal X65, 66. Thereafter, all positions with a 
score of zero were removed from the alignment and the modified alignment was used for 
construction of the phylogenetic trees. Phylogenetic trees were constructed using the 
maximum-likelihood method with the default parameters implemented in PhyML-3.067. The 
obtained trees were midpoint-rooted and visualised using the interactive viewer Dendroscope, 
version 3.2.10, build 1968. 

Literature and database searches 

Biochemical and physiological characterisation papers were retrieved by entering the names of 
AGORA2 species into PubMed (https://www.ncbi.nlm.nih.gov/pubmed/). Information on 
carbon sources, fermentation pathways, growth requirements, consumed metabolites, and 
secretion products (Table S3a-e) were subsequently manually extracted on the species and/or 
genus level from 732 peer-reviewed papers and >8,000 pages of microbial reference 
textbooks69. Moreover, the traits of each reconstructed strain including taxonomy, morphology, 
metabolism, and genome size were retrieved through database searches. The taxonomic 
classification of the strains was retrieved from NCBI Taxonomy 
(https://www.ncbi.nlm.nih.gov/taxonomy/) and, to our knowledge, is up to date at the time of 
this publication. Information on morphology, habitat, body site, gram status, oxygen status, 
metabolism, motility, and genome size were retrieved from the Integrated Microbial Genomes 
and Microbiomes70 database (https://img.jgi.doe.gov/) (Table S1). 

Generation of draft reconstructions 

Draft reconstructions were generated through the KBase12 narrative interface. Genomes present 
in KBase were directly imported into the narrative. Otherwise, genomes in FASTA format were 
uploaded into the Staging Area and subsequently, imported into the narrative through the 
“Batch Import Assembly From Staging Area” 
(https://narrative.kbase.us/#catalog/apps/kb_uploadmethods/batch_import_assembly_from_st
aging) app. Genomes in FASTQ format were directly imported into the narrative through the 
“Import Paired-End Reads From Web” 
(https://narrative.kbase.us/#catalog/apps/kb_uploadmethods/load_paired_end_reads_from_U
RL) app after retrieving the links to the corresponding files from 
https://www.ebi.ac.uk/ena/data/view/PRJEB23845 and 
https://www.ebi.ac.uk/ena/data/view/PRJEB10915. The imported assemblies were annotated 
using RAST subsystems71 through the “Annotate Multiple Assemblies” 
(https://narrative.kbase.us/#appcatalog/app/RAST_SDK/annotate_contigsets) app. Draft 
metabolic reconstructions were generated through the “Create Multiple Metabolic Models” 
(https://narrative.kbase.us/#appcatalog/app/fba_tools/build_multiple_metabolic_models) app 
and exported in SBML format through the “Bulk Download Modelling Objects” 
(https://narrative.kbase.us/#appcatalog/app/fba_tools/bulk_download_modeling_objects) app. 

