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Abstract 

Enhancers are one class of the regulatory elements that have been shown to act as key 

components to assist promoters in modulating the gene expression in living cells. At 

present, the number of enhancers as well as their activities in different cell types are 

still largely unclear. Previous studies have shown that enhancer activities are 

associated with various functional data, such as histone modifications, sequence 
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motifs, and chromatin accessibilities. In this study, we utilized DNase data to build a 

deep learning model for predicting the H3K27ac peaks as the active enhancers in a 

target cell type. We propose joint training of multiple cell types to boost the model 

performance in predicting the enhancer activities of an unstudied cell type. The results 

demonstrated that by incorporating more datasets across different cell types, the 

complex regulatory patterns could be captured by deep learning models and the 

prediction accuracy can be largely improved. The analyses conducted in this study 

demonstrated that the cell type-specific enhancer activity can be predicted by joint 

learning of multiple cell type data using only DNase data and the primitive sequences 

as the input features. This reveals the importance of cross-cell type learning, and the 

constructed model can be applied to investigate potential active enhancers of a novel 

cell type which does not have the H3K27ac modification data yet. 

Availability The accuEnhancer package can be freely accessed at: 

https://github.com/callsobing/accuEnhancer  

 

Introduction 

Understanding the effect of gene regulation to human health is a fundamental 

scientific problem and emerges to be a critical task of translational genomics in the 

clinics. Due to the rapid growth of next-generation sequencing (NGS) technologies 

(Mardis 2008), exploring individual genomes much more thoroughly becomes 

possible than ever. By means of whole genome sequencing (WGS) (Cirulli and 

Goldstein 2010), we can now not only identify the variants located in the coding 

regions but also discover a massive number of variants located in the non-coding 

regions (Zhang and Lupski 2015). The functional and regulatory importance of the 

coding regions can be revealed by various annotations, such as protein function, 
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pathway information, and other annotation resources from public databases. In 

contrast, the annotation of non-coding regions remains largely unknown (Griffiths-

Jones, Moxon et al. 2005). Due to the recent developments of international 

consortiums like ENCODE (Consortium 2004), Roadmap (Bernstein, 

Stamatoyannopoulos et al. 2010), GTEx (Lonsdale, Thomas et al. 2013) and other 

major genomic research groups for their attempts to characterize the regulatory 

genomes by producing various types of experimental data in the past decade, these 

data have made perfect resources for investigating the regulatory grammar in the non-

coding regions.  

Despite a large number of accumulated experimental datasets, how to investigate 

the active regulatory elements in different cell types from these data is still an open 

question. Many studies implied that the non-coding regions can be divided into 

different categories, such as promoters, enhancers, insulators, silencers and other 

functional units (Ernst and Kellis 2012). While promoters can control the basic 

expression profiles of the downstream proximal genes, the enhancers can activate 

expression of multiple distal genes by chromosome looping or other mechanisms. 

These regulatory grammars are often considered as cell type specific processes (Spitz 

and Furlong 2012). The active enhancers within a cell type are genomic loci 

containing several transcription factor (TF) binding sites and generally located in the 

accessible chromatin regions (Andersson, Gebhard et al. 2014). Recent genome-wide 

investigation of the epigenetic marks has discovered that active enhancers are 

associated with certain histone modification signals, such as H3K4me3 (Chen, Chen 

et al. 2015), H3k27ac (Heintzman, Stuart et al. 2007, Creyghton, Cheng et al. 2010), 

and H3k9ac (Karmodiya, Krebs et al. 2012), and these histone modification data 

make valuable sources for predicting active enhancers. There are several high 
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throughput experimental approaches to define the active enhancers within each cell 

type. The first is to map the binding sites of the TFs to the genome using ChIP-seq 

data. This approach requires not only a large amount of ChIP-seq experimental data of 

TF binding but also the knowledge of the proper TF combinations (Shlyueva, 

Stampfel et al. 2014). The second approach is to identify the binding profiles of the 

histone acetyltransferase EP300, a TF which recruits cofactors to initiate the 

transcription activation process by acetylating chromatin (Lee, Karchin et al. 2011). 

