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ABSTRACT 

Genes showing higher expression in either tumor or metastatic tissues can help in  better 

understanding tumor formation, and can serve as biomarkers of progression or as therapy targets 

with minimal off-target effects. Our goal was to establish an integrated database using available 

transcriptome-level datasets and to create a web-platform enabling mining of this database by 

comparing normal, tumor and metastatic data across all genes in real time. 

We utilized data generated by either gene arrays or RNA-seq. Gene array data were 

manually selected from NCBI-GEO. RNA sequencing data was downloaded from the TCGA, 

TARGET, and GTEx repositories. TCGA and TARGET contain predominantly tumor and 

metastatic samples from adult and pediatric patients, while GTEx samples are from healthy tissues. 

Statistical significance was computed using Mann-Whitney or Kruskall-Wallis tests. 

The entire database contains 56,938 samples including 33,520 samples from 3,180 gene 

chip-based studies (453 metastatic, 29,376 tumorous and 3,691 normal samples), 11,010 samples 

from TCGA (394 metastatic, 9,886 tumorous and 730 normal), 1,193 samples from TARGET (1 

metastatic, 1,180 tumor, 12 normal) and 11,215 normal samples from GTEx. The most consistently 

up-regulated genes across multiple tumor types were TOP2A (mean FC=7.8), SPP1 (FC=7.0) and 

CENPA (FC=6.03) and the most consistently down-regulated gene was ADH1B (mean FC=0.15). 

Validation of differential expression using equally sized training and test sets confirmed reliability 

of the database in breast, colon, and lung cancer (p<0.0001). The online analysis platform enables 

unrestricted mining of the database and is accessible at www.tnmplot.com.  
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INTRODUCTION 

Cancer emerges as normal cells mutate first to pre-cancerous, then to malignant cells 

because of genetic or epigenetic lesions. Such lesions originate mostly in external mutagenic 

factors but hereditary mutations also influence the evolution. These genetic lesions lead to gene 

expression changes in the tumor cells which gear up the cancerous phenotype [1].  

While most genes exhibit comparable expression profiles between cancerous and normal 

tissues, those differentially expressed can serve as either targets of treatment or molecular 

biomarkers of cancer progression. Targeting a gene with higher expression of a certain gene 

product can deliver astonishing clinical benefit as was demonstrated over two decades ago by the 

selective inhibition of overexpressed tyrosin kinases [2]. 

Gene expression changes in cancer cells are related to a limited set of special characteristics 

often termed as cancer hallmarks [3]. These paramount differences between malignant and normal 

tissues include among others resistance to cell death and activating invasion and metastasis. 

Various experimental methods capable of inspecting these hallmark genes have been reviewed 

previously [4]. Currently, the most widespread and robust techniques to determine transcriptome-

level gene expression include RNA-sequencing and microarray platforms, while selected genes 

can be measured by RT-qPCR or NanoString technologies [5].  

Both RNA-seq and microarray techniques produce a vast amount of clinically relevant data 

and large repositories hosting thousands of samples are now available. The National Cancer 

Institute’s Genomic Data Commons (GDC) platform provides whole exome sequencing data and 

transcriptome level gene expression datasets such as The Cancer Genome Atlas (TCGA)[6] and 

the Therapeutically Applicable Research to Generate Effective Treatments (TARGET)[7]. The 

Genotype-Tissue Expression (GTEx) repository makes available RNA sequencing, exome 

sequencing and whole genomic data for the same patient [8]. Nevertheless, the largest open 
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resource is the Gene Expression Omnibus of National Center for Biotechnology Information 

(NCBI-GEO), which provides microarray, next-generation sequencing and additional high-

throughput genomics data for hundreds of thousands of samples [9]. A common feature of these 

repositories is the provision of raw data in addition to processed and aggregated results. 

