
DRAFT

pyFOOMB: Python Framework for Object
Oriented Modelling of Bioprocesses

Johannes Hemmerich1, Niklas Tenhaef1, Wolfgang Wiechert1,2,3, and Stephan Noack1,3,�

1Institute of Bio- and Geosciences – IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
2Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, Aachen, 52074, Germany

3Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, 52425, Germany

Quantitative characterization of biotechnological production
processes requires the determination of different key perfor-
mance indicators (KPIs) such as titer, rate and yield. Classically,
these KPIs can be derived by combining black-box bioprocess
modelling with non-linear regression for model parameter es-
timation. The presented pyFOOMB package enables a guided
and flexible implementation of bioprocess models in the form of
ordinary differential equation systems (ODEs). By building on
Python as powerful and multi-purpose programming language,
ODEs can be formulated in an object-oriented manner, which
facilitates their modular design, reusability and extensibility.
Once the model is implemented, seamless integration and anal-
ysis of the experimental data is supported by various Python
packages that are already available. In particular, for the iter-
ative workflow of experimental data generation and subsequent
model parameter estimation we employed the concept of repli-
cate model instances, which are linked by common sets of pa-
rameters with global or local properties. For the description
of multi-stage processes, discontinuities in the right-hand sides
of the differential equations are supported via event handling
using the freely available assimulo package. Optimization prob-
lems can be solved by making use of a parallelized version of the
generalized island approach provided by the pygmo package.
Furthermore, pyFOOMB in combination with Jupyter note-
books also supports education in bioprocess engineering and
the applied learning of Python as scientific programming lan-
guage. Finally, the applicability and strengths of pyFOOMB
will be demonstrated by a comprehensive collection of notebook
examples.

Python | bioprocess modelling | object oriented modelling | ODEs

Correspondence: s.noack@fz-juelich.de, Tel.: +49 2461 616044, Fax: +49 2461
613870

Introduction
Biotechnological production processes leverage the microor-
ganisms’ synthesis capacity to produce complex molecules
that are hardly accessible by traditional chemical synthe-
sis. Importantly, modern genetic engineering methods al-
low for targeted modification of single enzymes and whole
metabolic pathways for biochemically accessing value-added
compounds beyond those naturally available. However, to
render the production of a target compound economically
feasible, a suitable bioprocess needs to be developed which
fits to an engineered microbial producer strain. In this con-
text, computational modelling approaches utilize existing
knowledge on strain and process dynamics, giving rise to
modern systems biotechnology. Once a digital representa-

tion of a biotechnological system has been implemented, in-
silico optimizations can be performed to design an improved
bioprocess, effectively reducing the number of wet-lab ex-
periments. With the availability of new experimental data the
computational model can be refined to increase its predictive
power towards an optimal bioprocess.

Considering the highly interdisciplinary nature of systems
biotechnology requiring expertise in (micro-)biology, pro-
cess engineering, computer science, and mathematics, it be-
comes obvious that rarely a single person can have a deep
knowledge in all these fields. The more specialized and per-
formant a bioprocess model is intended to be, the higher
the knowledge level needed by the user. This may prevent
non-experts in modeling and programming from dealing with
these highly rewarding topics. Consequently, there is a need
for tools in systems biotechnology that can be quickly learned
and applied by non-experts, with the development of addi-
tional skills determined by demand.

Here, we present the pyFOOMB package that enables the
implementation of bioprocess models as systems of ordi-
nary differential equations (ODEs) via the multi-purpose pro-
gramming language Python. Based on the object-oriented
paradigm, pyFOOMB provides a variety of classes for the
rapid and flexible formulation, validation and application of
ODE-based bioprocess models. Table 1 gives a comparative,
non-exhaustive overview of software packages that are suit-
able for bioprocess modelling. These tools were developed
with partly other application areas in mind, e.g., modeling
and analysis of biochemical networks or simulation of chemi-
cal engineering unit operations. Consequently, these software
packages require different levels of programming skills and
some domain-specific knowledge for accessibility. There-
fore, a major driver to establish pyFOOMB was to provide
a flexible modelling tool that requires only basic program-
ming knowledge and thus shows low hurdles for beginners in
bioprocess modelling. The latter is supported by a compre-
hensive collection of ready-to-use working examples which
come along with pyFOOMB.

Due to the full programmatic access to Python, complex
models can also be implemented. Furthermore, great im-
portance was given to convenient visualization methods that
facilitate the understanding of qualitative and quantitative
model behavior. Finally, the enormous popularity of Python
as the de-facto standard language for data science applica-
tions makes it easy to integrate pyFOOMB with other ad-

Johannes Hemmerich et al. | bioRχiv | November 19, 2020 | 1–13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.10.376665doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.10.376665
http://creativecommons.org/licenses/by/4.0/

vanced tools for scientific computing.

Main functionalities of pyFOOMB for biopro-
cess modelling
Bioprocess models are implemented as ODEs for the time-
dependent variables x(t):

dx

dt
= f(x(t),θx, t), x(t0) = x0 (1)

y(t) = g(x(t),θy, t) (2)

which depend on some model parameters θx and initial val-
ues x0. In practice, some of the variables might not be di-
rectly measurable. Therefore, observation (or calibration)
functions y(t) can be defined that relate these variables to the
observable measurements, thus introducing some additional
parameters θy into the model.
In order to make the user familiar with our pyFOOMB tool, a
continuously growing collection of Jupyter notebook exam-
ples is provided. These demonstrate basic functionalities and
design principles of pyFOOMB and serve as blueprint for the
rapid set up of case-specific bioprocess models (Table A1).

