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Abstract 
 
Motivation: ​ Long read sequencing has increased the accuracy and completeness of assemblies of various 
organisms’ genomes in recent months. Similarly, spliced alignments of long read RNA sequencing hold the 
promise of delivering much longer transcripts of existing and novel isoforms in known genes without the need 
for error-prone transcript assemblies from short reads. However, low coverage and high-error rates potentially 
hamper the widespread adoption of long-read spliced alignments in annotation updates and isoform-level 
expression quantifications.  
 
Results:​ Addressing these issues, we first develop a simulation of error modes for both Oxford Nanopore and 
PacBio CCS spliced-alignments. Based on this we train a Random Forest classifier to assign new long-read 
alignments to one of two error categories, a novel category, or label them as non-error. We use this classifier 
to label reads from the spliced-alignments of the popular aligner minimap2, run on three long read sequencing 
datasets, including NA12878 from Oxford Nanopore and PacBio CCS, as well as a PacBio SKBR3 cancer cell 
line. Finally, we compare the intron chains of the three long read alignments against individual splice sites, 
short read assemblies, and the output from the FLAIR pipeline on the same samples.  
 
Our results demonstrate a substantial lack of precision in determining exact splice sites for long reads during 
alignment on both platforms while showing some benefit from postprocessing. This work motivates the need 
for both better aligners and additional post-alignment processing to adjust incorrectly called putative 
splice-sites and clarify novel transcripts support. 
 
Availability and implementation 
Source code for the random forest implemented in python is available at https://github.com/schatzlab/LongTron 
under the MIT license. The modified version of GffCompare used to construct Table 3 and related is here: 
https://github.com/ChristopherWilks/gffcompare/releases/tag/0.11.2LT 
 
Supplementary Information 
Supplementary notes and figures are available online. 

1. Introduction and Background 

The sequencing of cDNA derived from RNA molecules via fragmented reads, typically 75-250 base pairs long, 
known as short-read sequencing, has been extensively used for research for over 10 years (van Dijk et al., 
2014). The RNA-seq approach has been utilized for determining gene expression (Bray et al., 2016; Patro et 
al., 2017), alternative gene structure (Dobin et al., 2013; Goldstein et al., 2016), and fusion constructs (Haas et 
al., 2019), as well as de novo regions of expression throughout genomes of different species (Trapnell et al., 
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2010; Pertea et al., 2015). Due to continued investment in improving these sequencers over time, the error 
rates of short reads are relatively low (<1%) while the throughput is high, with up to a terabase of data from a 
sequencer in less than 2 days. 
 
Long read RNA sequencing is comparatively recent and has the capacity to complement or even surpass short 
read RNA-seq in its ability to span several exons and splice junctions of an isoform. This capability can in 
principle aid the discovery of novel isoforms and the expression of existing isoforms in specific tissues and cell 
types (​Figure 1 ​). 

 
Figure 1. ​ Long-reads versus short-reads. While short reads have much lower error rates (~1% vs. ~10%) and 
higher coverage they lack the general ability to connect multiple splicing interactions across the transcript due 
to their extreme shortness (250 bases vs. 10K’s bases).  
 
However, long reads have a few problems currently including higher error rate, higher cost per read, and 
potential 3-prime end bias (Mantere et al., 2019; Amarasinghe et al., 2020).  A fundamental challenge is that 
long reads suffer from a much higher error rate (2-10%) that is less systematic than the lower error rate of 
Illumina short reads (<1%, mostly toward the 3’ end of the read).  Additionally, the likely lower throughput due 
to higher cost per read of long reads, may make transcript quantification and differential analyses more difficult 
across the transcriptome due to lower coverage at any given locus if whole transcriptome analyses are desired 
(Kovaka et al., 2019). 
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These problems have negative effects on downstream efforts aimed at understanding transcription, including 
the first step in most analyses, alignment. Recently, the multi-mode aligner, minimap2 ​(Li, 2018)​ was released 
and is gaining popularity in long read related work, both in DNA and RNA contexts. Minimap2 is fast and 
relatively accurate and these authors support its continued use. However, no aligner is perfect, and minimap2 
does make mistakes, specifically in the areas of spliced-alignment and the mapping of long reads’ ends. 
 