Semi-automated, data-driven refinement pipeline 
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The AGORA pipeline has been described previously11. Here, we revised the pipeline 
substantially to accommodate additional curation efforts needed for the new reconstructions. 
Specifically, we (i) translated ~1,000 additional reactions and ~800 metabolites from KBase to 
VMH18 nomenclature; (ii) introduced additional gap-filling reactions, where needed, to enable 
biomass production under anoxic conditions on the previously defined Western diet11 with 
thermodynamically consistent reaction directionalities; (iii) removed futile cycles resulting in 
thermodynamically implausible ATP production by making the responsible reactions 
irreversible; (iv) ensured through gap-filling and/or deletion of appropriate reactions that all 
reconstructions captured the collected experimental data (Table S3a-c); and (v) adjusted 
biomass objective functions to account for class-specific cell membrane and cell wall structures 
(Supplemental Note 3). As described previously11, all solutions were manually determined for 
few reconstructions and subsequently propagated to many reconstructions, as appropriate. 
Reactions identified through comparative genomics (Table S2b-c) were added to the up to 
5,438 reconstructions. Non-gene associated reactions, for which the respective gene could not 
be found through comparative genomics, were removed from the draft reconstructions if doing 
so did not abolish biomass production. Moreover, published information on metabolite uptake 
and secretion in ~570 gut microbial species retrieved from72 was mapped onto VMH 
nomenclature and used for validation of the predictive potential and subsequent further 
expansion of the reconstructions (Supplemental Note 2). Finally, to ensure proper 
compartmentalisation, a periplasm compartment was introduced. For consistency, the existing 
818 AGORA1.03 reconstructions (version 25.02.2019, available at 
https://www.vmh.life/files/reconstructions/AGORA/1.03/AGORA-1.03.zip) also underwent 
the revised pipeline. The AGORA1.03 reconstruction of Staphylococcus intermedius ATCC 
27335 was removed since it was a duplicate of the newly reconstructed strain Streptococcus 
intermedius ATCC 27335. The names of 26 AGORA 1.03 reconstructions were changed to 
account for recent changes in taxonomical classification (Table S1). 

All pipeline functions were written in MATLAB (Mathworks, Inc.) version R2018b and relied 
on functions implemented in the COBRA Toolbox36. All newly included metabolites and 
reactions were formulated based on literature and/or database18, 73, 74 searches while ensuring 
mass and charge balance through the reconstruction tool rBioNet75. 

Test suite for quality control and quality assurance 

To ensure that curation efforts were successful, a COBRA Toolbox-based test suite for the 
AGORA2 reconstructions was created and regularly performed during revision of the pipeline. 
Specifically, it systematically accessed whether each reconstruction (i) grew anaerobically on 
the Western diet, (ii) had correct reconstruction structure, i.e., mass and charge balance, and 
correct syntax for gene-protein-reaction associations, (iii) was thermodynamically feasible, 
e.g., produced realistic amounts of ATP, and (iv) captured known metabolic traits of the 
organism according to the collected experimental and comparative genomic data. Table S4 
summarises all features that were tested by the test suite. 

The comparison with the experimental and comparative genomic data was carried out by 
predicting the capability of AGORA2 reconstructions to take up or produce reported consumed 
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or secreted metabolites. If the strain was known to take up or produce the metabolite and the 
corresponding AGORA2 reconstruction could also take or secrete the metabolite, this resulted 
in a true positive prediction, while a false negative prediction occurred when the strain was 
known to have this capability but the corresponding reconstruction did not capture the trait. 
For growth requirements, two types of experimental information were available: nutrients that 
are known to be required by the organism in question, and nutrients that are known to not be 
required. This information allowed us to additionally determine true negatives (the nutrient is 
nonessential for growth in the experiment and in the reconstruction) and false positives (the 
nutrient is nonessential for growth in the experiment but required for growth in the 
reconstruction) for growth requirements. False positive and false negative predictions were 
routinely retrieved, and reaction gap-filling and/or deletion solutions were included in the 
reconstruction pipeline functions to eliminate them. This refinement was performed in an 
iterative effort. 

Flux and stoichiometrically consistent reactions 

The subset of flux and stoichiometrically consistent reactions, as defined in20, was retrieved for 
each AGORA2 reconstruction and corresponding draft reconstruction through the 
‘findFluxConsistentSubset’ and ‘findStoichConsistentSubset’ functions implemented in the 
COBRA Toolbox36. The fraction of stoichiometrically and flux consistent reactions, excluding 
exchange and demand reactions, was determined for each draft and curated reconstruction. 
Briefly, the subset of stoichiometrically consistent reactions in a reconstruction includes all 
reactions that are mass and charge conserved, excluding exchange reactions, which are by 
definition mass and charge imbalanced20. The subset of flux consistent reactions consists of all 
reactions that are stoichiometrically consistent and can carry flux20. 

