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Abstract—Optogenetics has a lot of potential to become an ef-
fective neuromodulative therapy for clinical application. Selecting
the correct opsin is crucial to have an optimal optogenetic tool.
With computational modeling, the neuronal response to the cur-
rent dynamics of an opsin can be extensively and systematically
tested. Unlike electrical stimulation where the effect is directly
defined by the applied field, the stimulation in optogenetics is
indirect, depending on the selected opsin’s non-linear kinetics.
With the continuous expansion of opsin possibilities, computa-
tional studies are difficult due to the need for an accurate model
of the selected opsin first. To this end, we propose a Hodgkin-and-
Huxley based model (22HH) as alternative to the conventional
three and four state Markov models used for opsin modeling.
Furthermore, we provide a fitting procedure, which allows for
nearly automatic model fitting starting from a vast parameter
space. With this procedure, we successfully fitted two distinctive
opsins

(
ChR2(H134R) and MerMAID

)
. Both models are able to

represent the experimental data with great accuracy and were
obtained within an acceptable time frame. This is due to the
absence of differential equations in the fitting procedure, with
an enormous reduction in computational cost as result. The
performance of the proposed model with a fit to ChR2(H134R)
was tested, by comparing the neural response in a regular spiking
neuron to the response obtained with the non-instantaneous, four
state Markov model (4SB), derived by Williams et al. (2013) [1].
Finally, a computational speed gain was observed with the 22HH
model in a regular spiking and sparse Pyramidal-Interneuron-
Network-Gamma (sPING) network simulation with respect to the
4SB-model, due to the former having two differential equations
less. Consequently, the proposed model allows for computation-
ally efficient optogenetic neurostimulation and with the proposed
fitting procedure will be valuable for further research in the field
of optogenetics.

Index Terms—Computational modeling, Computational effi-
ciency, Channelrhodopsin-H134R, MerMAID

I. INTRODUCTION

W ITH optogenetics, neuronal firing can be controlled
with light. This is achieved by genetically expressing

opsins, light sensitive ion channels or pumps, in cells or cell
subtypes. The merger of this genetic expression and optical
stimulation results in superior spatiotemporal resolution with
respect to the conventional neuromodulation techniques. Con-
sequently, it is an ideal investigative tool for behavioral studies
and a promising biomedical treatment for medical disorders
such as epilepsy, Parkinson’s disease and beyond the brain

1Department of Information Technology (INTEC-WAVES/IMEC), Ghent
University/IMEC, Technologypark 126, 9052 Zwijnaarde, Belgium

24BRAIN, Institute for Neuroscience, Department of Neurology, Ghent
University, Ghent, Belgium

*Correspondence: ruben.schoeters@ugent.be

conditions [1]–[7]
The first light sensitive ion channels were discovered in

the green alga Chlamydomonas reinhardtii by Nagel et al.
in 2002 [8]. Of its seven opsin-related genes, two encode
light-gated ion channels, i.e., channelrhodopsin-1 (ChR1)
and channelrhodopsin-2 (ChR2). These microbial rhodopsins
are important for phototaxis and photophobic responses of
the alga. Although there exist a 65% homology between
them [8], [9], ChR2 is preferred in experiments and appli-
cations due to its higher conductance and permeability for
cations. Genetic engineering of these has led to a variety of
opsins, such as red-shifted, step-function and ultrafast opsins,
and mutants with altered ion selectivity [2], [10], [11]. An
example of the latter is ChR2(H134R), which is addressed in
this paper. This mutation at the inner gate and sodium bindings
site, results in an increased Na+ permeability [12], [13]. Fur-
thermore, other natural versions are being discovered as well,
extending the current possibilities even more. An example are
the MerMAIDs, which is a family of metagenomically dis-
covered marine anion-conducting and intensely desensitizing
channelrhodopsins [14].

In its initial dark-adapted (IDA) state and under voltage
clamp conditions, ChR2’s photocurrent exhibits a peak (Ipeak)
and a steady-state current (Iss) [18]. The peak is reached
within 1-2 ms and followed by fast decay onto a steady-
state plateau. This is due to light adaptation (Fig. 1 (a, left)).
Post-illumination, there is a bi-exponential decay back to
baseline, rendering the channel in an apparent dark-adapted
state (DAapp). This is observed by applying a second stimu-
lation after a short period of time (< 10 s), which results in
a reduced transient response with a maintained steady-state
current (Fig. 1 (a, right)) [18], [19].

ChR2 comprises seven transmembrane helices. These are
covalently bound with a retinal chromophore forming a pro-
tonated retinal Schiff base (RSBH+). In its IDA (D470),
retinal is in an all-trans configuration [18]. Upon illumination,
retinal absorbs photons, rendering it in an excited state.
Relaxation triggers a 13 trans-cis isomerization, which initiates
a cascade of conformational changes with opening of the
pore as result. These spectrally distinct changes are identified
with ultraviolet and visible light absorption, and difference
infrared spectroscopy measurements (Fig. 1 (b)). The first in-
termediate (P500) is reached in a picosecond timescale. Next,
the RSBH+ is deprotonated giving rise to the blue shifted
P390 state. This state is in equilibrium with the P520 state,
exhibiting a reprotonated RSB. This state is the conducting
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Fig. 1. The Channelrhodopsin-2 photocurrent and photocycle. a, The photocurrent for a single light pulse on the left. Right, response to a S1-S2 pulse
protocol with variable inter-pulse intervals. Light pulses are indicated with blue bars and target features with black arrows. b, The unified photocycle based on
single-turnover electrophysiology, time-resolved step-scan FTIR, and Raman spectroscopy experiments, as proposed by Kuhne et al. (2019) [15]. c, Previously
proposed models. (c, top left) a three state cycle model with second light dependent step (dotted or dashed step) [16]. (c, top right) a four state branching
model [1]. (c, bottom) a six state model with two extra activation intermediates [17]. d, The proposed 2 state-pair Hodgkin-and-Huxley model (22HH). DA
and LA indicate dark and light adapted, respectively. O means open, C is closed and D is desensitized.

state. Before returning back to the dark adapted state, the
channel converts to a non-conducting state P470. This happens
on a millisecond timescale, while complete recovery takes
seconds [9], [20], [21].