Modelling workflow when using pyFOOMB
In the following we present a typical workflow for imple-
menting and applying bioprocess models with pyFOOMB
(Fig. 1). Throughout this section the toy example model of
Figure 2A will be employed.

A. Model definition. In a first step, the targeted model and
its parametrization is implemented by creating a user-specific
subclass of the provided class BioprocessModel (Fig.
2B). This basic class provides all necessary methods and
properties to run forward simulations for the implemented
model. Essentially, the abstract method rhs() must be for-
mulated by the user.

Discrete behavior. To monitor and control the dynamics of
specific model variables so called state_events() and
change_states() methods can be defined. This is for
example required for the modelling of multi-phased pro-
cesses such as fed-batch with event-based changes in feeding
regimes.

Observation of model states. In order to connect
the model variables to measurable quantities, an
ObservationFunction can be created, with the
mandatory implementation of the observe() method for
each relevant calibration function. Noteworthy, a variable’s
state can be linked to different observation functions,
reflecting the fact that there are typically several analytical
methods available for one specific bioprocess quantity. This
approach allows to separate the bioprocess model from
corresponding observations functions and thus, increases
re-usability of the different parts. By deriving initial guesses
for the parameters, a forward simulation from the model is
typically used to verify the intended qualitative behavior in
comparison to the experimental data.

Global and local parameters. A key feature of pyFOOMB is
the possibility to integrate measurement data from indepen-
dent experimental runs (replicates) by creating a correspond-
ing number of new instances of the same model. These can
still share a common set of model parameters that are defined
as "global", but at the same time differ in some other "locally"
defined parameters.
Typical global parameters of an ODE-based bioprocess
model are the maximum specific growth rate µmax or the sub-
strate specific biomass yield YX/S, while all initial values are
reasonable defined as local parameters (see Application ex-
ample II). Different values for the local parameters reflect bi-
ological or experimental variability that may arise from slight
deviations in preparing, running or analyzing each replicate
experiment. Alternatively, such variability might be intro-
duced by purpose when conducting replicate experiments
with intentionally very different starting conditions. The lat-
ter refers to a classical design-of-experiment approach aim-
ing for experimental data with a maximum information gain
with respect to the global parameters.

Working with the model. The implemented model (including
an initial parametrization) is passed to the instantiation of the
Caretaker class (Fig. 1). During the instantiation pro-
cedure several sanity checks run in the back and, in case of
failure, direct the user to erroneous or missing parts of the
model. The resulting object exposes important and conve-
nient methods typically applied for a bioprocess model, such
as running forward simulations, setting parameter values, cal-
culating sensitivities, estimating parameters, and managing
replicates of model instances.

B. Forward simulation. For a certain set of model parame-
ters the time-dependent dynamics of the model variables and
corresponding observations are obtained by running a for-
ward simulation (cf. Fig. 1). Integration of the ODE sys-
tem is delegated to the well-known Sundials CVode integra-
tor with event detection [9]. Its Python interface is provided
by the assimulo package [10], which implements seamless
event handling hidden from the user. Running some forward
simulations with subsequent visualization is a convenient ap-
proach to verify the qualitative and quantitative behavior of
the implemented model (Fig. 2C).
pyFOOMB provides a class with convenient methods for that
purpose, e.g, plotting of time series data covering model sim-
ulations and measurement data, corner plots for one-by-one
comparison of (non-linear) correlations between parameters
from Monte-Carlo sampling as well as visualization of the
results from sensitivity analysis.

C. Sensitivity analysis. Local sensitivities ∂yi(t)/∂θj are
available for any model response yi (model state or obser-
vation) with respect to any model parameter θj (including
ICs and observation functions). The sensitivities are approx-
imated by the central difference quotient using a perturbation
value of h ·max(1, |θj |). Sensitivities can also be calculated
for an event parameter that defines implicitly or explicitly a
point in time where the behaviour of the equation system is

2 | bioRχiv Johannes Hemmerich et al. | pyFOOMB

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.10.376665doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.10.376665
http://creativecommons.org/licenses/by/4.0/

Table 1. Non-exhaustive comparison of software packages suitable for bioprocess modelling. The listed tools were developed for different application areas and address
different primary needs. Therefore, different domain-specific knowledge and programming skills are required for the packages’ accessibility. All packages provide at least
several functionalities required for bioprocess modelling.

Tool Description Languages Main user
interface

License

AMIGO2
[1, 2]

Provides relevant methods around ODE modelling like model calibration,
uncertainty analyses, (multi-objective) optimal experimental design. Defi-
nition of global and local parameters among different experiments.

MATLAB MATLAB
editor

Free for
academic
users

AMICI [3,
4]

Interface to SUNDIALS integrators for efficient simulation and sensitiv-
ity analyses with analytical gradients (forward, 1st and 2nd order adjoint
sensitivities) for biological ODE models, support for SMBL models. Sup-
ports models with discontinuities and corresponding event handling for the
MATLAB implementation.

C++, MAT-
LAB,
Python

MATLAB
editor,
Jupyter
notebook,
Python IDEs

BSD3-
Clause

Berkely
Madonna

Standalone software with graphical interface for ODE model development.
Model construction via connection of library items, which auto-generates
corresponding equations using a custom equation syntax. Comprehensive
suite for different visualization tasks. Routines for curve fitting and param-
eter scanning. Automated model generation using conventional chemical
notation.

Standalone,
own syntax
for ODEs

GUI Commercial

COPASI [5,
6]

Developed for metabolic network analysis and reaction compartment mod-
elling in systems biology, with provision of typical methods like EFM anal-
ysis and MCA. Definition of global and local parameters among different
experiments. Simulations with ODEs and stochastic kinetics. Support for
SMBL models.