The third approach is to use the DNase-I hypersensitivity sites as the potential active 

enhancers (Wilken, Brzezinski et al. 2015). However, the open chromatin regions 

consist of many types of regulators, including promoters, enhancers, silencers, and 

insulators, using DNase-I hypersensitivity sites as the potential active enhancers lacks 

the specificity to identify active enhancers precisely. While enhancer elements are 

known to be associated with certain histone modifications, another approach is to use 

epigenetic marks, such as H3K27ac, to identify the active enhancers (Creyghton, 

Cheng et al. 2010). The histone modification data, H3K27ac, has been used to 

distinguish active from inactive enhancers in previous studies (Creyghton, Cheng et al. 

2010, Natoli and Andrau 2012, Zhu, Sun et al. 2013). 

In addition to the experimental methods mentioned above, there are several 

computational approaches that have been proposed in the past decade. The problem 

can be tackled from different aspects, such as classification of the chromatin states 

(ChromaSig (Hon, Ren et al. 2008), ChromHMM (Ernst and Kellis 2012) , Segway 

(Hoffman, Buske et al. 2012)), prediction of the p300 binding sites (CSIANN (Firpi, 

Ucar et al. 2010), RFECS (Rajagopal, Xie et al. 2013), DELTA (Lu, Qu et al. 2015), 

REPTILE (He, Gorkin et al. 2017)), prediction of the H3k27ac peaks (PEDLA (Liu, 

Li et al. 2016), EP-DNN (Kim, Harwani et al. 2016)), and prediction of the 
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experimentally validated enhancers from VISTA (Visel, Minovitsky et al. 2007) or 

FANTOM (Bono, Kasukawa et al. 2002) databases (DEEP (Kleftogiannis, Kalnis et 

al. 2015), EnhancerDBN (Bu, Gan et al. 2017), and BiRen (Yang, Liu et al. 2017)). 

Among all the developed models, only a handful of studies attempted to predict 

enhancer activities across cell types (using the data of one cell type as the training 

data to predict the enhancer activity of another cell type), which is still a difficult task 

when compared to the within-cell type predictions (using partial data of one cell type 

as the training data to predict the enhancer activity of the holdout data from the same 

cell type). 

In this regard, the objective of this work is to build a cross-cell type model for 

active enhancer predictions. We first constructed a within-cell type predicting model 

by using sequence information and several epigenetics marks (H3K27me3, 

H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3K9ac, and DNase) to evaluate the 

feasibility of using convolutional neural networks (CNN) (Lawrence, Giles et al. 1997) 

in enhancer prediction. When a comprehensive set of functional data is used as the 

input features, not only the within-cell type models deliver satisfied performance, but 

also the cross-cell type models. However, this means all functional data features must 

be available before the prediction of active enhancers for a novel cell type can be 

made. To reduce the cost of predictions, we aim to reduce the types of functional data 

used in constructing the prediction models. The DNase data retrieved from DNase-I 

hypersensitivity sites is considered because it is ubiquitously available across different 

cell types and highly related with the active enhancers. In this study, we develop 

accuEnhancer that can accurately predict cross-cell type enhancer activity by using 

only the DNase data along with the genomic sequence. First, we enlarge the range of 

the functional data explored when constructing the models. We then collect data from 
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multiple cell types (50 in total) and use them as the input data of accuEnhancer to 

demonstrate the power of the developed joint training framework. The main concept 

of the joint training using multiple cell types is to take the advantage from the 

variability between different cell types, in order to discover critical hidden patterns 

embedded in active enhancers. We further utilize the pre-trained filter weights 

constructed from the DeepC (Schwessinger, Gosden et al. 2020) study, which trained 

the deep neural nets with hundreds of epigenomics data, as the initial weights in the 

genomic sequence module of accuEnhancer to improve the model performance. All 

the three distinct features of accuEnhancer, enlarging the explored region of DNase, 

joint training of multiple cell types, and using pre-trained weights from DeepC, are 

shown to provide promising improvements on the prediction performance. In the end 

of this study, we tested accuEnhancer on experimentally validated enhancers in the 