At the same time, digesting such large sample cohorts requires complex bioinformatical 

analytical tools and it can be also time-consuming. Mining these databases could be speeded up 

by an openly available, validated and easily accessible online tool which enables the comparison 

of expression profiles between normal and cancer related data. Our first aim was to establish an 

integrated database of a significant number of normal and tumor samples with transcriptome-level 

gene expression data. We sought to establish a database which includes both adult and pediatric 

cases and both RNA-seq and gene array datasets. Our second goal was to validate the reliability 

of the database by employing a training-test approach to identify genes showing differential 

expression in selected tumor types. Finally, we designed an online analysis portal which can enable 

the comparison of gene expression changes across all genes and multiple platforms by mining the 

entire integrated database.  
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MATERIALS AND METHODS 

Database setup – gene arrays 

We searched the NCBI Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) 

repository for datasets containing “cancer” samples. Only datasets utilizing the Affymetrix 

HGU133, HGU133A_2 and HGU133A platforms were considered because these platforms use 

identical sequences for the detection of the same gene. In total 3,180 GEO series met these criteria, 

and each of these has been manually examined. We executed a filtering to exclude datasets 

containing either cell line studies, pooled samples, or xenograft experiments. Samples taken after 

neoadjuvant therapy were also excluded. In addition, samples with incomplete description, 

unavailable raw data and repeatedly published samples with distinct identifiers have been 

removed. For this, the expression of the first 20 genes were compared, and samples with identical 

values were identified. In each case, the first published version was retained in the dataset. 

Following this manual selection, the remaining samples were normalized using the MAS5 

algorithm by employing the Affy Bioconductor library [10]. Finally, a second scaling 

normalization was made to set the mean expression on each array to 1000.  

Database setup – RNAseq  

RNAseq data for a total of 11,688 samples were downloaded from the Genotype-Tissue 

Expression (GTEx) portal (version no. 7), from which two non-primary cohorts have been 

removed. Cell line studies available in GTEx were omitted. Read counts were normalized by the 

DESeq2 algorithm [11], followed by a second scaling normalization. Using the GDC database’s 

(https://portal.gdc.cancer.gov/) TCGA and TARGET projects, 11,010 and 1,197 files were 

downloaded, respectively. We only included primary tumors, adjacent normal, and metastatic 

tissues. Thus, non-primary tissue samples have been excluded. HTSeq – Counts files were 

normalized by DeSeq2 and a second scaling normalization was also executed for both cohorts. 
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Gene annotation 

In order to select the optimal probe set for each gene, we used the JetSet [12] correction 

and annotation package which delivered 12,210 unique genes in the gene-array datasets. 

Appropriate genes in the RNA-seq cohorts were selected and annotated by the biomaRt [13] and 

AnnotationDbi [14] R packages. The number of unique genes remaining after gene selection in 

the GTEx, TARGET, and TCGA databases was 21,479. After harmonization the GTEx and GDC 

data were combined into a single set. For the support of future data analysis, we constructed a 

master gene annotation data table with all the previous gene names and available synonyms for 

each included gene (Supplemental Table 1). 

 

Statistical analysis 

Data processing and analysis features of the TNM-plotter pipeline were developed in R 

version 3.6.1. Comparison of the normal and the tumorous samples was performed by Mann-

Whitney U test, matched tissues with adjacent samples were compared using the Wilcoxon test. 

Normal, tumorous and metastatic tissue gene comparison can be analyzed using Kruskal- Wallis 

test. Statistical significance cutoff was set at p<0.01.  

Shiny user interface 

Graphical visualization including box plots, bar charts, and violin plots produced by the 

TNM-plotter algorithm were developed using the ggplot2 R package[15]. The web application and 

the user interface was developed by employing Shiny R packages, with the utilization of the 

ShinyThemes (http://rstudio.github.io/shinythemes/) and the ShinyCssLoaders 

(https://github.com/daattali/shinycssloaders) R packages [16]. 
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Validation of differential expression 

In order to validate the effectiveness of the proposed approach and to confirm the reliability 

of the integrated database, we conducted a validation using randomly selected training and test 

sets across breast, lung and colon tissue dataset in both RNA-Seq and gene array platforms. In this 

validation process we compared the expression profiles of normal and tumor samples using the 

Mann-Whitney U test for 12,210 genes in the GEO and for 21,479 genes in the GDC datasets. 