There is strong evidence for a second photocycle, with
similar intermediates. Bamann et al. (2008) [22] identified
four kinetic intermediates (P1, P2, P3 and P4) with different
lifetimes. Furthermore, light adaptation causes changes in the
ion selectivity, i.e., a higher proton and Ca+ selectivity for
steady-state currents [18], [20], [23]. Also, retinal extraction
and Raman measurements indicate a mixture of retinal iso-
forms occurring in parallel. Two of these, all-trans,15-anti
and 13-cis,15-syn retinal, are observed in the DAapp. As
aforementioned, opening of the pore is associated with a
retinal trans-cis isomerization. Consequently this gives rise to
conducting states 13-cis,15-anti and all-trans,15-syn, respec-
tively. Moreover, electrophysiological measurements identified
a bi-exponential, post-illumination current decay and a strong
peak-to-steady-state ratio (Iratio = Iss/Ipeak) dependence on
pH and membrane potential. Neither of this can be explained
with a single photocycle model [18], [20], [24]. The transition
between the two photocycles is debatable. Either this occurs at
the late intermediates (P480 and P480’) or via a photochemical
transition at the parent states (D480 and D470). [18], [24].
Recently, Kuhne et al. (2019) [15] proposed an unifying ChR2
photocycle model consisting of two parallel photocycles. They

identified three reaction pathways. The classical reaction path
is the one described above, with an extra early conducting
P390b state. The second path is an early branching to the
second photocycle with transition from the D470 directly to
P480 due to an all-trans,15-anti to 13-cis,15-syn isomerization.
In the third path, the lower conducting P520’ state is reached
via a 13-cis,15syn to all-trans,15-syn isomerization [15].

In silico, the photocurrent is currently modeled with either
a three- or a four-state Markov model (Fig. 1 (c)). This is in
accordance with the single and double photocycle hypothesis,
respectively. Instead of going through different states before
opening as in the UV/Vis-photocycle, the opening is reduced to
a single state transition. This is because the D480 → P500 and
P500 → P390 transitions occur on a much faster timescale.
However, in order to represent fast closure, slow recovery
and a steady-state current, a second photon absorption step
is proposed for the three state model [13], [20]. The photo-
chemical transition either increases the recovery rate or acts
as equilibrium modulator between the open and desensitized
state. The six state model, as depicted in figure 1 (c, bottom),
is an extended version of the four state model. The additional
two intermediates are to correctly account for the activation
time after retinal isomerizations and to avoid explicit time
dependent rates [17]. The four state model is in agree-
ment with the second photocycle hypothesis with modeling
of two open and closed states. The transition as depicted

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.10.376939doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.10.376939
http://creativecommons.org/licenses/by-nc/4.0/


JOURNAL OF 3

in figure 1 (c, top right) is according to the older transition
hypothesis, not to the latest unifying photocycle model of
Kuhne et al. (2019) [15].

To date there is absolutely no doubt that, with its high
cell specificity and temporal resolution, optogenetics wields
high potential for neuromodulation tools. Nevertheless, there
remain many uncertainties concerning among others, its inter-
ference with the intrinsic network dynamics, effects on action
potential waveforms and energetic efficiency. In silico studies,
which allow for extensive and systematical investigation of the
effects of the current kinetics are thus invaluable. These studies
require an accurate model of the to be investigated opsin. This
is then implemented in a biophysically accurate neuron model,
which can contain multiple compartments. Furthermore, in
case of network studies, multiple of these neuron models
are implemented. To date, an accurate model consists of
four differential equations [1]. Using such a model therefore
increases the computational burden enormously, especially
in case of multi-compartment or network studies. Moreover,
due to the expanding possibilities, selection of the correct
opsin is crucial to have an optimal optogenetic tool. These
four state Markov models are not easily fit as they require
preliminary knowledge of the parameter space and its complex
interactions. Furthermore, finding the optimal parameters is
time-consuming as the set of differential equations has to be
evaluated at each step in the selected optimization algorithm.

In this study we propose for the first time (to the authors’
knowledge) an alternative for the modeling of the ChR2
photocurrents (Fig. 1 (d)). The proposed model is based
on the Hodgkin-and-Huxley model [25], where opening and
inactivation are separated. However, instead of inactivation,
the second state pair represents the light-dark adaptation,
resulting in the accompanied conductance regulation. With
this model, the complexity is reduced with fifty percent.
Furthermore, by using two light dependent rates in the light-
dark adaptation cycle, we hypothesized and realized no loss
of ChR2 current features. To this end, a fit is created of the
ChR2(H134R) mutant and compared to the 4SB model of
Williams et al. (2013) [1]. The performance of both models
are tested in a regular spiking neuron [26]. The difference
in computation speed is assessed, as well, this in the afore-
mentioned regular spiking neuron for different stimulation
patterns and in the sparse Pyramidal-Interneuron-Network-
Gamma (sPING) network model [27], [28] with increasing
number of transfected neurons. Finally, the versatility of the
proposed model is evaluated with a fit to a MerMAID opsin.

II. METHODS AND MATERIALS

In this study, a Hodgkin-and-Huxley model with two state
pairs (22HH) was tested as alternative for opsin modeling.
Below, we first describe the model in full and indicate the
link between parameters and certain features. Next, the fitting
procedure is elaborated. Finally, we describe the models and
metrics used in the analysis of the model performance and
computational speed.

A. The model

The proposed model is based on the original sodium model
of Hodgkin and Huxley [25]. It consists of two separate
state pairs as depicted in figure 1 (d). In contrast to the sodium
model, where the second state pair represents the inactivation
gate, the second state pair represents here the light-dark
adaptation. This light-dark adaptation of ChR2 affects the
conductance of the channel. Therefore, the second state pair
acts in this case as a conductance regulator.

After a long enough dark period, the molecules are assumed
to be all in closed, dark adapted state. Upon stimulation, the
channel opens with a transition C → O. On a slightly slower
time scale the equilibrium between dark and light adapted
(DA ↔ LA) molecules is reached. The established equilibria
of both state pairs depend on the level of optical excitation. Af-
ter photostimulation, the channels close (O → C). Moreover,
they all return to the dark adapted state after a long enough
recovery period, which is on a much slower time scale than
the other temporal kinetics. Because of this slower time scale,
the transition LA → DA has to be light dependent as well.
Otherwise the equilibrium would be completely on the side of
LA for every optical excitation level. The ChR2 photocurrent
can thus be determined as follows:

iChR2 = gChR2G(V ) (O ·DA) (V − EChR2) (1)

with
dO

dt
=
O∞(I, V )−O(t)

τO(I, V )
(2)

dDA

dt
=
DA∞(I, V )−DA(t)

τDA(I, V )
(3)

where gChR2 is the maximal specific conductivity of the
channel, G(V ) is a rectification function, V the membrane
potential, I the light intensity, EChR2 the equilibrium potential
and O the fraction of molecules in the open state, with O∞ and
τO its corresponding equilibrium and time constant. Moreover,
DA is one when fully dark adapted and (gLA/gChR2) when
fully light adapted, with gLA the conductivity of a light adapted
channel. DA∞ and τDA are the respective equilibrium and
time constants.