VISTA database and compared the performance of accuEnhancer with other existing 

tools. In summary, accuEnhancer is the first methodology that attempts to integrate 

multiple cell types as the training dataset for predicting enhancer activity using only 

the DNase data along with genomic sequences. The integration of multiple cell type 

data with joint learning makes accuEnhancer have the superior model performances 

and provides different aspects to tackle the enhancer predicting problems. The 

accuEnhancer package and all the preprocessing scripts can be accessed on the 

GitHub repository (https://github.com/callsobing/accuEnhancer). 

 

Results 

Network structure of accuEnhancer 

The proposed method, accuEnhancer leverages the characteristics of CNN, a feed-

forward neural network with a large number of neurons widely used in image 
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processing, speech recognition, and natural language processing, to build the model of 

predicting active enhancers. The architecture of accuEnhancer consists of two 

different modules (Figure 1), the genomic sequence module and the functional data 

module. The numbers of filters in both genomic sequence and functional data modules 

were set to 64 with a length of 16. The final setting was determined after a series of 

evaluations across different parameter settings. The stride in the max-pooling layer is 

set to 1, and the fully connected layers both have 32 hidden nodes. The sequence 

length of each instance is set to 200 base pairs (bps) and the sequences will be further 

one-hot encoded into a 4×200 matrix for downstream analysis. Since the DNase data 

(DNase-I hypersensitivity sites) is a region-based functional data, we attempted to 

expand the observed DNase region from [−100 bps, +100 bps] to [−2500 bps, +2500 

bps] (the center of the input sequence is set to zero as the reference point) and divide 

this region into 25 bins, of which each has 200 bps in length. This will result in a 

1×25 matrix that is used as the input for the functional data module.  

A previous work, DeepC, used 936 chromatin-accessibility and epigenetic 

datasets to train a deep CNN to predict chromatin accessibility based on DNA 

sequence across cell types. The DeepC network architecture was adapted from 

DeepSEA, a deep learning-based method for predicting the chromatin effects. DeepC 

used five convolutional layers with ReLU as the activation function, followed by 1D 

max pooling and dropout at every convolutional layer. The DeepC model learned to 

recognize chromatin features from DNA sequences first and then combined the 

underlying sequence patterns to predict chromatin interactions. The genomic sequence 

module of accuEnhancer leveraged the DeepC-pretrained weights to predict the 

chromatin features from the given DNA sequences and replaced the final output layer 

of DeepC with two convolution layers for further training. In this study, we tested the 
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within-cell type model performances with and without using the pre-trained weights 

from DeepC, respectively. The result shows that with the pre-trained weights from 

DeepC, the model achieved better F1 score on the testing dataset (Supplementary 

information: Figure S1). Therefore, the pre-trained weights are further used 

throughout the rest analyses of this study. Figure S1 also provided us with the good 

performance that a within-cell type model can deliver when using a comprehensive 

set of functional data as the input features. 

 

Integrating data from multiple cell types improves enhancer prediction accuracy 

In order to build models to predict cross-cell type enhancer activity, we first attempted 

to select proper functional data as the input features of the deep neural networks. 