Formulation of the drug reactions 

A literature search for microbial enzymes known to transform, degrade, activate, inactive, or 
indirectly influence commonly prescribed drugs was performed yielding 15 enzymes in total 
(Figure 3a, Table S5), which are encoded by 29 genes (Table S2b). To enable comparative 
genomic analyses, only drug transformations that could be linked to specific protein-encoding 
genes were considered. As described above, enzyme-encoding genes were analysed in their 
genomic context as outlined in76 using PubSEED subsystems19, 53.  

Literature and database searches were performed for the metabolic fate of commonly 
prescribed human-targeted drugs. The structures of 287 drug metabolites and drug degradation 
products were retrieved from 73 peer-reviewed papers, HMDB77, DrugBank78, and 
Transformer79. Reactions were formulated based on the collected experimentally determined 
drug structures, drug downstream product metabolite structures, and reaction mechanisms. 
Both, cytosolic and extracellular, enzymatic reactions were formulated depending on the 
identified subcellular protein locations. Since at least six drugs undergoing glucuronidation in 
the human body have been shown to be substrates for the microbial ß-glucuronidase80, 81 (Table 
S5), it was assumed that all retrieved glucuronidated drug metabolites (118 in total) could serve 
as substrates. Additionally, ß-glucuronidase reactions were formulated for 33 glucuronidated 
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drug metabolites from a previously reconstructed module of human drug metabolism82. New 
metabolites and reactions were assigned VMH IDs following standards in nomenclature used 
for COBRA reconstructions8, and formulated while ensuring mass and charge balance through 
the reconstruction tool rBioNet75. In total, for 98 drugs (Figure 3b), 353 unique metabolites, 
381 enzymatic reactions, 373 exchange reactions, and 710 transport reactions (Table S6a-b) 
were formulated. 

Atom-atom mapping 

Atom-atom mappings were obtained using a database standardisation pipeline described in 83 
and the AGORA2 reconstructions, specifically the information of the metabolites present in 
the reconstructions together with the reaction stoichiometry. The database standardisation 
pipeline83 was executed in MATLAB and use different external software tools, such as 
ChemAxon84, Open Babel85 and, the Reaction Decoder Tool86. The process to obtain the atom-
atom mappings for the AGORA2 reconstructions can be summarised as follows: 1) 1,838/3,533 
metabolic structures of the metabolites present in the AGORA2 reconstructions were collected 
from different chemical databases, such as VMH18, KEGG74, HMDB77, PubChem87 and 
ChEBI88 databases. The metabolic structures were standardised based on the InChI algorithm89 
and can be found in the VMH database86; 2) the standardised metabolites and the reaction 
stoichiometry in the AGORA2 reconstructions were used to generate 5,583/7,300 MDL RXN 
files; 3) 5,583/7,300 AGORA2 reactions were atom mapped using the Reaction Decoder Tool 
algorithm86 for active reactions and a pipeline's algorithm83 for passive transport reactions and 
coupled transport reactions. Atom-atom mappings can be found in the VMH database18. 

Simulations 

All simulations were performed in MATLAB (Mathworks, Inc.) version R2018b with IBM 
CPLEX (IBM) as the linear and quadratic programming solver. The simulations relied on 
functions implemented in the COBRA Toolbox36, and the Microbiome Modelling Toolbox37. 
Flux balance analysis (FBA)26 was used to interrogate drug metabolism. All additional scripts 
for data generation, data analysis, and data visualisation are available at 
https://github.com/ThieleLab/CodeBase. 