Thus this work is an initial attempt at studying and elucidating the cases where alignments of spliced long 
reads, both from PacBio IsoSeq and Oxford Nanopore DirectRNA, break down.The rest of the paper is divided 
into sections covering (1) the simulation of long reads and their alignments for benchmarking, (2) the random 
forest approach we took to predicting error categories of aligned long reads on both simulated and real 
datasets, and (3) the concordance between long reads and short reads with respect to individual splice 
junctions and whole transcripts, and (4) the results of our prediction approach run on real datasets. 

 
Related Work 
 
This work extends the  Qtip algorithm ​(Langmead, 2017)​ that also attempted to profile alignment quality/errors 
using a Random Forest. Where LongTron primarily differs is that we focus on the spliced alignment of long 
reads using minimap2 whereas Qtip focused on unspliced alignment of DNA short reads using Bowtie2 
(Langmead and Salzberg, 2012)​, BWA-mem ​(Li, 2013)​, and SNAP ​(Zaharia ​et al.​, 2011)​ aligners.  
 
Another related work is the FLAIR pipeline ​(Tang ​et al.​, 2018)​ which seeks to improve the spliced alignment of 
long reads. We utilized the FLAIR pipeline in our comparisons with raw minimap2 alignments in the results 
section of this paper. FLAIR uses known splice junctions from annotation and short read sequencing to correct 
and filter the set of spliced alignments for long reads. While FLAIR is a useful tool for correcting and refining 
the set of alignments, its use of annotated splice junctions makes it potentially problematic for studies looking 
for novel splicing in long read alignments. A related pipeline similarly profiling long reads, specifically for the 
PacBio platform is SQANTI ​(Tardaguila ​et al.​, 2018)​. SQUANTI and its successor SQUANTI2 
(​https://github.com/Magdoll/SQANTI2/​) are intended to classify PacBio long reads spliced alignments and also 
use a Random Forest to classify artifactual results. 

2. Methods 
2.1 Long read failure modes 
 
Typically RNA-seq aligners leverage heuristics to find a set of near-optimal candidate locations in the genome 
for the placement of both short and long reads. For RNA sequence analysis these heuristics are particularly 
relevant for at least two phases of the alignment process, commonly called seed-and-extend. In the first phase, 
the alignment search space is narrowed down from being the full genome to a short list of candidate loci (using 
seeds). These seeds are chosen in different ways by various aligners, although they often use heuristics that 
don’t guarantee an optimal alignment will always be identified (Darby et al., 2020). In the second phase, 
candidate loci are more thoroughly checked for their compatibility with the query sequence which includes 
splice-site determination. The Smith-Waterman optimal algorithm ​(Smith and Waterman, 1981)​ for local 
sequence alignment can be used efficiently at this stage to produce a gapped alignment. However, this is not 
useful for spliced alignments which still require a heuristic to determine the best splice-sites around which to 
split the query sequence. 
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Figure 2.1. Long read alignment failure modes. ​ A) Spliced alignments can shift in the presence of 
unannotated splice motifs in the reference near annotated (real) splice sites. B) 5’ and 3’ ends of isoforms are 
difficult to get right as sequencing the ends of long reads is imprecise. C) Long reads can produce novel 
configurations of annotated exons and/or novel exons. However, these may be simply alignment artifacts due 
to splice motifs and/or repeats in the region (e.g. the rightmost novel exon has no short read support). D) Large 
numbers of exons (splice sites) can result in multiple novel long read alignments, some of which may be false. 
This is in part due to the non-full length nature of many of the long reads (especially from PacBio).  
2.2. Read alignment error categories.​ A) Matching junction alignment against at least one source transcript 
junction; B) Alignment overlapping any transcripts’ junction; C) Alignment containing any transcripts’ junctions; 
D) One or more transcripts’ junctions containing aligned junction; E) Junction is completely novel 
 