Although combining various kinds of functional data can predict active enhancers 

accurately across cell types (Supplementary information: Table S1), the cost of 

conducting the ChIP-seq experiments of all histone markers makes it barely 

impossible to generate all the required data. DNase data is one of the functional data 

type that has been reported as highly related to active enhancers and the DNase data is 

also one of the largest collections of functional data in the ENCODE database. In this 

regard, accuEnhancer combines genomic sequences and DNase information related to 

the given loci to construct the predicting models. We used the model trained from one 

single cell type (H1-hESC) to predict another cell type (HepG2). The performance 

(F1 score: 0.29) is poor (Figure 2), and the area under ROC is 0.783. Since the 

genomic context between different cell types may vary a lot, the main concept of 

accuEnhancer is to learn the complex regulatory grammars from different cell types of 

the training data. For this purpose, we selected 50 cell types with publicly accessible 

DNase and H3K27ac data as our training data, where the H3K27ac data is used to 
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label each of the training instances as positive or negative. The correlation of active 

enhancers between these 50 cell types are calculated based on the H3K27ac ChIP-seq 

peaks of each cell type (Supplementary information: Figure S2). The analysis showed 

that the similarity of active enhancers between these 50 cell types is not high, which is 

good for providing active enhancers from multiple cell types for the training purpose. 

We incrementally increased the number of the integrated cell types to build the 

accuEnhancer models and tested the performances on the independent cell type 

(HepG2). The performances of the models integrating 1, 3, 5, 9, 20, 30, 50 cell types 

are shown in Figure 2. The ROC curves showed that the models constantly improved 

performances while including more cell types as the training data. The final model 

that merges 50 cell types achieved area under ROC (AUC) of 0.958, which is satisfied 

for predicting active enhancers in novel cell types for future applications. 

 

Integrating data from multiple cell types helps to identify novel active enhancers 

Since the AUC of the accuEnhancer model increased apparently as we integrated 

more training cell types, we would like to investigate if the better performance came 

from the enhancers that have been previously observed in the training dataset. We 

first listed all the loci of 200 bps bins of active enhancers in the 50 training cell types 

and in the HepG2 cell type, respectively. Next, we identified the enhancers which are 

active in the HepG2 but never active in any of the 50 cell types used in training. This 

resulted in a total of 24,936 bins of HepG2 novel enhancers. The model prediction 

outcomes of these 24,936 HepG2 novel enhancers are shown in Figure 3. The result 

revealed that when an active enhancer is not present (novel) in the training dataset, 

only 1,304 enhancers can be predicted as active enhancers in the single cell type 

model. On the other hand, 10,705 enhancers can be correctly identified as active 
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enhancers in the model combining 50 cell types. The results suggest that integrating 

data from multiple cell types can not only increase the model performance by 

observing more active enhancers from other cell types, but also detecting some hidden 

patterns to identify active enhancers that have never been observed as active 

enhancers from the previous cell types. We also compared the relations between recall 

and precision of different models in predicting HepG2 active enhancers (Figure 4). 

The recall rates increased from 0.18 to 0.83, and the precision rates slightly increased 

from 0.64 to 0.83, when number of cell types integrated in accuEnhancer increased. 

As the recall rate of the HepG2 novel active enhancers is concerned (Supplementary 

information: Figure S3), not only the recall rate of ‘non-unique’ enhancers increases 

when the number of cell types included in the training process increases, but also the 

recall rate of ‘novel’ enhancers. This demonstrates the ability of accuEnhancer in 

retrieving complicated regulatory patterns through the diversity of active enhancers 

from multiple cell types. 

 

accuEnhancer outperforms other algorithms for predicting VISTA enhancers 

accuEnhancer demonstrated the ability to predict cross-cell type active enhancers by 

integrating data from multiple cell types in human. Here, we further tested whether 

the strategy to integrate multiple lines of data to predict active enhancers also works 

in other species. For this purpose, we collected the active enhancers from the VISTA 

database, a central resource for experimentally validated human and mouse non-

coding fragments with gene enhancer activity as assessed in transgenic mice, and 

constructed accuEnhancer models in mouse. We collected the active enhancers data 

from mouse embryo tissues, including hindbrain, forebrain, neural tube, and midbrain, 

at embryonic day 11.5 with available DNase ChIP-seq data. We used these four 
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tissues in this study to train four accuEnhancer models separately, each time using 

three tissues as training data and the rest one tissue as testing data. To compare with 

other algorithms, including CISANN, DELTA, REPTILE and RFECS, we also 

trained accuEnhancer on mouse embryonic stem cell (mESC) as REPTILE suggested. 