Validation of drug-metabolising capacities against independent, experimental data 

A literature search was performed for in vitro experiments demonstrating the capabilities of 
human microbial strains to metabolise reconstructed drugs through the 15 annotated enzymes 
(Table S7). If no studies on the reconstructed drugs were found for the enzyme, studies on 
demonstrated drug activity of the enzyme were recorded. Subsequently, the capabilities to 
metabolise the drugs through the respective enzymes for 169 AGORA2 metabolic model, for 
which data could be found, were tested by computing whether the corresponding reaction could 
carry flux (Table S7). If possible, the tested organisms were matched to AGORA2 models on 
the strain level, otherwise pan-species models were used. Accuracy, sensitivity, and specificity 
of predictions were calculated by determining the number of true positive, true negative, false 
positive, and false negative predictions. 
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Drug yields 

To determine each strains’ capability to metabolise drugs, all AGORA2 were constrained with 
a simulated Western diet11 and the flux through the exchange reactions corresponding to each 
drug was minimised through FBA, corresponding to maximal uptake of the drug. For all 
AGORA2 organisms capable to take up at least one drug, the yield of ATP, carbon, and 
ammonia from 1 mmol of the drug/gdry weight/hr was evaluated as follows. Each reconstruction 
was constrained to only allow the uptake of water, phosphate, and oxygen (VMH IDs: h2o, pi, 
o2). Demand reactions for ammonia as well as CO2 and pyruvate (as proxies for carbon 
sources) (VMH IDs: nh4, co2, pyr) were added, while a demand reaction for ATP (VMH ID: 
atp) already existed in each reconstruction. Next, the uptake of each drug metabolite (15 in 
total, one representative for each enzyme) was allowed one by one at an uptake rate of 1 
mmol/gdry weight/hr. For each drug metabolite, the yields of ATP, ammonia, CO2, and pyruvate 
from each drug metabolite were computed using flux balance analysis (FBA) by maximising 
the flux through the respective demand reactions. As control, yields were also computed for 1 
mmol/gdry weight/hr of glucose and without any metabolites added.  

Pairwise simulations 

We randomly selected 50 AGORA2 strains each out of (i) all 872 strains that could use 
glucuronic acid but did not have the b-glucuronidase enzyme, (ii) all 79 strains that did have 
b-glucuronidase but could not use glucuronic acid, (iii) all 1,473 strains that could use 
glucuronic acid and had b-glucuronidase, and (iv) all 3,423 strains that neither used glucuronic 
acid nor had ß-glucuronidase. The resulting 200 strains were joined in all possible 
combinations, as described previously90 resulting in 19,9000 pairwise models. For each pair, 
co-growth was predicted using functions implemented in the pairwise modelling module in 
Microbiome Modeling Toolbox37 with the possible outcomes being competition, parasitism, 
amensalism, neutralism, commensalism, and mutualism as defined in90. Pairwise models were 
grown anaerobically on the previously defined Western diet11 under three conditions: (i) no 
additional compound added, (ii) supplementation with 10 mmol/gdry weight/hr of irinotecan in its 
glucuronidated form SN38G (VHM ID: sn38g), (iii) supplementation with 10 mmol/gdry 

weight/hr of free glucuronic acid (VMH ID: glcur). 

Definition of an average Japanese diet 

An average Japanese diet was defined based on the mean daily food consumption in 106 
Japanese dietitians determined from a food frequency questionnaire and 28 days weighed diet 
records91. The reported food items were mapped to the corresponding or closest possible item 
in a database of >8,000 food items available on the VMH18 website. The Diet Designer function 
on the VMH website permits the design of a personalised diet through input of daily food 
consumption quantities with the uptake flux values in mmol/person/day for each nutrient as the 
output18. The designed diets are suitable for the contextualisation of personalised microbiome 
models37. The mapped mean daily food consumption quantities in gram were entered into the 
Diet Designer tool and the generated diet uptake fluxes were exported. To perform microbiome 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.09.375451doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.375451
http://creativecommons.org/licenses/by-nc/4.0/


   
 

 18 

modelling simulations, the retrieved diet fluxes were adapted to enable biomass production of 
all AGORA2 strains by using the ‘adaptVMHDiet2AGORA’ function as described 
previously34. Table S13a) shows the retrieved quantities of food items in grams that were the 
input for the Diet Designer tool. Table S13b shows the adapted uptake fluxes in 
mmol/person/day that were used to contextualise the microbiome models for 616 Japanese 
individuals in silico (see also next section). 