2.2 Long Read Transcriptome Simulation 
To assess the accuracy of a long read RNA-seq analysis pipeline, we first used a simulation approach so that 
we could precisely measure the alignment accuracy and splicing results of the simulated reads compared to 
their ground truth. For this, we started with the Gencode version 28 annotation and the error profile from 
SURVIVOR ​(Jeffares ​et al.​, 2017)​ for both Oxford Nanopore and PacBio IsoSeq derived from minimap2 
alignments of NA12878 reads to the Gencode transcriptome. The NA12878 sample is from a disease-free 
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human and has been used by many other research efforts. Using these we simulated long reads from the 
transcript sequences, both full-length and partial length. We then aligned these simulated reads against the 
genome and extracted features from each alignment. These features were then evaluated by a  random forest 
for training and prediction. Our implementation used the ​RandomForestClassifier​ in the scikit-learn Python 
machine learning framework.  We used 100 trees and eight parallel threads for training.  For the purposes of 
Receiver Operator Curve (ROC) plotting we used the ​predict_proba​ method on the held-out test set.  
The genomic alignments of the simulated reads were used to determine four correctness categories.  We 
experimented with using both these four categories as a multi-class prediction problem in the random forest as 
well as a more simple binary model where the three non problem-free categories in the list below were 
collapsed into one category. 
 
Junction alignments were first categorized into five subcategories, allowing a margin (“fuzz”) of up to 20 
nuclotides on each end, as described in ​Figure 2.2​. These five categories were then categorized into the four 
top-level correctness classes: 
 

1. Problem-free (A) 
2. Any error (alignment in any of B-D but not all three) 
3. Recurrent error (alignments in all three B-D) 
4. Novel (E) 

 
With the exception of splice motifs as the third most important feature in the Oxford full-length run, exon length 
dominated the Oxford feature importance rankings (​Table S1​). Similarly, both exon and transcript length were 
among several of the top most important features for PacBio. In addition GC content was the third most 
important feature for the PacBio full-length run. A selection of these features are shown in ​Figure 3.2​. 

3. Results 

 
We trained four distinct random forest models using the final set of features described above: 
 
1. PacBio IsoSeq Full Length 
2. PacBio IsoSeq Fragment 
3. Oxford Nanopore Full Length 
4. Oxford Nanopore Fragment 
 
Training accuracy was high on a held out test dataset (Supplement Figures ​S2A-D​). 
 
We then applied both full- and fragment-length models to the minimap2 alignments of long reads from PacBio 
and Oxford sequencing of the NA12878 sample. We intersected the long reads alignments with transcripts of 
known error categories to get the ground truth using BEDTools (Quinlan et al., 2010). This allows us to 
compute a form of recall and precision of the predictions (​Supplemental Tables S3 and S4​). 
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Figure 3-1. ​ Random forest classification. ​3-2.​ Diagram of a selection of features used in the random forest, 
including 1-10 and 17 ​ ​from Table S2. 
 
 
Table 1. Counts of alignments in each simulated training class 
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Dataset Total Problem-free Any error Recurrent 
error 

Novel 

Oxford full 1,696,509 41.90% 55.42% 2.30% 0.38% (6,511) 
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These results show Oxford had more errors than PacBio and also full-length alignments are more difficult to 
achieve than are fragments (​Table 1​). The PacBio IsoSeq platform supports the ability to generate a set of 
higher quality long reads by continuing to sequence the same molecule iteratively in a process called Circular 
Consensus Sequencing (CCS) ​(Gordon ​et al.​, 2015)​. The NA12878 PacBio dataset we are using is CCS 
corrected which likely contributes to its higher problem-free percentages. 
 
3.2 Splice-junction and Isoform Comparison 
A significant portion of the work described here involved comparison of splicing and isoforms across both long 
read sequencing approaches as well as Illumina short read sequencing. In ​Table 2​, we present a comparison 
of splice junctions between the three long read sequencing samples we used and a large compendium of 
putative splice junctions called from Illumina short reads, used in the Snaptron tool (Wilks ​et al​., 2017). 
 
As seen in the table requiring exact matches between the aligned long reads and the short-read based splice 
sites results in a minority of splice junctions matching in the two annotated categories. Allowing for a “fuzz” (20 
bp) on both ends of a match greatly increases concordance between long reads and short reads. This 
discrepancy between exact and fuzz matching, specifically with annotated junctions, highlights the difficulties in 
long read alignment discussed in this paper. 
 