Standalone,
CLI,
Python via
PyCoTools
package

GUI Artistic
License 2.0

DAE Tools
[7, 8]

Industry grade DAE modelling toolbox for chemical engineering applica-
tions and beyond. Code generation for export and co-simulation capabili-
ties via FMI. Python as modelling language and high-level access to per-
formance modules developed in C++. Supports models with discontinuities
and corresponding event handling.

C++,
Python

Jupyter note-
book, Python
IDEs, GUI

GNU GPL3

pyFOOMB Rapid prototyping of ODE bioprocess models and provision of typical
methods (model calibration, sensitivity and uncertainty analyses). Sup-
ports ODE modelling with discontinuities and corresponding event han-
dling. Definition of global and local parameters among different experi-
ments. Low-barrier teaching into bioprocess modelling and programming.
Modelling strictly follows the object-oriented approach. Depends on as-
simulo package interfacing SUNDIALS’ CVODE for ODE integration and
pagmo2/pygmo package for parallelized optimization following the gener-
alized island model.

Python Jupyter note-
book, Python
IDEs

MIT

changed (cf. Fig. 3A). This is useful for, e.g., analyzing
induction profiles of gene expression or irregular bolus addi-
tions of nutrients.

D. Parameter estimation. Finding those parameter values
for a model that describe a given measurement dataset best
is implemented as a typical optimization problem. Here, the
estimate_parallel() method is the first choice, be-
cause it employs performant state-of-the-art meta-heuristics
for global optimization, which are provided by the pygmo
package [11]. In contrast to local optimization algorithms,
there are no dedicated initial guesses needed for the parame-
ters to be estimated ("unknowns"). Instead, lower and upper
estimation bounds are required. As a good starting point such
bounds can be derived from explorative data analysis (see
Application example II), literature research, or expert knowl-
edge by simply assuming three orders of magnitude centered
around the precalculated or reported parameter value.
Noteworthy, pygmo provides Python bindings to the pagmo2
package written in C++. It implements the asynchronous

generalized island model [12], which allows to run several,
different algorithms cooperatively on the given parameter es-
timation problem. As an inherent feature of this method, an
optimization run can be executed for a given number of so
called "evolutions" and after inspection of the results, the
optimization can be continued from the best solution found
so far (Fig. 3B). This powerful approach allows to traverse
multi-modal, non-convex optimization landscapes.
Currently, the maximum likelihood estimators (covering its
classical variants least-squares and weighted-least-squares)
are implemented. In general, a parameter vector θ̂ is to be
found that minimizes a certain optimization (loss) function.
For example, for the negative log-likelihood (NLL) function
for normally distributed measurement errors it holds:

θ̂ = argmin
θ

∑
i

∑
j

∑
k

=1
2 · log

(
2πσ2(ŷi,j,k)

)
+
(
yi,j,k(θ)− ŷi,j,k

σ(ŷi,j,k)

)2

(3)

Johannes Hemmerich et al. | pyFOOMB bioRχiv | 3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.10.376665doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.10.376665
http://creativecommons.org/licenses/by/4.0/

A. Model definition

B. Forward simulation

C. Sensitivity analysis

D. Parameter estimation

E. Uncertainty analysis

F. Result visualization

Formulate BioprocessModel

required: rhs(); model_parameters; initial_values

optional: state_events(); change_events()

Define ObservationFunction

required: observe(); observed_state

optional: observation_parameters

Instantiate Caretaker

required: bioprocess_model_class; model_parameters;

initial_values

optional: observation_functions_parameters; replicate_ids

Call Caretaker.simulate()

required: t (as vector or final simulation time)

optional: parameters

Call Visualization.show_kinetic_data()

required: simulation_result

Call Caretaker.get_parameter_sensitivities()

required: measurements or tfinal

optional: responses; parameters

Create Measurement objects

required: name; timepoints; values

optional: errors; replicate_id

Call Caretaker.estimate_parallel()

required: unknowns; bounds; measurements

optional: metric; evolutions

Call Caretaker.get_parameter_uncertainties()

required: estimates; measurements

optional: report_level

Call Caretaker.estimate_parallel_MC_sampling()

required: unknowns; bounds; measurements

optional: report_level; mc_samples; metric; evolutions; jobs_to_save

Call Visualization.compare_estimates_many()

required: esimates_mc; measurements; caretaker

optional: show_measurements_only

Call Visualization.show_parameter_distributions()

required: estimates_mc

optional: show_corr_coeffs

Fig. 1. High-level description of a typical bioprocess modelling workflow with pyFOOMB. For a full description of all classes and methods including a complete list of all
arguments and default values, please see the provided Jupyter notebook examples and source code documentation.

Given a specific measurement ŷi,j,k, for each corresponding
model response i at sampling time point j and replicate k, the
NLL is calculated and summed up. By default, it is assumed
that all measurements follow normal distributions based on
mean values and corresponding standard deviations. The log-
likelihood function is constructed by pyFOOMB when start-
ing the parameter estimation procedure. For the case that
measurements are assumed to follow other distributions, this
can be specified when creating the Measurement object
and pyFOOMB will take care for the definition of the correct
log-likelihood function.
Noteworthy, it is not required to provide complete measure-
ment datasets, i.e. a specific replicate may contain only one
measurement or even unequal data points for different model
responses.

E. Uncertainty analysis. An approximation of the param-
eters’ variance-covariance matrix is provided by inversion of

the Fisher information matrix, which is calculated from local
sensitivities (see above). Besides, non-linear error propaga-
tion is available by running a repeated parameter estimation
procedure starting from different Monte-Carlo samples (so
called "parametric bootstrapping", Fig. 3C). A parallelized
version of this method is provided based on the pygmo pack-
age.