Following calculation of the p values for each gene, a Chi-squared test was performed to compare 

selection overlap between the training set and the test sets. Volcano plots comparing –log10 p 

values and Log2 fold changes were generated to visualize differential expression. 

Cancer biomarker genes 

To pinpoint genes showing the highest differential expression between normal and tumor 

samples across multiple tumor types we utilized the analysis pipeline and the database of the top 

ten cancer types with the highest mortality. Tumor types were selected using the 2019 mortality 

data from the United States [17]. We compared gene expression values between normal and tumor 

samples for all available genes in all platforms in each selected tumor type using the Mann-

Whitney U test. Then, to combat multiple hypothesis testing we calculated the False Discovery 

Rate using the Benjamini-Hochberg method. Subsequently, the remaining significant genes were 

ranked by using the median fold change (FC) in all tissues. In other words, the significant genes 

were ranked based on their gene expression differences across all investigated tumor types. Finally, 

we selected genes with the highest FC values in both RNA-seq and gene array datasets. 
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RESULTS 

Integrated database 

The entire database holds altogether 56,938 samples including both RNA-seq and gene 

array samples.  

These include after pre-processing 33,520 unique gene array samples from 38 tissue types, 

including 3,691 normal, 29,376 tumorous and 453 metastatic samples. For each of these samples, 

the mRNA expression of 12,210 genes is available.  

Included RNA-seq data comprise three different platforms. After curation, normalization 

steps and data processing we collected data of 11,010 samples including 730 normal, 9,886 

cancerous and 394 metastatic specimens from adult cancer patients. We also added 1,193 pediatric 

related data from GDC consisting of 12 normal, 1,180 cancerous, and 1 metastatic samples. In 

order to increase the number of normal samples we included further 11,215 RNA-Seq GTEx data 

form non-cancerous persons. Steps of data curation and processing are summarized in Table 1. 

TNMplot.com analysis platform 

We established a web application to enable real-time comparison of gene expression 

changes between tumor, normal and metastatic tissues amongst different types of platforms across 

all genes. The registration-free analysis portal can be accessed at www.tnmplot.com and has three 

separate analysis options. The pan-cancer analysis tool compares normal and tumorous samples 

across 22 tissue types simultaneously. This RNA seq based rapid analysis serves as explanatory 

data to furnish comparative information for a selected gene. A representative boxplot of pan-cancer 

analysis is displayed in Figure 1.  
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The second approach compares directly tumor and normal samples by either grouping all 

specimens of the same category and running a Mann-Whitney U test or – in case of availability of 

paired normal and adjacent tumor – by running a paired Wilcoxon statistical test. The results are 

visualized by both boxplots and violin plots. We have also implemented a graphical representation 

of sensitivity and specificity: a diagram provides the percentage of tumor samples that show higher 

expression of the selected gene than normal samples at each major cutoff value. Example outputs 

of normal-tumor comparison are displayed in Figures 2 and 3. 

 Although the number of metastatic samples is limited in most cases, five and twelve tissue 

types in the RNA seq and gene array databases have useful amount of specimens. The third feature 

of the analysis platform allows us to simultaneously compare these tumor, normal and metastatic 

data using a Kruskal-Wallis test.  

Gene expression analysis of cancers with the highest mortality 

We compared the expression of all genes in normal and tumor samples across the ten most 

lethal tumor types including breast, bladder, colon, lung, liver, esophageal, prostate, pancreas, 

renal, and ovarian cancer. In the gene array dataset 555 - 2,623 reached statistical significance at 

FDR <10% and fold change over 1.5. The entire list of all genes is presented in Supplemental 

Table 2. When using the RNA seq cohort, 3,189-12,037 genes were dysregulated at FDR <10% 

and fold change over 1.5, the entire list of all genes dysregulated in the RNA seq cohorts is 

presented in Supplemental Table 3. 