The predicting results for the four tissues are shown in Figure 5. accuEnhancer shows 

slightly better predicting AUPRC than existing methods based on the mESC training 

data, while the performance of joint training data of other three cell types (denoted as 

‘3 tissues’) outperformed all other methods with significant differences. We further 

examined the area under ROC (AUC) for hindbrain and discovered that accuEnhancer 

trained on mESC has a very similar AUC (0.793) with REPTILE (0.725), but the 

AUC of the accuEnhancer increased to 0.981 as the model uses other three tissues as 

the training data (Figure 6). This result not only shows accuEnhancer works in human, 

but also shows superior performances in mouse tissues. This suggested that when with 

DNase data, accuEnhancer can predict active enhancers in novel cell types within 

same species with high accuracy. accuEnhancer outperforms the previous works in 

predicting VISTA enhancers, which demonstrates that the strategy to integrate 

multiple cell types for joint training can boost the model performance in predicting 

active enhancers. 

 

Discussions 

In this study, we demonstrated the effectiveness of deep learning framework and 

revealed the potential of using only the DNase-derived features along with the 

sequence information to construct the model for predicting active enhancers across 

different cell types. accuEnhancer also indicates that the model performances can be 

largely enhanced by integrating data from different cell types. The successful 
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application of accuEnhancer on predicting the VISTA enhancers in different tissues 

also showed that the model can apply to other species and identify active enhancers 

based on the DNase-seq and genomic sequence data only. Despite there are many 

databases and consortiums working hard to generate functional data from different 

cell lines, tissues, or primary cells, many cell types still lack sufficient data to 

annotate the location of active enhancers along the genome. The construction of 

accuEnhancer aims to locate the active enhancers within a novel cell type and requires 

only limited functional data, the DNase-seq.  

As the number of DNase bins used in the functional data module is concerned, we 

tested different numbers of DNase bins adopted the functional data module 

(Supplementary information: Figure S5) when constructing the 50-cell type model. 

The results demonstrated that using 13 bins largely improved the prediction 

performance, while using 25 bins provided stable predictions on the HepG2 testing 

data. 

As the resource usage in constructing the models is concerned, we investigated the 

memory usage and the training time of constructing models including different 

numbers of cell types (Supplementary information: Figure S4). The hardware 

specification is as follows: CPU: Intel(R) Xeon(R) Gold 6126 CPU@2.60GHz; GPU: 

geforce-rtx-2080-ti; Memory: 360 GB. Figure S4 reveals the demanding of hardware 

increases when the number of cell types used in joint training increases. This reveals 

the importance of sharing accuEnhancer as a public resource for enhancer activity 

prediction. 

New experimental techniques like ATAC-seq35, which is faster and much more 

sensitive than DNase-seq, might be a better source to interrogate chromatin 

accessibility. Since data acquired from DNase-seq are very sparse, the ATAC-seq 
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with better resolutions might help the model to perform better on specific scenarios. 

In the future, we will investigate whether ATAC-seq can be used as a replacement of 

DNase-seq and take advantage of the growing number of ATAC-seq datasets. 

 

Methods 

Input data and features 

When invoking CNN to build the prediction models, we prepared each training 

instance with a 200-bp sequence. We used the human genome version GRCh38 as the 

reference and split the entire genome into non-overlapped bins with 200 bps in length. 