In contrast, the “All short-read supported exact” and “Full novel exact” categories fare considerably better in 
concordance. This is one benefit of using a large group of short-read-derived splice junctions which include 
many putative novel junctions. Most of these matches would have been missed if a 
pseudo-alignment/quasi-mapping strategy had been used to derive the short read junctions.  
 
Overall, the results from splice-junction concordance is relatively positive. While long read alignments fail to 
pick up many annotated junctions under the strictures of exact matching, the majority of them are relatively 
close in terms of genomic coordinates. Further, there is evidence here to suggest long read alignments are 
supporting other, novel junctions previously found in short reads. 
 
Table 2. ​ Splice Junction Comparison (Snaptron represents a compendium of short-read derived junctions, 
annotated and novel), fuzz=20 for bases on either side, percents do not add up to 100 as annotated 
short-reads are a subset of all short-reads. Junctions are compared by coordinates alone (strand not included).  
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length (710,869) (940,159) (38,970) 

Oxford 
fragment 

1,668,351 75.09% 
(1,252,754) 

19.64% 
(327,629) 

2.29% 
(38,252) 

2.98% (49,716) 

PacBio CCS 
full length 

971,786 88.37% 
(858,755) 

9.75% 
(94,708) 

1.33% 
(12,883) 

0.56% (5,440) 

PacBio CCS 
fragment 

956,945 91.98% 
(880,189) 

6.57% 
(62,837) 

0.72% (6,900) 0.73% (7,019) 

Long 
Read 
Sample 

Total Gencode 
V29 
exact 
(360,700) 

Annotated 
short-read 
supported 
exact 

All short-read 
supported 
exact 
(111,160,460) 

Fully 
novel 
exact 

Gencode
V29 fuzz 

All 
short-read 
supported 
fuzz 

Fully 
novel 
fuzz 
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Another area of importance is isoform level concordance. We’ve already noted the potential benefit of long 
reads in finding novel isoforms where these can either use novel exons/splice junctions, or more likely, novel 
groupings of existing exons/splice junctions. ​Table 3​ presents the isoform-level comparison results using 
intron-chains as a proxy for isoforms. Intron chains, as their name implies, restrict comparison to the order and 
identity of the genomic coordinates which make up the donor/acceptor sites within the isoform. Thus start/end 
coordinates of the isoform as a whole are ignored. This will miss differences arising from alternative transcript 
start/end sites although these are intrinsically the most difficult to sequence because of the protocols involved 
(Workman ​et al​., 2019; Roach ​et al​., 2020). 
 
The totals column in ​Table 3​ represents deduplicated sets of intron chains (additional details in ​Supplemental 
Note 2 and Table S5 ​). The intron-chains between samples show little concordance when exact matching is 
required. This phenomenon was initially worse than in the splice-junction level analysis (​Table 2​). These initial 
results spurred us to involve an additional approach to use in filtering, the FLAIR (Tang ​et al​., 2018) pipeline. It 
also required us to modify an existing tool, gffcompare (Pertea et al., 2020), to allow for fuzz when comparing 
intron chains.  
 
 
Table 3. ​ Isoform comparison table, using gene models from Gencode V29, plus the isoforms from all the union 
of annotations; both exact and fuzz comparisons of the set of long-read derived isoforms which 1) match in 
number of introns or 2) are contained or contain a reference isoform. Percentages use the “Total Intron 
Chains” as the denominator for the row. 
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(Snaptron, 
445,651)  

PacBio 
NA12878 

301,666 
(100%) 

96,124 
(32%) 

99,394 
(33%) 

115,496 
(38%) 

186,170 
(62%) 

258,094 
(86%) 

292,751 
(97%) 

8,915 
(​3%​) 

Oxford 
NA12878  

612,614 
(100%) 

163,199 
(27%) 

180,028 
(29%) 

338,773 
(55%) 

273,841 
(45%) 

306,045 
(50%) 

508,798 
(83%) 

103,816 
(​17%​) 