 

Linking the most significant genes to cancer hallmarks 

We linked the best 55 genes common across all cancer types in both platforms to the cancer 

hallmarks based on their functions available in Entrez Gene Summary, GeneCards Summary, and 

UniProtKB/Swiss-Prot Summary. The majority of the genes (n = 21) were linked to sustained 

proliferative signaling. The second most common hallmark was the deregulation of cellular 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 11, 2020. ; https://doi.org/10.1101/2020.11.10.376228doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.10.376228
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

energetics (n = 13). Activation of invasion and metastasis (n = 5), enabling replicative immortality 

(n = 8), and avoiding immune destruction (n = 5) were also represented by multiple genes. Only 

single genes were linked to genome instability and mutation, evasion of growth suppressors, and 

tumor promoting inflammation. The overlapping 55 genes are listed in Table 2. 

Sensitivity and specificity 

Whenever a new biomarker is developed, the two most crucial information include 

sensitivity (the proportion of tumors who have higher expression than normal at a given cutoff) 

and specificity (the proportion of tumors divided by the total sum of all tumors and normal over 

the given cutoff). The online analysis interface provides a graphical representation of sensitivity 

and specificity at the major cutoff values (minimum, Q1, median, Q3, and maximum).  

TOP2A was the most upregulated gene in the above analysis with a fold change of 3.26 in 

breast cancer and 2.54 in colon cancer among others. In Figure 2, the expression boxplot, the 

sensitivity/specificity plot, and the violin plots for TOP2A are displayed using the breast and colon 

cancer datasets. The most downregulated genes was ADH1B, which had a fold change of 0.22 in 

breast cancer and 0.3 in colon cancer (see detailed plots in Figure 3). 

 

Validation of differential expression between normal and tumor samples 

In order to confirm reproducibility of differential expression and to confirm reliability of 

the integrated database we conducted a validation using randomly selected training and test cohorts 

across breast, lung and colon cancers using both RNA-Seq and gene array samples. In each setting, 

the training and test sets were equally sized to avoid false positive or false negative findings. In 

the breast cancer gene array and RNA seq datasets all in all 7,223 and 11,689 genes were 

significant in both training and test sets. These deliver a high concordance in both cases with a chi-

square test p value < 0.0001. Regarding colon cancer, 8,259 and 6,763 genes were significant in 
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both training and test dataset in gene array and in RNA seq samples, respectively (p<0.0001). In 

lung cancer, altogether 7,846 and 8,484 overlapping genes reached significance in both examined 

cohorts in gene array platform and in RNA seq, respectively (p<0.0001). As each executed analysis 

showed a p < 0.0001, we conclude that the database can provide highly reproducible results in 

both platforms. Volcano plots and Venn diagrams depicting results of the validation are listed in 

Figure 4. 
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DISCUSSION 

Our most important aim was to establish a framework for the comparison of gene 

expression in malignant, normal and metastatic tissues. To that end, we established a database 

from publicly available RNA-seq and gene array resources. Followed by a multistep manual and 

computational curation, we used the datasets in combination with established statistical algorithms 

to set up an online analysis platform. Finally, the reproducibility of the results delivered by our 

approach was validated using a training-test approach with multiple randomly differentiated 

cohorts in two distinct tumor types. Since all implemented examinations delivered high 

concordance we can state that the established database provides solid results in both platforms 

used. 

One of the major features of our approach is the generation of an expression-cutoff based 

sensitivity/specificity plot. This graphical representation displays a bar graph showing the 

proportion of tumor samples with elevated expression compared to the normal cohort at selected 

cut-off values (minimum, first quartile, median, third quartile, maximum). Since useful 

pharmacologically targets have to be as specific for the tumor cell as possible, by looking on the 

graph one can get easily interpretable information regarding the clinical utility of the selected gene. 

The conventional approach to show sensitivity and specificity would be to generate a receiver 

operating characteristics (ROC) plot and examine the area under the curve to assess the usefulness 

of a potential biomarker. Of note, we have recently established the www.rocplot.org platform 

capable of identifying predictive biomarkers in multiple tumor types by employing ROC analysis 

[18]. However, one has to set a clinically applied cutoff, thus the overall performance of a marker 

in a ROC analysis is of little clinical value. Another minor drawback of the ROC plot is that the 

determination of the optimal cutoff value needs additional computations. 