Under voltage clamp conditions and a rectangular optical
pulse with constant light intensity, the photocurrent can be
expressed in a closed form analytical expression:

iChR2 =gChR2G(V )(Oon
ChR2(t) +Ooff

ChR2(t))·
(DAon

ChR2(t) +DAoff
ChR2(t))(V − EChR2)

(4)

with

Oon
ChR2(t) = O∞

(
1− exp

(
− t− ton

τO(I, V )

))
·

Θ(t− ton)Θ(toff − t)
(5)

Ooff
ChR2(t) = Oon

ChR2(toff) exp

(
− t− toff

τO(0, V )

)
Θ(t− toff) (6)

DAon
ChR2(t) =

[
DA∞ − (DA∞ − 1) exp

(
− t− ton

τDA(I, V )

)]
·

Θ(t− ton)Θ(toff − t)
(7)
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DAoff
ChR2(t) =

[
1− (1−DAonChR2(toff)) ·

exp

(
− t− toff

τDA(0, V )

)]
Θ(t− toff)

(8)

with Θ the Heaviside function and, ton and toff , respectively,
the onset and offset of the optical pulse.

Strong correlations between the model time constants and
experimentally determined features (Fig.1 (a)) are observed.
These can be exploited to obtain a first approximation of the
model’s parameters (see section II-B). When τO � τDA, the
transition rate time constant (τO) can be easily obtained from
the activation (τon) and deactivation (τoff ) time constants. Un-
der the same conditions, τDA strongly correlates with the inac-
tivation time constant (τinact) when I 6= 0. The recovery time
constant needs to be scaled as shown in eq. 10 to get a good
approximation of the dark-light adaptation time constant under
dark (I = 0) conditions. This relationship is obtained by eval-
uating the recovery time definition with the given model equa-
tions, i.e., τrecov = ton,2 − toff,1 → Ip,2/Ip,1 = 1− exp(−1).
Here, ton,2 is the onset time of the second pulse, toff,1 the
offset of the first pulse, and Ip,2 and Ip,1 the current peak
value of second and first pulse, respectively.

τO(I, V ) ≈ τon, τO(0, V ) ≈ τoff and τDA(I, V ) ≈ τinact

(9)

τDA(0, V ) ≈ τrecov/

(
1− ln

1

1− Iratio

)
(10)

Furthermore, following conditions need to be met for the
relationship to hold true:

tp,1 − ton,1 ≈ tp,2 − ton,2

tp,1 − ton,1 > τon (11)
toff,1 − ton,1 > τDA

The first, tp,i − ton,i is the time required to reach the peak
value since onset of pulse i. This needs to be approximately
the same in both first and second pulse, while these need to
be significantly larger than the activation time constant. The
last one requires that the steady-state value is reached at the
end of the first pulse.

Unless specified, the time constants and time in this study
are in seconds, the membrane potential in mV and the intensity
in W/m2. The units of the conductance depend on the
experimental data of each opsin, i.e., mS/cm2 and µS in case
of the ChR2(H134R) and MerMAID fit, respectively.

B. The fitting procedure

Due to the dependency on both the potential and light
intensity, more than twenty parameters need to be inferred.
This vast parameter space impedes finding the optimal
solution which is at a high computational cost. To alleviate
this, the fitting procedure can be divided into four steps.

The first step is the extraction of the features, which
is described by Williams et al. (2013) [1]. The peak
current (Ipeak) is the maximal deflection from baseline.
The steady-state current (Iss) is the plateau value. The
current ratio (Iratio) is then Iss/Ipeak. The time constants

are extracted using mono-exponential curve fits. To this
end, a nonlinear least-squares curve fit is performed, with a
trust-region-reflective algorithm. Furthermore, a multi-start
algorithm with ten starting points was used to ensure finding
of the global solution. The variable and function tolerance
were set to 1e-12. The recovery time constant, i.e., the
time necessary between two pulses to have a second peak
current which is 63 % of the first peak (see definition
previous subsection), was determined from a set of two-pulse
experiments.

Next, τO and τDA are fit to the obtained target data. Both
are fit to the corresponding time constants (see eq. 9 and 10)
using the aforementioned nonlinear least-squares method.
Again, a multi-start algorithm is used but with 2000 starting
points. For the intensity dependence, sigmoidal functions
on the log-scale are used while for the voltage dependence
a logistics model was selected. The two dependencies are
combined by either a multiplication or a reciprocal addition.
The relationships and combination schemes are given by
equations 12-16, with pi, i = 1→ 6 indicating the unknown
parameters of each relationship individually.

τO(I) =
p3

1 + exp(p1/p2) · I1/p2·ln(10)
(12)

τDA(I) = p1

(
1− p2

1 + exp(p3/p4) · I−1/p4·ln(10)
−

(1− p2)

1 + exp(p5/p6) · I−1/p6·ln(10)

) (13)

τX(V ) =
p1

1 + exp(−(V − p2)/p3)
(14)

τX(I, V ) = τX(I) · τX(V ) (15)
or [

(τX(I))
−1

+ (τX(V ))
−1
]−1

(16)

O∞(I) =
1

1 + exp(p1/p2) · I−1/p2·ln(10)
(17)

DA∞(I) = 1− p3

1 + exp(p1/p2) · I−1/p2·ln(10)
(18)

G(V ) =
p1 · (1− p2 exp(−(V − EChR2)/p3))

V − EChR2
(19)

In a third step, the parameters of the rectification function
G(V ) and the equilibrium constants O∞ and DA∞ are fit.
The used relationships are given in equations 19, 17 and 18,
respectively. The potential dependence of O∞ and DA∞ are
omitted because this is mostly covered by the rectification
function. The parameter values are determined by minimizing
the cost function described below:

fcost =(
1

N

[ ∑
i=1→N

∆Ipeak(Ii, Vi)
2 + ∆Iss(Ii, Vi)