PacBio 
SKBR3  

1,639,588 
(100%) 

143,371 
(9%) 

152,346 
(9%) 

242,903 
(15%) 

1,396,685 
(85%) 

1,001,378 
(61%) 

1,271,853 
(78%) 

367,735 
(​22%​) 

Gencode 
V29 

360,700 
(100%) 

NA NA 346,810 
(96%) 

NA NA 350,671 
(97%) 

10,029 
(​3%​) 

Sample 

Total 
Intron 
Chains 

Gencode V29 
(199381) 

Union of 
Annotations 
(1098511) Short Assembly (Other) Long Reads 

PacBio SKBR3 
(PB-SKBR3) 1,339,872 

22.0% 
(60.2%) 

27.7% 
(63.0%) 

Illumina: 16.7% 
(44.2%) NA 

PacBio 
NA12878 FLAIR 13,026 

87.1% 
(95.6%) 

93.3% 
(98.1%) 

Illumina: 76.6% 
(86.9%) 

OX-FLAIR: 86.4% (92.3%), 
PB-RAW: 93.5% (97.1%) 

PacBio 
NA12878 
(PB-RAW) 516,021 

41.4% 
(81.0%) 

43.4% 
(76.9%) 

Illumina: 39.0% 
(64.6%) 

OX-RAW: ​61.4% (94.6%), 
PB-FLAIR: 38.6% (75.1%) 
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One issue we encountered was the ambiguity of strand of origin for the PacBio long reads. We noticed that a 
large number of mismatching PacBio read alignments were classified as matching but on the opposite strand 
when compared with the “Union of Annotations” transcript set. By considering the PacBio alignments which 
were classified by gffcompare as opposite strand matches (categories “o” and “s”) and swapping their strands, 
and then re-comparing, a larger number of alignments were correctly re-classified for PacBio. In contrast, 
changing the strand parameter (“-u”) in minimap2 had little effect. This is an important issue to consider when 
aligning PacBio-derived long reads with minimap2. 
 
A key finding in ​Table 3​ is that allowing for fuzz around junction boundaries makes a substantial contribution to 
raising the number of matching intron chains across almost every category. This again underscores one of the 
key problems in long read alignment, that is any difficulties computing the exact coordinates of a single junction 
correctly are magnified when chaining together multiple of those junctions into isoforms.  
 
However, even without fuzz, both Oxford (NA12878) and PacBio (SKBR3) aligned samples are able to capture 
a larger amount of the annotated intron chains than their short read assembled counterparts (Illumina 
NA12878/SKBR3). The fact that the PacBio NA12878 sample falls behind here may be due to the much lower 
numbers of reads present in that sample. This bodes well for long read sequencing in the future in terms of 
finding coverage for annotated isoforms. In addition, the FLAIR pipeline raises concordance dramatically but at 
the cost of a substantial reduction in total isoforms. 
 
Further, even when requiring exact junction coordinate matches, the concordance between Oxford and PacBio 
is fairly high (61.4% and 87.6% respectively), while with a fuzz of 20bp the numbers both jump to ~94% of 
each set. The lower percent of Oxford captured by PacBio is most likely due to the much smaller size of the 
PacBio read set. This is also probably the explanation for the lower percentage of Illumina-assembled intron 
chains captured by the NA12878 PacBio set (46.8%) even with fuzz, while the short read assembly is 
capturing a majority of the PacBio long read intron chains (64.6%) with fuzz. Oxford in comparison, is both 
being captured by and is capturing, at a high rate, the Illumina assemblies (83.5% and 72.3% with fuzz, 
respectively).  
 