 After completing the entire database, our paramount question was: which genes are most 

specific to cancer across multiple tumor types? We performed a comparative study across the top 

ten most deadly tumor types and ranked the common genes in these malignancies regardless of the 
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platform. The most consistently upregulated gene was DNA topoisomerase 2-alpha (TOP2A), a 

gene playing an important role in transcription and replication. Several studies highlighted the 

importance of TOP2A, and elevated TOP2A expression can serve as a prognostic biomarker in 

multiple malignancies including lung [19], colon [20], and breast cancer [21]. At present, multiple 

drugs including doxorubicin, epirubicin or etoposide are widely used in clinical practice to target 

TOP2A or other topoisomerase gene products [22]. These agents are now used in multiple tumor 

types including breast cancer [23], leukemias and lymphomas [24, 25]. 

The most consistently downregulated gene across the investigated tumor types was Alcohol 

dehydrogenase 1B (ADH1B), a member of the alcohol dehydrogenase enzyme subgroup which 

serves as an important member in the ethanol, retinol and further alcoholic substance 

metabolization processes. In concordance with our results, earlier studies came to a comparable 

conclusion as down-regulation of ADH1B might have a role in multiple cancers, including colon 

[26], lung [27] or head and neck cancer [28]. 

A notable limitation of our study is the low number of available metastatic tissues. 

Although the total number (n=848) seems useful, these represent only 1.5% of the included 

specimens. Unfortunately, this is an open issue not dealt with in any of the large-scale data 

collection projects. Another limitation of our database is the lack of data on gene regulation 

including alternative splicing. Alternative splicing can result in different proteins with dissimilar 

functions.  A future employment of a multi-omic approach in conjunction with the utilization of 

proteomic data might help to circumvent these issues [29].  

In summary, we established the largest currently available transcriptomic cancer database 

consisting of 57 thousand samples by utilizing multiple RNA-Seq and microarray datasets. We 

show that the results obtained by these specimens is highly reproducible and have set up a 

registration-free  online analysis portal which enables mining of the database for any gene to assess 

expression differences in normal, cancer and metastatic samples. 
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Figures and tables 

Figure 1. Boxplot of top three genes differentially expressed in most of the ten most common 
tumor types. Differences significant by a Mann-Whitney U test are marked with red color (*p < 
0.01). 
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Figure 2. Boxplots (A,D), bar charts (B,E) and violin plots (C,F) of TOP2A gene expression in 
breast (left) and colon cancer (right) when comparing paired normal and tumor gene array data.  
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Figure 3. Boxplots (A,D), bar charts (B,E) and violin plots (C,F) of ADH1B gene expression in 
breast (left) and colon cancer (right) when comparing paired normal and tumor gene array data.  
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Figure 4. Volcano plots and Venn diagrams of differentially expressed genes in breast, colon 
and lung cancer using equally sized training-test sets –Venn diagram (A) and Volcano plot (B) 
from breast cancer. Venn diagram (C) and Volcano plot (D) from colon cancer. Venn diagram (E) 
and Volcano plot (F) from lung cancer.  
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Table 1. Summary of datasets and data processing 

 
Manual Screening Computational Screening Result T N M 

NCBI 
GEO 

GSE screened: 
3180 datasets 

Primary tissue series 
n = 554 

(38897 Samples) 

Data 
cleaning 

MAS5 and 
scaling 

normalizati
on 

JetSet 
Annotation 

38431 
Samples 
38 tumor 

types 

29,376 3,691 453 

TARGET 1193 samples - 
Data 

cleaning 

DESeq2 
and scaling 
normalizati

on 

AnnotationDBI 
annotation 

1193 
samples 
7 tumor 

types 

1,180 12 1 

TCGA 
11050 

samples 
Removal of non-
primary tissues 

Data 
cleaning 

DESeq2 
and scaling 
normalizati

on 

AnnotationDBI 
annotation 

11010 
samples 
33 tumor 

types 

9,886 730 394 

GTEx 
11688 

samples 
Removal of non-
primary tissues 

Data 
cleaning 

DESeq2 
and scaling 
normalizati

on 

biomaRt and 
AnnotationDBI 

annotation 

11215 
samples 
51 tumor 

types 

- 11,215 - 
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Table 2. Summary of sample numbers in each dataset 