F. Result visualization. Following parameter estima-
tion and uncertainty analysis via parametric bootstrap-
ping, (non-)linear correlations between each pair of
parameters can be readily visualized with the method
show_parameter_distributions(). In addition,
results are typically inspected by visualizing the set of
model predictions according to the calculated parameter
distributions. Using the compare_estimates_many()
method, a direct comparison between measurements and
repeated simulations is possible, which makes it easier to

4 | bioRχiv Johannes Hemmerich et al. | pyFOOMB

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.10.376665doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.10.376665
http://creativecommons.org/licenses/by/4.0/

A)

A r1−−→ B r2−−→ C

ODE:
dA

dt
=−r1,

dB

dt
= r1− r2,

dC

dt
= r2

IC: A(t0) =A0, B(t0) =B0, C(t0) = C0

Kinetics: r1 = k1 ·A, r2 = k2 ·B

B)

1 class SequentialKinetic(BioprocessModel):
2

3 def rhs(self, t, y, sw):
4

5 # Unpacks the state vector. The states are alphabetically ordered.
6 A, B, C = y
7

8 # Unpacks the model parameters.
9 k1 = self.model_parameters[’k1’]

10

11 # The ‘sw‘ (switches) argument represents a list of booleans,
12 # which are true after the corresponding event was hit (False -> True)
13 if sw[0]:
14 k2 = self.model_parameters[’k2’]
15 else:
16 k2 = 0
17

18 # Defines the derivatives.
19 dAdt = -k1*A
20 dBdt = k1*A - k2*B
21 dCdt = k2*B
22

23 # Returns the derivatives. The order corresponds to the state vector.
24 return [dAdt, dBdt, dCdt]
25

26 # The ‘state_events‘ method has the same signature like the ‘rhs‘ method.
27 def state_events(self, t, y, sw):
28

29 # Unpacks the event parameters
30 t_add = self.model_parameters[’t_add’]
31

32 # This event is hit when this expression evaluates to zero.
33 event_t = t_add - t
34

35 # Events must be returned as list or numpy array
36 return [event_t]
37

38 # Defines a dictionary for the initial values.
39 # The keys corresponds to the model states, extended by a 0 (zero).
40 initial_values = {
41 ’A0’ : 50.0,
42 ’B0’ : 0.0,
43 ’C0’ : 0.0,
44 }
45

46 # Defines a dictionary for the model parameters.
47 # The keys match those variable names used in the model class.
48 model_parameters = {
49 ’k1’ : 0.2,
50 ’k2’ : 0.1,
51 ’t_add’ : 10.0,
52 }

C)

Fig. 2. Toy example of a sequential reaction cascade. A) Mathematical representation of the ODE system with initial conditions (IC). B) Object-oriented implementation in
pyFOOMB. The ODE is defined within the rhs() method. Initial values and model parameters are defined as dictionaries. C) Results of a forward simulation. At t = 10 an
event occurs, where the conversion from B to C is switched on, i.e. k2 > 0.

Johannes Hemmerich et al. | pyFOOMB bioRχiv | 5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.10.376665doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.10.376665
http://creativecommons.org/licenses/by/4.0/

A)

B)

C)

Fig. 3. Essential steps of model validation supported by pyFOOMB. A) Sensitivity analysis of the model states with respect to the three parameters k1, k2 and tadd. B)
Parameter estimation using artificial experimental data with random noise (black dots with error bars) in combination with parallelized MC sampling (red lines). The median
of 125 single parameter estimations is shown in grey. C) Uncertainty analysis using a corner plot of the resulting empirical parameter distributions. Diagonal elements show
the individual distributions as histogram with a kernel density estimate, while off-diagonal elements indicate one-by-one comparisons of each parameter pair. The plot was
generated using the show_parameter_distributions() method of pyFOOMB’s Visualization class.

assess the validity of the model.

G. Implementation of model variants. Usually, when
starting to formulate a bioprocess model there is not only
one option to link a specific rate term with a suitable kinetic
model. Depending on how informative the available mea-
surements are in relation to the unknown kinetics, it could
make sense to directly start the whole workflow by setting up
a "model family".
Following the object-oriented approach of pyFOOMB, a
model family can be easily set up based on inheritance (Fig.
4A). In principle, for each relevant part of the original model
additional submodels can be introduced by declaring sepa-

rate methods. In a programming context, this approach is also
known as "method extraction", as the calculations in question
are extracted into further dedicated methods. The model fam-
ily is then realized by building on a common model structure
encoded in the BaseModel and a set of subclasses encod-
ing the specific submodels. On a technical level, the defini-
tion of "abstract" methods is required to enforce the individ-
ual members of the model family to implement their specific
submodel.

In an extended version of the running example, the rhs()
method of the BaseModel class now depends on the two
additional methods get_r1() and get_r2() to separate
the calculation of rates r1 and r2, respectively (Fig. 4B). The

6 | bioRχiv Johannes Hemmerich et al. | pyFOOMB

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.10.376665doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.10.376665
http://creativecommons.org/licenses/by/4.0/

A)

BioprocessModel

«abstract» rhs()
state_events()

BaseModel

«abstract» get_r2()
get_r1()
rhs()
state_events()

ModelVariant 01

get_r2()

ModelVariant 02

get_r2()

ModelVariant 03

get_r2()

B)

1 class BaseModel(BioprocessModel):
2

3 # Method to calculate rate r1.
4 def get_r1(self, t, y, sw):
5 A, B, C = y
6 k1 = self.model_parameters[’k1’]
7 r1 = k1*A
8 return r1
9

10 # Method to calculate rate r2.
11 # The actual calculation is performed within the inheriting subclass.
12 @abstractmethod
13 def get_r2(self, t, y, sw):
14 raise NotImplementedError
15

16 def rhs(self, t, y, sw):
17

18 A, B, C = y
19

20 # Calculate rate r1.
21 r1 = self.get_r1(t, y, sw)
22

23 # Calculate rate r2 in case t>t_add (cf. method ‘state_events‘).
24 if sw[0]:
25 r2 = self.get_r2(t, y, sw)
26 else:
27 r2 = 0
28

29 dAdt = -r1
30 dBdt = r1 - r2
31 dCdt = r2
32

33 return [dAdt, dBdt, dCdt]
34

35 def state_events(self, t, y, sw):
36 ...