Simulation of drug metabolism by individual gut microbiomes 

Previously, metagenomic sequencing from faecal samples of a cohort of 616 Japanese 
colorectal cancer patients and healthy controls had been performed28. Species-level abundances 
for this cohort, which has been determined with MetaPhIAn292, were retrieved from 
https://www.nature.com/articles/s41591-019-0458-7#MOESM3. Unclassified taxa on the 
species level, eukaryotes, and viruses were excluded. Of the remaining 517 species, 502 (97%) 
could be mapped onto 1,644 AGORA2 species based on names. Pan-species models for 
AGORA2 were created through the ‘createPanModels’ function. From the pan-species models, 
personalised microbiome models for each of the 616 samples were built and parameterised as 
described elsewhere34, 37 with the species-level abundances as input data. To contextualise the 
models with appropriate diet constraints, the Average Japanese Diet described above was used 
instead of the previously used Average European diet34. To predict the drug conversion 
potential of each microbiome, the faecal secretion reactions for 13 drug metabolism end 
products were optimised one by one using FBA26, while providing the respective precursor 
drug as well as oxygen at a de facto unlimited uptake rate of 1000 mmol/gdry weight/hr. 

Shadow price analysis 

To determine species in microbiome models that were of importance for the microbiome’s 
combined potential to metabolise a drug, a shadow price analysis was performed as described 
previously34. Briefly, shadow prices are a feature of every flux balance analysis solution (i.e., 
the shadow price is the dual to the primal linear programming problem) that reflect the 
contribution of each metabolite in the model to the flux through the objective function7. Briefly, 
a non-zero shadow price for a metabolite indicates that this metabolite has importance for the 
total flux capacity through the optimised objective function, i.e., in our case, the secretion of a 
drug metabolic product. A shadow price of zero indicates that increasing the availability of this 
metabolite would not change the flux through the objective function. To determine the species 
that were bottlenecks for the conversion potential of the 13 drugs in each microbiome model, 
nonzero shadow prices for species biomass metabolites (‘species_biomass[c]’), which reflect 
the contribution of the species to the community biomass reaction, were retrieved. 

Statistical analysis 

We analysed statistically the net production capacity of 13 drug metabolites (Figure 5b) among 
252 healthy individuals and 364 CRC patients. For each drug metabolite, we calculated the 
mean flux and the share of microbiomes with a flux greater zero. Drug metabolites, which had 
in over 50% of the cases a zero flux were dichotomised (can be produced vs. cannot be 
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produced) and subsequently, analysed via logistic regressions. Drug metabolites with over 50% 
non-zero entries were analysed via linear regressions using heteroscedastic robust standard 
errors. First, we investigated potential effects of basic covariates (age, sex, and BMI) via 
generalised linear regressions (logistic or linear) with the net production capacity being the 
response variable (dichotomised or metric). Age and BMI were introduced into the models as 
restricted cubic splines93 using four knots (the 5%-percentile, the 33%-percentile, the 66%-
percentile, and the 95%-percentile) resulting in three spline variables, each to test on potential 
non-linear relationships. Significance was then determined by testing the three spline variables 
belonging to age (or BMI, respectively) simultaneously on zero via the Wald test93. While for 
age substantial non-linearities were found, no indication for non-linear BMI effects could be 
identified. The final models included, therefore, only the linear BMI term. Second, we tested 
for potential associations of net production capacities with case control status. This was done 
via generalised linear regressions (logistic or linear) with the net production capacity being the 
response variable (dichotomised or metric), while adjusting for age (restricted cubic splines), 
sex (male/female), and BMI (linear). Finally, we tested analogously on associations with the 
CRC stage by introducing the stage as categorical variable (multiple polyps, 0, I/II, and III/IV) 
into the model. We corrected for multiple testing using the false discovery rate, adjusting 
significance values for 13 tests per analyses stream. A test was considered nominal significant 
with p<0.05 and FDR-corrected significant if FDR<0.05. For sensitivity analysis, we 
recomputed the drug-metabolising capabilities using an average European diet instead of a 
Japanese diet. Then, we calculated Pearsons correlations for each drug metabolite between the 
secretion potentials under Japanese and an average European diet. All statistical analyses were 
performed with STATA 16/MP. 