Tissue Sample # T N M GEO GTEx TCGA TARGET 

adrenal gland 531 321 208 2 x x x - 

airway epithelia 99 0 99 0 x - - - 

bile duct 80 68 10 2 x - x - 

bladder 595 555 40 0 x x x - 

blood 407 0 407 0 - x - - 

bone 123 123 0 0 x - - x 

breast 9400 8666 645 89 x x x - 

cervix 565 493 70 2 x x x - 

CNS 4840 2825 2015 0 x x x - 

colon 3120 2085 935 100 x x x - 

endometrium 70 39 31 0 x - - - 

eye 191 191 0 0 x - x - 

gastric 2250 1596 654 0 x x x - 

germ cell 442 183 259 0 x x x - 

head and neck 650 599 49 2 x - x - 

heart 600 0 600 0 - x - - 

intestine 223 10 210 3 x x - - 

kidney 1966 1458 450 58 x x x x 

liver 1805 1177 604 24 x x x - 

lung 3824 2890 926 8 x x x - 

lymphoid 6377 6184 193 0 x x x x 

mesothelioma 139 139 0 0 x - x - 

myeloid 3931 3866 65 0 x - x x 

nasopharyngeal 69 56 13 0 x - - - 

neural 819 394 425 0 x x - x 

esophageal 1750 601 1120 29 x x x - 

oral cavity 61 38 18 5 x - - - 

ovarian 1341 1118 179 44 x x x - 

pancreas 803 425 360 18 x x x - 

pancreas - 
neuroendocrine 

47 47 0 0 x - - - 

Parathyroid 2 1 1 0 x - - - 

pituitary 219 18 201 0 x x - - 

prostate 1098 781 310 7 x x x - 

salivary gland 114 10 104 0 x x - - 

skin 1835 356 1035 444 x x x - 

soft tissue 2878 1464 1411 3 x x x x 

spleen 162 0 162 0 - x - - 

thymus 121 119 2 0 - - x - 
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thyroid 1282 717 557 8 x x x - 

tongue 68 57 11 0 x - - - 

uterus 977 757 220 0 x x x - 

blood vessel 913 0 913 0 - x - - 

vulva 151 15 136 0 x x - - 
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Table 3. Top fifty-five genes differentially expressed when comparing normal and tumor 
samples across the ten most common tumor types in RNA-seq and gene array datasets. 
Fold change over one corresponds to higher expression in tumors, and fold change below one 
corresponds to higher expression in normal specimens. 

Gene 
Mean fold 

change Gene 
Mean fold 

change 
TOP2A 7.80 RUVBL2 1.77 
SPP1 7.00 TMSB10 1.76 
CENPA 6.03 RPN1 1.75 
NEK2 5.63 CHPF2 1.67 
MELK 5.46 CERS2 1.63 
HMMR 5.29 SH3BGRL3 1.61 
KIF20A 4.96 APRT 1.60 
NEIL3 4.89 IRAK1 1.56 
TTK 4.85 SEC61A1 1.54 
ASPM 4.82 PSME2 1.52 
CCNB2 4.76 SPAST 1.49 
DTL 4.44 DNASE1L1 1.42 
NCAPG 4.44 PGLS 1.40 
ZWINT 4.15 DIRAS3 0.60 
CCNB1 4.14 ECHDC3 0.59 
BUB1B 3.79 PDE8B 0.56 
TK1 3.76 PCDH9 0.52 
PRC1 3.72 PEG3 0.46 
CENPU 3.58 PKNOX2 0.44 
KPNA2 3.23 CXCL12 0.42 
CENPN 3.03 PHYHIP 0.33 
CKAP2 2.62 GPM6A 0.32 
KNOP1 2.26 FHL1 0.27 
SNRPB 2.00 DPT 0.25 
MAGOHB 1.90 C7 0.24 
RPN2 1.83 AOX1 0.22 
SNRPF 1.82 ADH1B 0.15 
ENO1 1.79   
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