1 class ModelVariant_02(BaseModel):
2

3 def get_r2(self, t, y, sw):
4 A, B, C = y
5 kB = self.model_parameters[’kB’]
6 r2_max = self.model_parameters[’r2_max’]
7 r2 = r2_max*B/(B+kB)
8 return r2
9

10 model_parameters_02 = {...}

1 class ModelVariant_03(BaseModel):
2

3 def get_r2(self, t, y, sw):
4 A, B, C = y
5 kB = self.model_parameters[’kB’]
6 kCI = self.model_parameters[’kCI’]
7 r2_max = self.model_parameters[’r2_max’]
8 r2 = r2_max*B/(B+kB) * (kCI/(kCI+C))
9 return r2

10

11 model_parameters_03 = {...}

C)

Fig. 4. Implementation of model variants using inheritance. A) UML class diagram for three model variants of the toy model. The kinetic rate law for reaction r2 is set as either
Mass action, Michaelis-Menten, or Michalis-Menten with product inhibition. B) Python implementation of the base class BaseModel with the abstract method get_r2()
and two example subclasses. (C) Resulting forward simulations comparing the model variants.

Johannes Hemmerich et al. | pyFOOMB bioRχiv | 7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.10.376665doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.10.376665
http://creativecommons.org/licenses/by/4.0/

latter is declared as an abstract method to enable a family
of models (ModelVariant01-03) for comparing differ-
ent rate expressions of r2.
In the following sections two different applications examples
will be presented that apply the introduced modelling work-
flow of pyFOOMB.

Application example I: Small-scale repetitive
batch operation
In the first example workflow specific growth rates within
an Adaptive Laboratory Evolution (ALE) process are deter-
mined. ALE processes utilize the natural ability of microor-
ganisms to adapt to new environments to improve certain
strain characteristics, such as growth on a specific carbon
source.
Here, a Corynebacterium glutamicum strain which was able
to slowly (µmax < 0.10 h-1) utilize D-xylose, was cultivated
repeatedly in defined medium containing D-xylose as sole
carbon and energy source. The cultivation was done in an
automated and miniaturized manner, delivering a biomass-
related optical signal, "backscatter", with a high temporal
resolution. This signal was used to automatically start a new
batch from the previous one, as soon as a backscatter thresh-
old was reached. The threshold was deliberately choosen to
be in the mid-exponential phase, where no substrate limita-
tion was to be expected. Six individual clones were cultivated
over one precculture and seven repetitive batches, as shown
in Fig. 5A.

Model development. In order to keep the number of param-
eters and computation times as low as possible, a rather sim-
ple bioprocess model as shown in Fig. 5B was employed.
Growth is determined solely by the growth rate µ. Substrate
limitations are not taken into account, since the experimental
design (see above) should avoid these sufficiently. Biomass
X is not measured directly, instead, backscatter is introduced
to the model via an ObservationFunction. This func-
tion describes a linear relationship between backscatter and
biomass and takes the blank value BS0 of the signal into ac-
count. A relative measurement error for the backscatter sig-
nal of 5 % is assumed based on expert knowledge. The model
describes the whole ALE process for each clone, not an in-
dividual batch. Therefore, state events are used to trigger a
state change of X , where X is multiplied by a dilution fac-
tor fdil. Additionally, the maximum growth rate parameter is
switched for each repetitive batch. As a result, an individ-
ual µmax for each repetitive batch and each clone is gained.
Since initial inoculation of the different clones and the inoc-
ulation procedure within the experiment was the same for all,
initial biomass concentration X0 and dilution factor fdil are
considered as global parameters.

Parameter estimation and uncertainty analysis. In total,
model parameters for six clones are estimated, which form
six replicates in the context of pyFOOMBs modelling struc-
ture. For each clone, seven maximum growth rates are to be
determined, plusX0, fdil, andBS0 as global parameters, thus

44 parameters in total. Parallelized MC sampling was used
to obtain distributions for all parameters. Results are shown
in Fig. 5C and D.
The estimated backscatter signals follow the actual data
closely, resulting in narrow distributions for the parameters
of interest, the individual µmax values for each clone and
repetitive batch. For example, clone F starts with growth
rates of 0.071 ± 0.005 h-1 to 0.086 ± 0.005 h-1 for the first
four batches. In the fifth batch, a notable raise in maximum
growth rate to 0.122 ± 0.008 h-1 is visible, indicating one
or more beneficial mutation events. Finally, clone F reaches
a growth rate of 0.212 ± 0.013 h-1. Overall, the estimated
growth rates are in good agreement with findings from the
original paper.
In another style of ALE experiment, which is not subject in
this study, a subpopulation of cells with beneficial mutations
was enriched, yielding strain WMB2evo, which is analyzed in
the second application example.