3.3 Effects of Random Forest Classifier on Transcript Matching against the Annotation 
 
We further took the set of NA12878 (Pacbio and Nanopore) and SKBR3 alignments predicted to be in the 
“Problem-Free” category and used them in comparisons against the “Union of Annotation” transcript set to see 
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Oxford 
NA12878 FLAIR 43,817 

65.7% 
(86.5%) 

79.8% 
(93.3%) 

Illumina: 42.4% 
(62.5%) 

OX-RAW: 98.5% (100.0%), 
PB-FLAIR: 30.1% (42.7%) 

Oxford 
NA12878 
(OX-RAW) 6,744,568 

73.2% 
(89.1%) 

77.2% 
(90.9%) 

Illumina: 67.4% 
(83.5%) 

OX-FLAIR: 73.4% (87.8%), 
PB-RAW: 87.6% (94.5%) 

Illumina SKBR3 30,866 
63.2% 
(81.0%) 

77.6% 
(90.1%) NA PB-SKBR3: 69.9% (81.4%) 

Illumina 
NA12878 101,151 

37.5% 
(57.6%) 

56.7% 
(73.5%) NA 

OX-RAW: 63.9%​ (72.3%)​, 
OX-FLAIR: 21.9% (33.2%), 
PB-RAW: ​39.0%​ (46.8%)​, 
PB-FLAIR: 16.4% (21.4%) 
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if the number of matching intron-chains improved (​Table S6​). While this strategy improved the precision, the 
percent of total query read alignments which matched an annotated transcript (NA12878 or SKBR3), it 
substantially lowered the recall, the percent of annotated transcripts matching a query read alignment. This 
was in large part due to using the set of predictions where both the full-length and the fragment models 
predicted a problem-free alignment. Recomputing the comparison with the union of full-length and fragment 
models’ predictions results in close to the original recall while only slightly lowering the improved precision for 
Nanopore, but with less impact on PacBio. 
 
3.4 Novel Alignment Examples in NA1878 and SKBR3 
 
We next evaluated the use of long read RNA sequencing to discover novel (unannotated) transcripts in the 
genome (​Figure 4).​ In ​Figure 4a ​, both Oxford and PacBio long-reads from the NA12878 sample support some 
additional transcription before the start of the NPIPB5 gene using the UCSC Genome Browser (Haeussler et 
al., 2019). This could be a novel alternative transcription start site (TSS). The substantially reduced support 
from PacBio reads could be a factor due to the much smaller total read set in that sequencing experiment. 
Figure 4b ​ displays a region of potential novel transcription found primarily in the SKBR3 PacBio long-read 
sample. While a small subset of the region has minor support in the Oxford sequenced NA12878 sample, the 
majority of the transcription appears to be exclusive to SKBR3. There appears to be further evidence from 
human mRNA/ESTs that this region is indeed transcribed and is not due to technical error 
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Figure 4a. ​Novel transcript predicted region on NA12878 for both Oxford and PacBio 

 
Figure 4b. ​ Novel transcript predicted region on SKBR3 PacBio 
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4. Discussion 

Long reads are useful for finding new isoforms as combinations of splice junctions that have already been 
found by short reads, but caution must be exercised due to the failure modes described here. Our investigation 
will help in assessing long read alignments to make more confident calls as to 1) errors and 2) novel cases. 
 
While there are a number of potential factors influencing how long reads are aligned, based on our 
investigation and the results of our random forest experiments, a few rise to the top in terms of importance. An 
important factor is the number of exons present in a gene. If there are more exons in an isoform, that translates 
into a larger number of potential splice-site determination errors the aligner can make when aligning long 
reads, which often are still fragments of the full length isoform. A related factor is the number of alternative 
isoforms present in the gene. This also raises the potential for splice-site finding errors in the aligner as many 
exons may be shared, while others may overlap but with different starts/ends, while still others are completely 
novel. This can lead to long reads missing certain alternative splice sites while supporting others within the 
same gene.  
 
Further, the significant decrease in coverage within the currently available long-read sequencing datasets 
substantially reduces confidence in putative novel regions. This is partly alleviated by short reads, at least for 
single exon genes and combinations of a few splice junctions. However, long novel transcripts combining many 
exons in new ways will be harder to substantiate. It’s also important to consider that nucleotide sequence 
alignment in general is almost always heuristic-based, and this is certainly true of spliced-alignment. While 
better alignment heuristics, modeling, and short-read sequencing may be able to fill in some of the gaps left in 
long-read spliced-alignments, ultimately there will need to be either a significant decrease in error rates or a 
substantial increase in coverage to alleviate at least some of the problems reported here. 
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