Data visualisation 

The phylogenetic tree of AGORA2 organisms was constructed in PhyloT 
(https://phylot.biobyte.de/) and visualised in iTOL (https://itol.embl.de/)94. Violin plots were 
generated in BoxPlotR (http://shiny.chemgrid.org/boxplotr/). Clustering of taxa by reaction 
presence through t-distributed stochastic neighbour embedding (t-SNE)95 was performed using 
the t-SNE implementation in MATLAB with Euclidean distance, barneshut set as the 
algorithm, and perplexity set to 30. Taxa with fewer representatives than 0.5% of all clustered 
strains were excluded from the t-SNE plots. Circle plots were generated using the online 
implementation of Circos96. Figure 5 was generated with the graphics functions of STATA 
16/MP. All other data was visualised in MATLAB and R97.  
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Figures 

 

Figure 1: Overview of the AGORA2 pipeline. The pipeline consists of (i) collection of draft 
reconstructions, comparative genomic data, biochemical and physiological data, and drug 
structures and microbial conversion reactions, (ii) conversion of data into a MATLAB-readable 
format, and integration into pipeline functions, (iii) data-driven refinement of KBase draft 
reconstructions with continuous testing against input data and subsequent update to pipeline 
functions to correct for false predictions. 
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Figure 2: Features of AGORA2. a) Taxonomic coverage and sources of reconstructed strains. 
b) Taxonomic distribution of the included 7,206 strains. c) Features of the AGORA2 curated 
reconstructions and KBase draft reconstructions. c = cytosol, e = extracellular space, p= 
periplasm. Growth rates on Western diet (WD) and unlimited medium (UM) (Methods) are 
given in 1/hr. ATP production potential on WD is given in mmol/gdry weight/hr . d) Number of 
reconstructions with available positive findings from comparative genomics and literature, and 
percentage of curated and draft reconstructions agreeing with the findings for the respective 
organism. N/A = not applicable since pathway was absent in draft reconstructions. e-g) 
Clustering through t-distributed stochastic neighbour embedding (t-SNE)95 of reaction 
presence across all pathways per reconstruction. e) Members of the 23 largest classes by class. 
f) Members of the Bacilli class by genus. g) Members of the Gammaproteobacteria class by 
genus. h-k) Features of all AGORA2 reconstructions across phyla: h) Number of reactions. i) 
Number of metabolites. j) Number of genes, and k) Growth rate in 1/hr on aerobic WD. 
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Figure 3: Overview of reconstructed drugs and annotated drug enzymes present in 
AGORA2. a) Description of the 15 enzymes directly or indirectly metabolising drugs that were 
annotated in this study. The IDs for associated genes are as given in the PubSEED subsystem 
and in Table S2c. ‘c’ indicates genes for cytosolic enzymes and ‘e’ indicates genes for 
extracellular enzymes. b) Description of the 98 drugs, for which microbial metabolism was 
reconstructed. c) Fraction of strains carrying each gene encoding drug enzymes or transport 
proteins in the four main phyla in the human microbiome. For the list of abbreviations, see 
Figure 3a and Table S2b. d) Distribution of the number of drug genes per strain for the four 
main phyla. e) Distribution of the number of strains carrying each drug enzyme over the 14 
analysed phyla. 
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Figure 4: Drugs serve as nutrients for human microbes and influence microbe-microbe 
interactions. a) Yields from 1 mmol/gdry weight/hr of drugs that can serve as sources for ATP, 
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CO2, pyruvate, and NH4 production. Shown are all microbes that could use at least one drug to 
produce the respective source. Glucose and no compound added are shown as controls. One 
example drug per enzyme was tested. b) Pairwise interactions between 200 microbes 
corresponding to 19,900 microbe-microbe pairs on an anaerobic Western diet with no 
additional compounds (none), SN38G added (+sn38g), and free glucuronic acid added 
(+glcur). Shown are percentages of the six possible interactions grouped by the characteristics 
of the two microbes in each pair regarding the presence of glucuronic acid degradation 
pathway, ß-glucuronidase, or neither.  