Application example II: Lab-scale parallel
batch operation
In this example workflow some KPIs of an engineered mi-
crobial strain cultivated in a bioreactor under batch operation
are determined. Often, such KPIs represent process quanti-
ties that are not directly measurable (e.g., specific rates for
substrate uptake, biomass and product formation) and there-
fore have to be estimated using a model-based approach.
The data originates from two independent cultivation exper-
iments with the evolved C. glutamicum strain WMB2evo as
introduced before [13]. Following successful adaptive lab-
oratory evolution this strain has now improved properties
for utilizing D-xylose as sole carbon and energy source for
biomass growth. At the same time the strain produces sig-
nificant amounts of D-xylonate, a direct oxidation product of
D-xylose.

Explorative data analysis and model development. Be-
fore implementing a suitable bioprocess model with py-
FOOMB, the data from one replicate bioreactor cultivation
is visualized and used for explorative data analysis. In Fig-
ure 6A the time courses of biomass (X), D-xylose (S), and
D-xylonate (P) are presented in one subplot. It can be seen
that biomass formation stops with depletion of D-xylose and,
thus, modelling the cell population growth by a classical
Monod kinetic is reasonable (Fig. 6B). The formation of D-
xylonate is also strictly growth-coupled, leading to a simple
rate equation with the yield coefficient YP/X as proportionality
factor. Finally, the D-xylose uptake rate equals the combined
carbon fluxes into biomass and D-xylonate, which are related
to the yield coefficients YX/S and YP/S respectively.
The time courses of substrate and product are measured in
molar concentrations, while the bioprocess model is formu-
lated using mass concentrations of the respective species.
The mappings are realized by defining corresponding obser-
vation functions (Fig. 6C).
Finally, the strain-specific parameters like µmax and YX/S are
defined as global parameters, while experiment-specific pa-

8 | bioRχiv Johannes Hemmerich et al. | pyFOOMB

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.10.376665doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.10.376665
http://creativecommons.org/licenses/by/4.0/

A) B)

ODE:
dX

dt
= µ ·X

IC: X(t0) =X0

Kinetics: µ = µmax,RBi

with i = (1,2, ...,7)

State events: X(t= ts) =X(t) ·fdil

Observations: BS(t) =X(t)+BS0

C)

D)

Fig. 5. Modelling and analysis of small-scale repetitive batch processes. A) Experimental layout for fully automated repetitive batch operation in microtiter plates (taken from
[13]. Each cycle was started from 6 independent clones followed by 7 consecutive batches. B) ODE model for describing the biomass dynamics including state events for
multiple sampling and growth rate estimation. C) Time course of online backscatter data (black dots) and corresponding model fits (straight coloured lines). D) Evolution of
maximum specific growth rates in each cycle. Mean values and standard deviations were estimated by parallelized MC sampling (n = 200).

Johannes Hemmerich et al. | pyFOOMB bioRχiv | 9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.10.376665doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.10.376665
http://creativecommons.org/licenses/by/4.0/

Table 2. Estimated parameter values of the bioprocess model applying parallelized
MC sampling. Indices R1 and R2 for parameters S0 and X0 indicate their local
property following the integration of the two independent replicate experiments.

Parameter Property Unit Median (16, 84 percentile)

kS global gS L-1 1.86 (1.83 - 1.89)
µmax global h-1 0.33 (0.33 - 0.33)
YP/S global gP gS

-1 0.80 (0.68 - 0.99)
YP/X global gP gX

-1 0.63 (0.63 - 0.63)
YX/S global gX gS

-1 0.63 (0.58 - 0.69)
S0,R1 local gS L-1 23.04 (22.76 - 23.36)
S0,R2 local gS L-1 22.78 (22.50 - 23.09)
X0,R1 local gX L-1 0.070 (0.070 - 0.071)
X0,R2 local gX L-1 0.088 (0.088 - 0.088)

rameters (ICs for biomass X and substrate S) are defined as
local parameters since the cultivation media and inoculation
material were prepared individually for each reactor. Please
note, even this very simple process model now already con-
tains eight model parameters (i.e., three ICs and five kinetic
parameters) that have to be estimated from the given mea-
surements.

Parameter estimation and uncertainty analysis. In or-
der to facilitate the parameter estimation problem, good ini-
tial guesses for all parameter values are important. First ap-
proximations for µmax as well as all yield coefficients can
be derived by following ordinary and orthogonal distance re-
gression analysis on the raw data assuming linear relation-
ships (Fig. 6A). For Python, corresponding methods are
available from the NumPy [14] and SciPy [15] packages.

From the obtained initial guesses corresponding parameter
bounds are fixed to run a parallel parameter estimation proce-
dure (Fig. 7A). As a result, a first set of best-fitting parameter
values is obtained from which new bounds can be derived for
the subsequent uncertainty analysis using again parallelized
MC sampling. Corresponding results are summarized in Ta-
ble 2.

The pair-wise comparison of parameter distributions shown
in 7B reveals a distinct non-linear correlation between the
yield coefficients YP/S and YX/S. This effect is expected due
to the formulation of the biomass-specific substrate consump-
tion rate qS (Fig. 6B). Equal values for qS can be derived
for different combination of substrate conversion rates into
biomass and product, and the yield coefficients are the corre-
sponding scaling factors. The latter is also the reason why the
estimated yield coefficients are significantly higher as com-
pared to the explorative data analysis, which does not allow
this separation and therefore leads to false-to-low predictions
(Table 2 and Fig. 6A).

Finally, the estimated biomass yield YX/S for D-xylose is
close to the value reported for the wild-type strain growing on
D-glucose, i.e. 0.63 [CI: 0.58 - 0.69] vs 0.60 ± 0.04 gX gS

-1

[16]. This indicates a comparable efficiency of C. glutam-
icum WMB2evo in utilizing D-xylose for biomass growth.