Then, we encoded the DNA sequences from a string consisted of four bases (A,C,G 

and T) into a matrix with four channels using the one-hot encoding method. The one-

hot encoding uses one 1 and three 0s to represent each nucleotide. For example, A, C, 

G and T will be encoded as (1000), (0100), (0010) and (0001) respectively. Therefore, 

each training instance would be a 4×200 matrix to represent the sequence feature, 

where each row representing a specific locus and each column representing a 

particular nucleotide, after applying the one-hot encoding method. Other than 

genomic sequences, previous studies have shown that functional data, such as histone 

modification and chromatin accessibility information, is in correlation with the active 

enhancers. In this study, we selected DNase-I hypersensitive sites, which correspond 

to the openness of the chromatin structure, as the functional feature to train the 

prediction models. The narrow peak files of each cell type-specific DNase data were 

downloaded from the ENCODE database. In order to capture the broader 

conformation of the chromatin structure around the bin to be predicted, we expanded 

the feature extraction region to −1,200 bps and +1,200 bps around the mid-point of 
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the target bin. The extended regions are further separated into 24 bins with 200 bps in 

length and the scores for each bin are the highest signal value in the narrow peak file 

that overlapped with it (Supplementary information: Figure S6). 

 

Construction of the positive and negative training data 

Several enhancer markers have been proposed during the last few decades, including 

EP300 binding sites, H3K27ac binding profiles, DNase hypersensitivity sites, and 

eRNA transcribed regions. Among these experimental data, H3K27ac and EP300 are 

the most widely used enhancer markers. The ENCODE database has only 96 EP300 

experimental data, but contains 443 H3K27ac experimental data as public resources. 

While these two marks both show high correlation with active enhancers, we selected 

the h3k27ac ChIP-seq data, which is much available than EP300, to label the 

instances for training and testing. To build a cross-cell type mode, we selected 50 cell 

types (Supplementary information: Table S2) from ENCODE database. And we 

downloaded the narrow peak files called by the standard ENCODE pipeline as our 

raw training data. To align data from different cell types, we used a sliding window of 

200 bps to divide the whole genome into bins. These 200 bps bins will further 

intersect with the called H3K27ac peaks, and the overlapped bins will be labeled as 

positive instances. While the negative data also plays an important role for a 

classification problem, we picked random genomic sequences with a length of 200 

bps (10 times of the number of positive bins) as the negative instances. In order to test 

the performance of the prediction model combining multiple cell types, we simply 

merged the training data from different cell types and removed redundant training 

instances by keeping only one instance among those with the same sequences as the 

merged training data. 
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Testing data and performance assessment 

To evaluate the model performance of accuEnhancer, we selected HepG2 as the 

independent testing data. The model performance is evaluated using the AUC (area 

under ROC curve). The ROC curve is a graph showing the performance of a 

classification model at all classification thresholds, which consists of TPR (true 

positive rate) and FPR (false positive rate). AUC provides an aggregate evaluation of 

performances across all possible classification thresholds. Other metric, such as F1 

score, recall, precision, are also used in this study. 

Performance comparison with recent studies on VISTA validated enhancers 

REPTILE, a method to locate enhancers based on genome-wide DNA methylation 

and histone modification profiling, has compared its performance with other three 

methods on the VISTA validated enhancer dataset. We downloaded the VISTA 

validated enhancers and the prediction outputs of the four methods from the REPTILE 

GitHub page (https://github.com/yupenghe/REPTILE). We trained our model by 

using the VISTA validated enhancer sequences and the mESC DNase data 

(https://www.encodeproject.org/experiments/ENCSR319PWR/) using the same data 

preprocessing procedure as previously described. We also downloaded the testing 

DNase data from four tissues within the mouse E11.5 life stage, including forebrain 

(https://www.encodeproject.org/files/ENCFF090SFC/@@download/), midbrain 

(https://www.encodeproject.org/files/ENCFF400KSK/@@download/), hindbrain 

(https://www.encodeproject.org/files/ENCFF518OYM/@@download/), and neural 

tube (https://www.encodeproject.org/files/ENCFF002XOR/@@download/).  
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Figures 