2 + ∆Iratio(Ii, Vi)
2

])1/2

∆Ix(Ii, Vi) = wx (yx(Ii, Vi) − tx,Ii,Vi) ,with x = peak, ss, ratio

(20)
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Here, yx and tx,Ii,Vi
are respectively the model output and

target value at stimulation values (I ,V ), with ypeak =
maxt(|ion

ChR2(t, I, V )|), yss = ion
ChR2(toff) and yratio =

yss/ypeak. ion
ChR2(t, I, V ) is the current during the photostimu-

lation pulse (t ε [ton, toff ]) for a certain intensity I and voltage
V . The current is calculated by evaluating the equations 4 - 8
with the determined dependencies in the previous step. N is
the total number of stimulation sets (I ,V ). The minimization
of fcost is performed with the MATLAB fmincon-function
and multi-start algorithm with 3000 starting points to increase
chance of finding the global optimum. The upper and lower
boundaries as well as the initial conditions are summarized
in table I. Extra nonlinear constraints are applied to assure
that O∞ approaches one for high intensities (see section
III-A and III-D) and G(V ) ≥ 0. A final constraint ensures
a current decay back to baseline after the optical stimulation,
i.e., ion(toff) > ioff(t) or Oon(toff) · DAon(toff) > Ooff(t) ·
DAoff(t), resulting in:

DA∞(I, V ) > 1− τDA(0, V )

τDA(0, V ) + τO(0, V )
(21)

Finally, a global optimization is performed with the param-
eters of all rate functions included. First, a new parameter
space is defined, which is 10% of the original parameter space
but centered around the values obtained in previous steps
and limited by the former. With the gathered dependencies,
the ChR2 current is calculated according to equation 4. All
model features are now extracted in the same manner as
performed on the experimental data. These are used to deter-
mine a cost function which is the weighted root mean square
error (see equation 20), with additional terms: ∆τon(I, V )2,
∆τoff(I, V )2, ∆τinact(I, V )2 and ∆τrec(I, V )2. Subsequently,
the problem is optimized with a bounded particle swarm
optimization [29]–[31], containing 1000 particles and with a
time limit of 24 hours. The same solver settings and constraints
are imposed as described in previous steps. The single-pulse
experiments are evaluated with a time step of 1.5e−4 s, while
for the two-pulse experiments a step of 1 ms is used.

C. Performance tests

In this study, two opsin fits were performed. First, a fit is
made to the data reported by Williams et al. (2013) of the
ChR2(H134R) [1]. The model accuracy is compared to the
four state Markov model created by the same group. Four
metrics are used to analyze the goodness-of-fit, i.e. Root mean
square error (RMSE), Root mean square normalized error
(RMSNE), Root mean square weighted error (RMSWE) and
root mean square Z-score error (RMSZE):

RMSE =

(
1

N

∑
i=1→N

[yx(Ii, Vi) − tx,Ii,Vi ]
2

)1/2

(22)

RMSNE =

(
1

N

∑
i=1→N

[
yx(Ii, Vi) − tx,Ii,Vi

tx,Ii,Vi

]2
)1/2

(23)

RMSWE =

(
1

N

∑
i=1→N

w2
x · [yx(Ii, Vi) − tx,Ii,Vi ]

2

)1/2

(24)

RMSZE =

(
1

N

∑
i=1→N

[
yx(Ii, Vi) − tx,Ii,Vi

σx,Ii,Vi

]2
)1/2

(25)

with yx(Ii, Vi), tx,Ii,Vi
and σx,Ii,Vi

respectively the model
output, target feature and standard deviation of target feature
x under intensity I and voltage V of set i, and wx the weights
used in fcost. The metrics are also determined in the overall,
time constant features (τon + τoff + τinact + τrec) only and
current features (Ip + Iss + Iratio) only case. Here the squared
errors of all features are summed first before taking the root
and mean. The RMSWE is equivalent to the training error.
However, it could not be used to compare the model fits as the
used weights were not equal across fitting procedures (different
weights were used in the 4SB fit, see Williams et al. (2013)
[1]). Therefore, the other metrics were defined as well. Where
the RMSE is biased by high values, the RMSNE is biased by
values close to zero and RMSZSE could not be determined
for the recovery time constant.

Both models are then implemented in a regular spik-
ing neuron, described in Pospischil et al. (2008) [26]. The
strength duration curves (SDC) are determined. When the
irradiance is selected as strength for the SDC, a poor
fit is obtained. This is due to the assumption of an RC
equivalent circuit and a rectangular stimulation pulse in
the Hill-Lapicque relationship (eq. 26) [32], [33]. Therefore,
the SDC fit is performed on the average inward stimula-
tion current or temporal averaged current (iChR2,avg, TAC),
as described by Williams and Entcheva (2015) [32].

iChR2,avg =
IChR2,rheo(

1− exp(− PD
τChR2,chron/ ln(2) )

) (26)

iChR2,avg =
1

PD
·
∫ Tend

0

iChR2(t)dt (27)

with PD the pulse duration and Tend one second after the
end of the pulse. The relationship between the irradiance and
iChR2,avg is obtained through a power series fit, which allows
calculation of the irradiance rheobase (Irheo) and chronaxie
(τchron) as follows:

Irheo = a · IbChR2,rheo + c (28)

τchron = −τChR2,chron

ln(2)
ln

(
1− IChR2,rheo

[(2 Irheo − c)/a]1/b

)
(29)

where a, b and c are parameters obtained in an empirically
power series fit of the irradiance curve versus the inward
stimulation current (I = a · (iChR2,avg)b + c) [32].