Conclusions
The pyFOOMB package provides straight-forward access
to the formulation of bioprocess models in a programmatic
and object-oriented manner. Based on the powerful, yet
beginner-friendly Python programming language, the pack-
age addresses a wide range of users to implement models
with growing complexity. For example, by employing event
methods, pyFOOMB supports the modelling of discrete be-
haviors in process quantities, which is an important feature
for the simulation and optimization of fed-batch processes.
The concept of model replicates and definition of local and
global parameters mirrors the iterative nature of data gener-
ation from cycles of experiment design, execution and eval-
uation. Moreover, seamless integration with existing and fu-
ture Python packages for scientific computing is greatly fa-
cilitated.
In summary, pyFOOMB is an ideal tool for model-based in-
tegration and analysis of data from classical lab-scale exper-
iments to state-of-the-art high-throughput bioprocess screen-
ing approaches.

Availability
The source code for the pyFOOMB package is freely avail-
able at github.com/MicroPhen/pyFOOMB. It is pub-
lished under the MIT license. Currently, its compatibility is
tested with Python 3.7 and 3.8, for Ubuntu and Windows op-
erating systems. The use of pyFOOMB within a conda en-
vironment is recommended, since the most recent versions
of important dependencies are maintained at the conda-forge
channel.

Conflict of interest
The authors have no conflict of interest to declare.

ACKNOWLEDGEMENTS
This work was partly funded by the German Federal Ministry of Education
and Research (BMBF, projects: "Digitalization in Industrial Biotechnology", grant
no. 031B0463 and "BioökonomieREVIER_INNO: Entwicklung der Modellregion
BioökonomieREVIER Rheinland", grant no. 031B0918A). Further funding was re-
ceived from the Bioeconomy Science Center (BioSC, Focus FUND project "HyIm-
PAct – Hybrid processes for important precursor and active pharmaceutical ingredi-
ents", grant no. 313/323-400-00213).

References
1. Eva Balsa-Canto, David Henriques, Attila Gábor, and Julio R Banga. Amigo2, a toolbox for

dynamic modeling, optimization and control in systems biology. Bioinformatics, 32:3357–
3359, 2016.

2. Nikolaos Tsiantis, Eva Balsa-Canto, and Julio R Banga. Optimality and identification of
dynamic models in systems biology: an inverse optimal control framework. Bioinformatics,
34:2433–2440, 2018.

3. Fabian Fröhlich, Fabian J Theis, Joachim O Rädler, and Jan Hasenauer. Parameter estima-
tion for dynamical systems with discrete events and logical operations. Bioinformatics, 33:
1049–1056, 2017.

4. Fabian Fröhlich, Barbara Kaltenbacher, Fabian J Theis, and Jan Hasenauer. Scalable pa-
rameter estimation for genome-scale biochemical reaction networks. PLoS Computational
Biology, 13:e1005331, 2017.

5. Stefan Hoops, Sven Sahle, Ralph Gauges, Christine Lee, et al. Copasi — a complex path-
way simulator. Bioinformatics, 22:3067–3074, 2006.

6. Ciaran M Welsh, Nicola Fullard, Carole J Proctor, Alvaro Martinez-Guimera, et al. Pycotools:
a python toolbox for copasi. Bioinformatics, 34:3702–3710, 2018.

7. Dragan D Nikolić. Dae tools: equation-based object-oriented modelling, simulation and
optimisation software. PeerJ Computer Science, 2:e54, 2016.

8. Dragan D Nikolić. Parallelisation of equation-based simulation programs on heterogeneous
computing systems. PeerJ Computer Science, 4:e160, 2018.

10 | bioRχiv Johannes Hemmerich et al. | pyFOOMB

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.10.376665doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.10.376665
http://creativecommons.org/licenses/by/4.0/

A)

B)

ODE:
dX

dt
= µ ·X, dS

dt
=−qS ·X,

dP

dt
= qP ·X

IC: X(t0) =X0, S(t0) = S0, P (t0) = P0

Kinetics: µ = µmax ·
S

KS +S
, qS = µ

YX/S
+ qP
YP/S

, qP = YP/X ·µ

C)

1 class Xyl(ObservationFunction):
2

3 def observe(self, model_values):
4 # Parameter unpacking
5 m_xyl = self.observation_parameters[’m_xyl’]
6 return model_values / m_xyl
7

8 # Defines a dictionary containing the parameters for the observation function.
9 # The observed model state must be declared accordingly.

10 observation_parameters_xyl = {
11 ’observed_state’ : ’S’,
12 ’m_xyl’ : MW_xylose / 1000,
13 }
14

15 class Xnt(ObservationFunction):
16

17 def observe(self, model_values):
18 # parameter unpacking
19 m_xnt = self.observation_parameters[’m_xnt’]
20 return model_values / m_xnt
21

22 observation_parameters_xnt = {
23 ’observed_state’ : ’P’,
24 ’m_xnt’ : MW_xylonate / 1000,
25 }
26

27 observations_functions = [
28 (Xyl, observation_parameters_xyl),
29 (Xnt, observation_parameters_xnt),
30]

Fig. 6. Modelling of lab-scale batch processes. A) Explorative data analysis for one replicate culture. Concentrations for biomass, D-xylose and D-xylonate are denoted by
symbols X, S and P , respectively. Following linear regression analysis first estimates for the model parameters YX/S, YP/S and YP/X can be derived (for later comparison
values are transformed to mass-based units). B) ODE model using classical rate equations. C) Formulation of specific observation functions to map the state variables to the
measurements. Here simple transformations from measured molar concentrations to simulated mass concentrations are performed.