 

Figure 1 The network structure of accuEnhancer. The framework consists of two 

modules, the genomic sequence module and the functional data module. The two 

modules learn within module patterns locally and interact with another module in the 

fully connected layers. 
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Figure 2 The ROC curves of accuEnhancer models with different numbers of cell 

types included in the training data. The result indicates that the models constantly 

improved the performances while including more cell types in the training data.   
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Figure 3 The performances of accuEnhancer in predicting active enhancers uniquely 

existing in the testing cell type (HepG2), called HepG2 novel enhancers. Even these 

enhancers have never been labeled as active enhancers in the training data, 

accuEnhancer still can correctly predict some of them as active enhancers in HepG2. 

The result suggests that accuEnhancer not only recognizes potential active enhancers 

through previously reported enhancers, but also has learned some hidden patterns to 

identify the active enhancers which have not been labeled active enhancers in the 

training data. 
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Figure 4 The comparison of the recall rates, the precision rates, the F1 scores of 

different models in predicting HepG2 active enhancers. The result indicates that the 

model tends to make more predictions on active enhancers, when integrating more 

cell types, but not sacrifices the precision. 
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Figure 5 Performance evaluation between accuEnhancer and four existing enhancer 

predicting tools based on VISTA enhancers. In this analysis, we picked four tissues 

with available DNase experimental data. For each run of the four experiments of 

accuEnhancer (denoted as ‘3 tissues’), we used three tissues to train accuEnhancer 

and leave one tissue out for the testing purpose.  
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Figure 6 The ROC curves of the prediction results of accuEnhancer and other four 

studies on VISTA enhancers in Hindbrain. This result shows accuEnhancer not only 

works in human, but also shows superior performance in mouse tissues. This 

suggested that accuEnhancer can predict active enhancers across cell types with high 

accuracy by using only DNase data along with the genomic sequences. 
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Code availability 

The codes used to prepare the input data, construct the models, and make predictions 

are available at the GitHub page: https://github.com/callsobing/accuEnhancer 

The 50-cell type model is also available at the above GitHub page. 
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Supplementary information 
 

 

Figure S1 The result of the models trained by initializing the filter weights of the 

genomic sequence module with and without the pre-trained weights from DeepC. The 

validation set is a held-out validation set of the original training data. The ratio 

between training data and validation data is 10:1. We observed that even the training 

F1 scores are comparable between models with and without the pre-trained weights, 

the models trained with pre-trained weights can provide more robust results than the 

models trained with randomly initialized weights. This model uses H3K27me3, 

H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3k9ac, DNase as the input features, 
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along with the genomic sequences, in contrast to accuEnhancer that uses only DNase 

data in the functional data module. 
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Figure S2 The correlations of active enhancers loci across different cell types. The 

result shows that the overall similarity between the 50 cell types is not very high, 

which highlights the importance of combining these cell types together as the training 

data. The cell type IDs and the name of the cell types can be referred to Table S2. 
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Figure S3 The recall rates of applying the models built with different numbers of cell 

types on the testing data (HepG2). The ‘Entire’ set contains all the instances in the 

testing data, while the set of ‘Novel’ denotes the instances that are active enhancers 

uniquely observed in HepG2 and the set of ‘Non-unique’ denotes the instances that 

have also been labeled as active enhancers by any of the cell types used in training. 