Moreover, the simulation speed is determined for different
stimulation paradigms, i.e., simulation time (Tend)/runtime
in a regular spiking neuron [26]. Therefore, we varied the
pulse repetition frequency, stimulation time and duty cycle.
The intensity was fixed for each model and set to a value that
elicited a firing rate of 100 Hz in the regular spiking neuron in
case of a two pulse stimulation of two seconds with duty cycle
0.5 and pulse repetition frequency of 1 Hz. The models were
solved by the MATLAB Variable Step Variable Order solver
(VSVO) ode113-solver (order 1-13, Adams-Bashort-Moulton
predictor-corrector pairs) [34], [35], with a maximum time step
of 100 µs and default tolerances, i.e., relative and absolute
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TABLE I
SUMMARY OF ALL PARAMETERS. THE BOUNDARY CONDITIONS, LOWER BOUNDS (LB) AND UPPER BOUNDS (UB), OF FIRST 2 STEPS OF THE FITTING

PROCEDURE AND INITIAL VALUES (X0). THE INTERMEDIATE (-INTM) AND FINAL (-FINAL) MODEL PARAMETERS OF THE SELECTED MUTANT AND
MODEL, WITH RSRS THE H134R MUTANT WITH A DOUBLE RECIPROCAL ADDITION COMBINATION OF TIME CONSTANT DEPENDENCIES (τX(I) AND

τX(V ), EQ. 16), PP THE H134R MUTANT WITH A DOUBLE PRODUCT COMBINATION OF TIME CONSTANTS DEPENDENCIES (EQ. 15) AND THE MERMAID
FIT (MM). PARAMETERS THAT VARIED BETWEEN CHR2(H134R) AND MM FIT ARE SEPARATED WITH VERTICAL LINE. BETWEEN BRACKETS IS

ANOTHER PARAMETER SOLUTION, RESULTING IN THE SAME MODEL.

τO(I) τO(V) τDA(I) τDA(V)
p1 p2 p3 p1 p2 p3 p1 p2 p3 p4 p5 p6 p1 p2 p3

LB -10 0 0 0 -100 -1000 0 0 -10 0 -10 0 0 -100 -1000
UB 10 20 1 100 100 1000 10 1 10 20 10 20 100 100 1000
X0 1 1 0.5 1 -50 10 1 0.5 0 0.125 3 0.5 1 -50 10

RSRS-intm. 1.93 0.68 0.022 23.26 0.14 12.40 10 0.56 -1.59 0.88 1.96 0.11 100 -38.94 14.70
RSRS-final 1.81 1.17 0.021 23.14 -0.39 13.19 10 0.56 -1.58 0.87 1.96 0.11 99.74 -38.69 12.02

PP-intm. 1.99 0.67 0.034 0.64 -89.16 14.31 6.74 0.50 2.00 0.11 -1.3 0.88 1.50 -70.01 19.13
PP-final 1.93 0.88 0.030 0.63 -88.67 8.37 6.73 0.50 1.98 0.11 -1.28 0.88 1.66 -64.54 28.55

MM-intm. 1.70 1.49 0.035 0.29 48.56 738.24 0.17 0.0081 -2.80 14.69 1.05 0.42 24.77 80.92 164.75
MM-final 3.70 3.35 0.037 0.20 49.99 718.60 0.18 0.0082 -3.00 15.57 0.998 0.429 24.42 80.87 172.82

O∞(I) DA∞(I) G(V) gChR2 EChR2
p1 p2 p1 p2 p3 p1 p2 p3

LB -10 0 -10 0 0 0.8 0 - 1.1 - 0 - - 0 - -100
UB 10 20 10 20 1 100 - 100 - 500 - - 100 - 100
X0 1 1 1 1 0.1 0.9 1 - 10 - 50 - - 30 - 0

RSRS-intm. 3.45 0.71 2.03 0.13 0.71 9.91 (1) 1.24 46.17 1 (9.91) 0
RSRS-final 3.38 0.62 1.96 0.12 0.77 10.77 (1) 1.25 44.52 1 (10.77) 0

PP-intm. 3.45 0.71 1.99 0.15 0.73 8.93 (1) 1.27 42.37 1 (8.93) 0
PP-final 3.44 0.68 2.25 0.065 0.75 9.10 (1) 1.27 41.47 1 (9.10) 0

MM-intm 3.76 0.40 0.74 0.52 1.00 - - - 62.00 -3.64
MM-final 3.67 0.39 0.40 0.54 0.9987 - - - 62.22 -3.62

tolerance equal to 1e−3 and 1e−6, respectively.
Finally, computational gain with the proposed model com-

pared to the 4 state Markov model was tested in a net-
work model with an increasing number of transfected neu-
rons. Therefore, we used the sparse Pyramidal-Interneuron-
Network-Gamma (sPING) [27], which was implemented via
the DynaSim toolbox [28]. The ChR2(H134R) models were
added to the pyramidal neurons. The number of inhibitory
neurons was varied between 3 and 100 while the 4/1,
pyramidal/interneuron-ratio was maintained. The network was
fully connected and the GABAa and AMPA conductivities
were scaled such that the total input per neuron stayed the
same, i.e., gGABAa = 2/(Nintern)[mS/cm2] = gAMPA, with
Nintern the number of interneurons in the sPING-network. In
each case a single pulse stimulation of 300 ms was applied
with a total simulation time of 500 ms. The irradiance was set
such that the firing rates were equal for both ChR2 models.
The study was performed with both a fixed step (10 µs) runge-
kutta 4 solver and an ode15s-solver (stiff VSVO-solver, order
1-5, based on numerical differentiation formulas) [34], [35]
with a maximum time step of 100 µs, and a relative and
absolute tolerance of 1e-6.

The results shown in this paper are computed with a
3.4 GHz clock rate, quad core system and 8 GB RAM.

D. Versatility
The versatility of the proposed model is shown with a

fit to the MerMAID1 opsin [14]. Photocurrent traces were

obtained in HEK-293 cells during a 500 ms illumination
with 500 nm light. Recordings were made between -80
and +40 mV with a step of 20 mV at an intensity of
3734 W/m2. A light titration at -60 mV with intensities
between 0.46 and 3734 W/m2 was performed as well. The
two-pulse experiment was only performed at -60 mV and with
3734 W/m2 illumination. For more detail we refer to the
work of Opperman et al. (2019) [14]. The same metrics as
aforementioned are used to assess the fit accuracy.