Johannes Hemmerich et al. | pyFOOMB bioRχiv | 11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.10.376665doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.10.376665
http://creativecommons.org/licenses/by/4.0/

A)

B)

Fig. 7. Results from repeated parameter estimation using parallelized MC sampling (n = 200). A) Comparison of model predictions with experimental data. B) Uncertainty
analysis using a corner plot of the resulting empirical parameter distributions. For the sake of brevity, only the global model parameters are shown.

9. Alan C Hindmarsh, Peter N Brown, Keith E Grant, Steven L Lee, et al. Sundials: Suite of
nonlinear and differential/algebraic equation solvers. ACM Transactions on Mathematical
Software, 31:363–396, 2005.

10. Christian Andersson, Claus Führer, and Johan Åkesson. Assimulo: a unified framework for
ode solvers. Mathematics and Computers in Simulation, 116:26–43, 2015.

11. Francesco Biscani and Dario Izzo. A parallel global multiobjective framework for optimiza-
tion: pagmo. Journal of Open Source Software, 5:2338, 2020.

12. Francisco Fernández de Vega, José Ignacio Hidalgo Pérez, and Juan Lanchares. Parallel
architectures and bioinspired algorithms. Springer, 2012.

13. Andreas Radek, Niklas Tenhaef, Moritz Fabian Müller, Christian Brüsseler, et al. Miniatur-
ized and automated adaptive laboratory evolution: evolving Corynebacterium glutamicum
towards an improved D-xylose utilization. Bioresource Technology, 245:1377–1385, 2017.

14. Charles R Harris, K Jarrod Millman, Stéfan J van der Walt, Ralf Gommers, et al. Array
programming with numpy. Nature, 585:357–362, 2020.

15. Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, et al. Scipy 1.0: funda-
mental algorithms for scientific computing in python. Nature Methods, 17:261–272, 2020.

16. Meike Baumgart, Simon Unthan, Ramona Kloß, Andreas Radek, et al. Corynebacterium
glutamicum chassis C1*: building and testing a novel platform host for synthetic biology and
industrial biotechnology. ACS Synthetic Biology, 7:132–144, 2018.

12 | bioRχiv Johannes Hemmerich et al. | pyFOOMB

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.10.376665doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.10.376665
http://creativecommons.org/licenses/by/4.0/

Appendix: Notebook examples

Table A1. Jupyter notebook examples provided with the pyFOOMB package.

Title Topic

1 Modelling Demonstrates basic usage of the pyFOOMB package based on a simple toy mass-action kinetic, i.e.
how to implement the right-hand-side of the resulting equation system and how to run and visualize
forward simulations. The concept of model replicates is introduced and resulting effects are visualized.

2 Events The previous model is extended by events, which are timepoints where the model behavior can be
changed safely without interfering with the multistep logic of the ODE integrator. Shows how to use
different parameter values before and after an event, as well as how to manipulate the model state values
upon reaching an event.

3 Observation functions Introduces observation functions that map a model state to an observation, according to a specific,
parametrized function.

4 Parameter estimation Describes one of the major functionalities of the pyFOOMB package. Parameter values of an imple-
mented model are estimated based on (artificial) noisy data. The presented methods use algorithms
from Scipy’s optimize module. Besides approximation of uncertainties for estimated parameters based
on Fisher information matrix, Monte-Carlo sampling is introduced as method for non-linear error prop-
agation. Suitable visualization methods are used for interpretation of results.

5 Sensitivities Shows how to calculate local sensitivities with subsequent visualization.

6 Bioprocess models Implements several example bioprocess models, serving as starting point for implementation of user-
specific ones.

7 Fed-batch models Demonstrates the implementation of fed-batch bioprocess models at various complexities. Shows how
to use the models to derive further performance indicators such as maximum yield and productivity and
how to get these from a model parameters’ search. In addition, the formulation of the corresponding
optimization problem is presented.

8 Measurement data Loading measurement data from spreadsheet files with subsequent creation of "Measurement" objects,
focusing on three use cases that are based on: 1) Individual time vectors of varying lengths, with a
shared time vector; 2) A shared time vector but missing data points for several measurements, and 3)
Multi-replicate experiments with a shared time vector but missing data points.

9 Parallel parameter esti-
mation (PPE)

Introduces PPE and the concept of continuation of an estimation job.

10 PPE – Optimizer compar-
ison

Compares different optimization algorithms for PPE of a simple bioprocess model utilizing artifical
noisy data. Comparison is based on runtimes and achieved losses for the given optimization problem.

11 PPE - Hyperparameter
adjustment

Demonstrates how different parameter settings of the "de1220" and "compass_search" algorithms affect
runtime and quality of the model calibration outcome.

12 PPE – Monte Carlo sam-
pling

Introduces the application of PPE for Monte-Carlo sampling as method for non-linear error propaga-
tion.

13 PPE – Monte Carlo Sam-
pling

In addition to the previous examples, the possibility to apply further constraints (beyond simple box
bounds for parameters) is demonstrated.

14 Tracking specific rates
during integration

Shows how specific rates can be derived and visualized as time-dependent performance indicators.

15 Non-negative states For enforcing non-negative state values, events can be employed. Without, state values can take very
small but negative numbers due to the operation mode of the integrator, which treats those values
internally as zero (depending on the specified tolerances).

Johannes Hemmerich et al. | pyFOOMB bioRχiv | 13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.10.376665doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.10.376665
http://creativecommons.org/licenses/by/4.0/

	Model definition
	Forward simulation
	Sensitivity analysis
	Parameter estimation
	Uncertainty analysis
	Result visualization
	Implementation of model variants
	Notebook examples