The figure shows that not only the recall of the non-unique active enhancers increases 

while including more cell types, but also the recall of novel active enhancers 

increases, indicating accuEnhancer can learn regulatory patterns more accurately 

when integrating more cell types in the training data. 
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Figure S4 The resource usage of training accuEnhancer. The blue bar shows the peak 

memory usage during the total training process and the orange line shows the training 

duration of each epoch when different numbers of cell types are used in training. As 

the number of cell types used in the training data increases, the memory usage and the 

required training time also increase. 
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Figure S5 The testing (HepG2) performance of the models using different numbers of 

DNase bins in the functional data module. The training data included all the 50 cell 

types listed in Table S2. 
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Figure S6 An overview of the input features for a given target training loci. The 

DNase signal values shown in the figure are the raw feature scores extracted from the 

ENCODE database narrow peak files. The signal value of the peak will be assigned if 

the bin is covered by the peak for more than 100 bps (50% of the bin length). Each 

target loci will contain 4×200 one-hot encoded sequence features and 25 DNase 

feature scores as describe in the Methods section. 
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Table S1 Cross-cell type prediction using a comprehensive set of functional data as 

the input features (H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3, 

H3k9ac, DNase).  

 
Testing cell type 

 
F1 score GM12878 HepG2 H1-hESC K562 

Training 
cell type 

GM12878 0.901 0.804 0.738 0.826 
HepG2 0.616 0.859 0.437 0.767 

H1-hESC 0.875 0.801 0.813 0.801 
K562 0.852 0.817 0.701 0.882 
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Table S2 The list of 50 cell lines or tissues used in the training process. The narrow 

peak files of the DNase data and H3K27ac ChIP-seq data were downloaded from the 

ENCODE database. 

Cell type  
ID 

Name 
Cell type  
ID 

Name 

0 H1_BMP4_Derived_Mesendoderm
_Cultured_Cells 

164 AG04450 

1 K562_Leukemia_Cells 165 adrenal gland (51 yrs female) 

2 
Oci-Ly-7_B_Cell_Non-
Hodgkin_Lymphoma_Cell_Line 

166 spleen 54 yrs male 

3 Thymus 167 stomach 51 yrs female 

4 Chorion 168 small intestine 34 yrs male 

5 Spleen 169 
sigmoid colon female adult (51 
year) 

6 
Karpas-422_B_Cell_Non-
Hodgkin_Lymphoma_Cell_Line 

170 
gastrocnemius medialis female 
adult (51 year) 

7 
H1_Derived_Mesenchymal_Stem_
Cells 

171 thyroid gland male adult (54 years) 

8 GM12878_Lymphoblastoid_Cells 172 
female adult (53 years) Peyer's 
patch tissue 

56 
H9_Derived_Smooth_Muscle_Cult
ured_Cells 

173 
 Peyer's patch male adult (54 
years) 

69 IMR90_Fetal_Lung_Fibroblasts_Ce
ll_Line 

174 upper lobe of left lung female 
adult (53 years) 

112 
SK-N-
SH_Neuroblastoma_Cell_Line 

175 
upper lobe of left lung male adult 
(37 years) 

130 
MCF-
7_Mammary_Gland_Adenocarcino
ma_Cell_Line 

176 
 upper lobe of left lung male adult 
(54 years) 

131 
PC-
3_Prostate_Adenocarcinoma_Cell_
Line 

177 
upper lobe of left lung female 
adult (51 year) 

132 
HeLa-
S3_Cervical_Carcinoma_Cell_Line 

178 placenta female embryo (113 days) 

133 
HCT116_Colorectal_Carcinoma_C
ell_Line 

179 tibial nerve male adult (37 years) 

135 
HepG2_Hepatocellular_Carcinoma
_Cell_Line 

180 tibial nerve female adult (51 year) 

136 
A549_EtOH_pt02pct_Lung_Carcin
oma_Cell_Line 

181 
transverse colon female adult (53 
years) 

138 
Panc1_Epithelioid_Carcinoma_Cell
_Line 

182 
transverse colon female adult (51 
year) 

156 A673 183 
transverse colon male adult (37 
years) 

157 gm23248 184 
heart left ventricle female adult (53 
years) 

158 PC-9 185 
body of pancreas male adult (37 
years) 

159 MM1S 186 body of pancreas female adult (51 
year) 

160 gm23338 187 tibial artery male adult (54 years) 

161 SK-N-MC 188 
large intestine male embryo (108 
days) 
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