III. RESULTS

To test the feasibility of the proposed Hodgkin-and-Huxley
model with two state pairs (22HH) in opsin modeling, it was
fit to two data sets. First, we fitted the model to the data set
of a ChR2(H134R) opsin reported by Williams et al. (2013),
which was collected in a ChR2(H134R)-HEK293 stable cell
line [1]. By the same group already a four state Markov model
was fit. This allowed us to analyze the performance of our
model in detail. To this end, a comparison of the response
to optical stimuli was made in a regular spiking neuron [26].
Moreover, the computational speed was determined for differ-
ent stimulation paradigms in the former neuron model as well
as in the sPING [27] network model with increasing number
of transfected neurons. Finally the versatility of the proposed
modeling scheme was assessed with a fit to a MerMAID
opsin which is an anion-conducting and intensely desensitizing
channelrhodopsin.
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Fig. 2. Normalized goodness-of-fit results of the model fits to the ChR2(H134R) data reported by Williams et al. (2013) [1]. Goodness-of-fit according to
four metrics: Root-mean-square error (eq. 22, a), Root-mean-square normalized error (eq. 23, b), Root-mean-square weighted error (eq. 24, c) and Root-
mean-square of z-score error (eq. 25, d). The compared models are the 4SB model reported by Williams et al. (2013) [1], the 22HH model with twice the
product combination of time constants (intermediate fit 22HH: PP-intm and final fit 22HH: PP-final), and the 22HH model with twice the reciprocal addition
combination of time constants (intermediate fit 22HH: RSRS-intm and final fit 22HH: RSRS-final). The normalization value is given in the title of each
sub-figure. all, τall and Iall, are errors where the squared errors of all features, all time constants and all current features are, respectively, added first before
taking the root and mean. The depicted legend is valid in all sub-figures

A. The ChR2(H134R) fit

A 22HH fit of the ChR2(H134R) opsin was obtained
by applying the fitting procedure, described in the materi-
als and methods section II-B, to the experimental data. As
Williams et al. (2013) [1] already reported the target features,
the first step could be omitted. The absence of differential
equations in our fitting procedure allowed for multiple fits
to be made, due to the significant reduction of the compu-
tational cost. Multiple weight sets, non-linear constraints and
combinations of dependency addition of the time constants
(product eq. 15 and reciprocal sum eq. 16) were tested. The
parameters of the two best fits are shown in table I, where
RSRS and PP is the fit with a double reciprocal sum and
product combination, respectively. Both results were obtained
with wpeak = 10, wss = 20, wratio = 50, won = 1000,
winact = 1000, woff = 1000, wrecov = 20, and a constraint
where O∞(I, V ) > 0.6 for I ≥ 5500 W/m2. The weights
are chosen as such to level the differences between features
to the same order of magnitude. As a result, all features have
the same impact in the cost function with a slight preference
for the current features. The time constant features are all
expressed in seconds, while their values are in the order
of milliseconds (except τrecov), explaining the high weight
values. The extra constraint is justified as the current peak
already starts to saturate for the highest intensity values, thus
clamping the intensity dependence of the open steady-state
value above the bending point in the logistics curve.

The models’ accuracy according to the four goodness-of-fit

metrics (eq. 22-25) are shown in figure 2. Overall, a positive
effect of the final optimization step can be observed. The
largest impact is on the time constants, as expected. In the
second step of the fitting procedure, the transition rate time-
constants (τO and τDA) are approximated with a one on one
relationship of the target features (see eq 9 and 10). These
approximations are true in case of high differences in order of
magnitude. However, when the differences are smaller some
cross correlations exist, for instance τDA strongly affects τon

as well, resulting in a underestimation of τO. We denote that
according to all metrics, the estimation accuracy of τon and
τinact increases, however, at the cost of τoff . Also, a significant
improvement is observed in case of τrecov. This deviation is
due to the fact that the conditions (see eq. 11) are not fully met.
Furthermore, an increased goodness-of-fit of the inactivation
time constant can be observed in case of the RSRS vs PP fit.
τDA predominately defines both the inactivation and recovery
time constant. In case of the PP fit, a separation of variables is
applied where independence is assumed. However, as can be
seen in figure 3 (f) and (h), a more clear voltage dependency is
present in τrecov compared to τinact. In other words, for low
intensities, with high time constants as result, the potential
effect is high while the effect is low for high intensities or
small time constants. This interdependence is exactly obtained
with the reciprocal addition scheme. The same, however less
pronounced, can be observed in case of the activation and
deactivation time constants (τon and τoff ). Consequently, only
the RSRS fit is used in further analysis.
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Fig. 3. Comparison of model outcomes (4SB and 22HH: RSRS-final) with parameters obtained from experiments. a, The ChR2(H134R) current during a
pulse of 0.5 s (indicated by blue bar) at a voltage clamp of -60 mV; according to the 4SB model (full lines) and 22HH model (dashed dotted lines). The
colors indicate the applied intensity and are valid in a-g. The dotted line and square indicate respectively the experimental current peak and steady-state
current at corresponding intensity and potential. b,d and f, Voltage dependence of respective τon, τoff and τinact across four irradiance levels. c,e and g,
The current-voltage curves of the peak, steady-state and current ratio, respectively. The asterisks with errorbars indicate the experimental mean ± standard
deviation. h, The recovery time constant as function of the membrane potential for three different irradiance levels as depicted in the plot.

Figure 3 shows a detailed comparison of the outcome of
our model according to the RSRS fit and the 4SB model,
versus the experimentally determined target features. Overall,
it can be observed that the proposed model performs at least
as well as the 4SB model. Moreover, all features are well
approximated. It can be seen that with the 4SB model, the
steady-state value is overestimated in case of negative po-
tentials (Fig. 3 (a) and (e)). However, a better representation

is obtained for positive potentials, which explains the lower
root-mean-squared normalized error (RMSNE, Fig. 2 (b)).

B. Neural response in regular spiking neuron
To analyze the neural response, the strength duration curves

(SDC) are determined of the proposed 22HH model with
RSRS fit and the 4SB model in a regular spiking neuron, de-
scribed in Pospischil et al. (2008) [26]. First, the Hill-Lapicque
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Fig. 4. The strength duration curves (SDC) of the 22HH RSRS and 4SB model
in a regular spiking neuron. a, Irradiance versus pulse duration with a mapping
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current or average injected current vs pulse duration. Dashed line represents
the Hill-Lapicque model fit. The rheobase and chronaxie are depicted in
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respectively

model fit is performed on temporal average current (TAC), as
described in section II-C. Very good fits were obtained for
both models. The adjusted r2 (R̄2) of TAC versus PD are
0.9961 and 0.9953 for the 22HH and 4SB model, respectively.
The rheobase of the 22HH model (0.49 µA/cm2) is slightly
higher than when the 4SB is used (0.47 µA/cm2). Also the
chronaxie is higher (47.51 ms vs. 39.45 ms). Consequently,
according to the 4SB model for any pulse duration, less charge
is injected optogenetically to excite a regular spiking neuron
via a ChR2(H134R) opsin. The difference between the models
can be attributed to the difference in deactivation time constant
(τoff ). This is higher in the 22HH model resulting in a slower
closing mechanism and thus increased current injection after
the AP. A good cell-type-specific empirical mapping of TAC
to irradiance was obtained as well (eq. 28), with R̄2 values
of 0.9449 (22HH) and 0.9638 (4SB). The parameter val-
ues are respectively, a = 8.18, b = 1.26 and c = 1.6798, and
a = 22.30, b = 1.51 and c = 12.32 in case of the 22HH and
4SB mapping. The lower R̄2 of the 22HH mapping resulted
also in a slightly lower value of 0.9298 for the irradiance to
PD curve while this is 0.9509 in case of the 4SB fit. Based