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.09.375451doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.375451
http://creativecommons.org/licenses/by-nc/4.0/


   
 

 26 

 

Figure 5: The drug conversion potential of 616 microbiomes in a Japanese cohort of 365 
CRC patients and 251 controls correlates with BMI, age, sex, and CRC stage. a) Total 
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qualitative drug conversion potential in the 616 microbiomes Blue=microbiome can convert 
the drug, red=no conversion. Only 53% (95%-CI=(49%;0.57%) and 42% (95%-
CI=(38%;46%) of the microbiomes could metabolise digoxin and balsalazide, respectively. b) 
Overview on descriptive statistics for the modelled drug metabolites. c) Scatter plots (red: 
controls; blue cancer) of various drug metabolites in dependence on age with non-linear 
regression lines for cases and controls. Regression lines were estimated with restricted cubic 
splines. All regression models had p<0.0001 (FDR<0.05) and regression coefficients were 
virtually the same for cases and controls. d) Scatter plot (red: controls; blue cancer) of 2',2'-
difluorodeoxyuridine (microbial metabolite of 5-fluorocytosine) in dependence of BMI with 
linear regression lines for cases and controls. The slope of BMI was significant (b=2.11, 95%-
CI=(1.12;3.09), p=2.88e-05, FDR<0.05) adjusted for sex and age (restricted cubic splines), but 
no significant differences could be found between CRC cases and controls (p=0.71). e) Box 
plots of 2',2'-difluorodeoxyuridine (metabolite of gemcitabine), cholate (metabolite of 
taurocholate r406 (metabolite of fostamatinib) on sex. P-values were derived from linear 
regressions adjusted for age (restricted cubic splines). All three effects were significant after 
correction for multiple testing (fostamatinib: b=-31.3, 95%-CI =(-43.70;-19.05), p=7.58e-07, 
FDR<0.05; gemcitabine: b=12.89, 95%-CI=(4.85;20.92); cholate: b=-25.81, 95%-CI:(-37.45;-
14.18), p=1.55e-05, FDR<0.05). f) Predicted share from logistic regressions of microbiomes 
able to produce 5-aminosalicylic acid in dependence of age (restricted cubic splines) and case-
control status. Effect of age was significant corrected for multiple testing FDR<0.05. 
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Figure 6: Bottlenecks limiting drug-metabolising capacity in 616 microbiomes. Non-zero 
shadow prices indicate that increasing the abundance of this species would increase the 
secretion flux of the end product of the shown enzymatic reaction in this microbiome. A 
shadow price of zero shows that increasing the abundance of the species would not affect 
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secretion of the end product. a) Pathway of balsalazide azo-reduction to 5-aminosalicylic acid 
and subsequent acetylation to N-aetyl-5-aminosalicylic acid. b) Pathway of 5-fluorocytosine 
deamination to 5-fluorouracil and subsequent reduction to 5,6-dihydro-5-fluorouracil. c) 
Pathway of levodopa decarboxylation to dopamine and dopamine dehydroxylation to m-
tyramine. In each panel, the x axis shows net secretion flux of the drug metabolite per 
microbiome in mmol/gdry weight/day and the y axis shows the relative reaction abundance per 
microbiome. 
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