on the mapping parameters and figure 4, it can be seen that
lower intensity level results in higher injected currents when
the 22HH model is used. Indeed, extrapolation of the model fit
to low intensities results in higher open probabilities than for
the 4SB model, hence the difference in irradiance rheobase of
4.90 W/m2 versus 19.01 W/m2. Based on the higher peak
values for high intensities in case of the 4SB model, one could
expect convergence of the irradiance SDCs. However, at small
pulse durations and due to the slow activation kinetics, the
peak value is not reached. Even though the activation time
constant is overall higher for the 22HH model (Fig. 3 (b)),
the bi-exponential current rise due to the extra state variable(
τChR2 · dp/dt = S0(I) − p, a time-dependent function

reflecting the probabilistic, non-instantaneous response of the
ChR2-retinal complex to light [1]

)
in the 4SB model results

in a lower current value at the end of the pulse.

C. Computational speed

The proposed model in this study contains only two
differential equations, which is 50% less in comparison
with the 4SB model. Consequently, a reduction of the
computational time is expected. Figure 5 (a-f) summarizes
the computational speed for different stimulation protocols
in a regular spiking neuron. This for fixed irradiances
(22HH: 3162 W/m2 and 4SB: 1259 W/m2) set to a
value that elicit a firing rate of 100 Hz, as described in
section II-C. Subfigures 5 (a-d) show an overall increase
of the computational speed in favor of the 22HH model,
with a maximum of 25% for high frequency and duty
cycle stimulation. On average the relative difference of the
simulation speeds, i.e., simulation speed with 22HH minus
simulation speed with 4SB with respect to the latter, is about
20%. Because the simulations were solved using a variable
step solver, the difference in firing rate could distort the
effective simulation speed, as during an action potential a
smaller timestep is selected. Therefore, the relative difference
of the simulation speed normalized to the firing rate is
depicted as well, with an increase of the gain to 60% as
result. The runtime versus number of transfected neurons is
depicted in figure 5 (g-i). The simulation outcomes were the
same with the variable and fixed step solver, validating the
solver settings. Moreover, the firing rate was equal for both
opsin models, hence no normalization was necessary. A clear
reduction can be observed when the 22HH model is selected
instead of the 4SB model, both with a fixed and variable
step solver. The time gain by using the proposed model is
15% (5%) in case of 12 neurons and goes up to 40% (15%)
and rising when 400 transfected neurons are included with a
variable (fixed) step solver.

D. Versatility of the proposed model

Finally, we address the versatility of the proposed model and
the fitting procedure. Due to the increasing number of possible
opsins, it is favorable that their kinetics can be correctly
modeled and a fit is easily obtained without preliminary
knowledge. To this end, we applied our fitting procedure to
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Fig. 5. The computational speed of optogenetic neuromodulation in a regular spiking (RS) neuron and sparse Pyramidal-Interneuron-Network-Gamma (sPING).
a-f, Simulation speed, i.e. simulation time/runtime for different stimulation protocols with varying pulse duration (PD) and pulse repetition frequency (PRF)
in a regular spiking neuron, described by Pospischil et al. (2008) [26]. a, The absolute simulation speed with the 22HH-RSRS fit. b, The simulation speed
with the 4SB model. Colorbar is valid for a and b. c, The relative difference, i.e., (22HH-4SB)/4SB. d, The effect of the duty cycle on the simulation speed.
e, The difference in firing rate in case of the 22HH model vs. 4SB. f, The relative difference of simulation speed normalized to the firing rate. g-i, Runtime of
a continuous 300 ms optical pulse in the sparse Pyramidal-Interneuron-Network-Gamma (sPING), with increasing number of transfected neurons. g, Runtime
with a variable step solver. h, Runtime with a fixed step solver. i, Relative computation gain, i.e., -(22HH-4SB)/4SB. The used intensities are shown in the
titles of a and b, which give rise to a 100 Hz firing rate (see section II-C)

experimental data of a MerMAID opsin, which has unlike clas-
sical ChR2 a very strong desensitization [14]. Starting from
the photocurrent traces, the target features had to be extracted
first. Next the parameter space was defined. The rectification
function was omitted because this was not observed in the
experimental data. Aside from this, the lower bound and initial

condition of only the third parameter of the dark adaptation
cycle was altered (Table I). This straight forward adjustment
was made due to the strong desensitization. The weights
of the cost function were set to wpeak = 0.04, wss = 1,
wratio = 250, won = 10000, winact = 10000, woff = 10000,
wrecov = 10, again to level the errors to the same order of
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Fig. 6. Comparison of the 22HH-Mermaid (final fit) model outcomes and experimental data. a, In blue, the photocurrent of a voltage clamp experiment
during a 0.5 s continuous illumination (indicated with blue bar on top) of 500 nm light with an intensity of 3734 W/m2 [14]; In red, corresponding model
outcome. Left inset is zoom of the current peak (0.045-0.075 s, indicated with black bar). Right inset is zoom of current deactivation (0.45-0.7 s, indicated
with square). b-g, The voltage dependence of the target features (τon, Ipeak, τoff , Iss, τinact and Iratio) in blue at an irradiance of 3734.4 W/m2 and light
dependence in red at a holding potential of -60 mV. h, Ratio of the peak currents in response to a two-pulse stimulation protocol at -60 mV and 3734 W/m2

as function of the inter-pulse interval. The recovery time (the interval time necessary to have a ratio of 63%), is indicated with a black arrow.

magnitude. Because no saturation of the current was observed
at high intensity levels a constraint: O∞(I, V ) < 0.50 for
I ≤ 4000W/m2, was added.

The result of the fit is shown in figure 6. The parameters of
the final and intermediate fit are summarized in table I. The
model here is with a double product combination of the time
constant dependencies. Because the recovery time constant
was only determined under one condition, there is no evidence
on the interdependence of the variables. This is also supported

by the small voltage dependence of the (de)activation time
constants. Overall, it can be stated that a good fit is obtained
as all kinetics are expressed correctly. Only, the deactivation
time constant seems to be underestimated. However, this is due
to the trade off between this and the steady-state current value
to ensure a current decay back to baseline after the optical
stimulation, as denoted in Methods and Materials II-B and
equation 21.
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IV. DISCUSSION

The proposed Hodgkin-and-Huxley type model for the
modeling of opsins appears to be a good alternative to
the computationally more expensive four state Markov, non-
instantaneous models. All features are represented, with even
some improved fit accuracy in comparison with a four state
Markov variant. Furthermore, with the proposed fitting pro-
cedure, we were able to fit two opsins, ChR2(H134R) and
MerMAID. Although the prominent difference of the mutants
kinetics, the fitting procedure allowed us to get these fits
with only minor adjustments of the parameter space and
constraints. Therefore, creating the possibility for automatic
model fitting based on photocurrent traces. Moreover, a good
fit is obtained within an acceptable time frame, due to the
absence of differential equations in the fitting procedure. The
intermediate fit is obtained within three hours, while the final
fit always flagged the time limit of 24 hours. Increasing the
limit improves the fit accuracy but only small changes were
observed. Fine tuning of the optimization settings, such as
number of particles or tolerances, could reduce the training
error even more. However, this is out of the scope of this
study.

The proposed model is an empirical model. The fit is
performed on a limited dataset thus extrapolation should be
treated with care. This is clear from the neural response
results in section III-B. Although both the 4SB and our model
were fit to the same experimental data, a clear discrepancy
between the fitted rheobase is observed

(
4.90 W/m2 (22HH)

versus 19.01 W/m2 (4SB)
)
. Unlike the chronaxie where

the difference can be attributed to the model’s structure, the
difference in rheobase is due to the discrepancy between
opening rates after extrapolation to low intensities, attributed
to the fit and intensity dependence chosen in each model. More
experiments are required in order to validate this.

The dependencies chosen here are all, except the rec-
tification, sigmoidal. Therefore, they are all bounded and
monotonic. This is in accordance with a channel’s behavior,
i.e., increased and faster opening at higher intensities but
limited to an open probability of one. We opted for a biphasic
logistics function for τDA(I) modeling. This is in agreement
with the hypothesis of the necessity of two light dependent
rates

(
(DA → LA) and (LA → DA), see section II-A

)
and

the second and third photochemical pathways described by
Kuhne et al. (2019) [15] (Fig. 1). Other functions were tested,
e.g., weibull or asymmetric logistics with double intensity
dependence, however no improvement was observed. Initially,
separation of variables was assumed to suffice due to the lack
of experimental evidence of complex channel interdependence
of both irradiance and potential of each feature separately.
However, due to the models structure, τon and τoff share
the same voltage dependency, as well as τinact an τrecov.
The voltage dependence of τrecov and τoff was clearly more
pronounced in the experimental data of the ChR2(H134R)
mutant. Therefore, the reciprocal addition equation 16 was
tested as alternative, resulting in an improved fit accuracy.
However, this only scales down the voltage dependent effect on
τon and τinact while the same relationship is maintained. The

necessity of more complex relationships could be investigated
in future work as well as the need for voltage dependence of
the rate functions steady-state values (O∞ and DA∞), which
was omitted in this study.

Currently the model incorporates voltage and irradiance
dependence. Studies have however shown the importance of
pH on the channel kinetics in many opsins. Furthermore,
ion concentrations have an impact on the reversal potentials
and current rectification [20], [36]. Schneider et al. (2013)
[23], postulated a model based on the kinetics of multiple
ion species interacting with the channel, with an improved
representation of the current rectification [1], [23]. While the
photocurrent properties are unaffected by pH-changes, the
MerMAID photocurrent is strongly dependent on the Cl−

concentrations. The fit performed here was on experimental
data recorded with an extracellular Cl− concentration of
150 mM and intracellular Cl− of 120 mM, explaining the
depolarizing currents (negative sign in fig. 6) as an anion
conducting channel. By changing the extracellular concentra-
tion to 10 mM1, the channel’s reversal potential is shifted
to the reversal potential of Cl−. Evidence of the Cl− effect
on channel kinetics is still absent but further experiments are
needed [14]. Consequently, the model fit shown here can be
used in computational studies but the reversal potential should
be adjusted accordingly.

With the current model structure, the model responds instan-
taneously to light. With the 4SB model this is circumvented
by adding a extra state variable with a time constant of
1.5 ms. It is clear that for long (PD >> τon) continuous
pulses its effect is negligible, as activation is dominated by
the activation time constant. However, with short bursts or
pulses, this non-instantaneous activation becomes prominent as
observed in section III-B. In future work, it could therefore be
interesting to incorporate this non-instantaneous response. This
could probably be obtained by adding an extra state variable,
as performed with the 4SB model, however at the cost of
the computational speed. Another possibility is to raise the
open state, O(t), to a higher power, smoothing the transition
but without irradiance control. Modification of the model’s
structure could be circumvented by gradually increasing the
intensity, instead of applying a rectangular pulse.

V. CONCLUSION

To facilitate computational studies in the field of optoge-
netics, we proposed a Hodgkin-and-Huxley based model as
alternative to the conventional three and four state Markov
models. In the proposed model, the second state pair acts as
a conductance regulator, modeling the light-dark adaptation
cycle. With this model type, a reduction in complexity is
obtained resulting in only two differential equations compared
to four in case of the preferred, non-instantaneous four state
Markov models used for opsin modeling. With the provided
fitting procedure, nearly automatic model fits of two distinctive

1The concentrations are exchanged with respect to a conventional neuron,
where the typical intracellular and extracellular concentrations are 10 mM and
120 mM, respectively. This explains the experimentally measured depolarizing
currents (negative sign), while one would expect hyperpolarizing currents
(positive sign) from a Cl− conducting channel.
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opsins
(
ChR2(H134R) and MerMAID

)
were obtained. Both

model fits were performed within an acceptable time frame
thanks to the absence of differential equations and parameter
space reduction associated with the multi step approach.
Moreover, both models are able to represent the experimental
data with great accuracy. Due to the model’s structure, there is,
however, an instantaneous response to light, overestimating the
injected current at very short pulses. Furthermore, pH and ion
concentration dependence are not incorporated. In its current
state with only two differential equations, the computational
speed is increased up to 25% in a regular spiking neuron and
up to 40% in a network of 400 transfected neurons.
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