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Summary: 27 

● In many perennial crops, grafting the root system of one individual to the shoot system of another 28 

individual has become an integral part of propagation performed at industrial scales to enhance 29 

pest, disease, and stress tolerance and to regulate yield and vigor. Grafted plants offer important 30 

experimental systems for understanding the extent and seasonality of root system effects on shoot 31 

system biology.  32 
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● Using an experimental vineyard where a common scion ‘Chambourcin’ is growing ungrafted and 33 

grafted to three different rootstocks, we explore associations between root system genotype and 34 

leaf phenotypes in grafted grapevines across a growing season. We quantified five high-35 

dimensional leaf phenotyping modalities: ionomics, metabolomics, transcriptomics, 36 

morphometrics, and physiology and show that rootstock influence is subtle but ubiquitous across 37 

modalities.  38 

● We find strong signatures of rootstock influence on the leaf ionome, with unique signatures 39 

detected at each phenological stage. Moreover, all phenotypes and patterns of phenotypic 40 

covariation were highly dynamic across the season.  41 

● These findings expand upon previously identified patterns to suggest that the influence of root 42 

system on shoot system phenotypes is complex and broad understanding necessitates volumes of 43 

high-dimensional, multi-scale data previously unmet. 44 

 45 

Introduction 46 

 47 

High-throughput data acquisition has afforded unprecedented capacity to quantify and understand 48 

plant phenotypes. Recent advances in imaging and computation have expanded our ability to measure 49 

plant form (Ubbens & Stavness, 2017; Gehan et al., 2017), and to extend those comprehensive 50 

measurements into latent space phenotypes (Ubbens et al., 2020). Phenomics is characterized as the 51 

acquisition and analysis of high-dimensional phenotypic data at hierarchical levels (Soulé, 1967; Houle et 52 

al., 2010), often with an eye toward multiscale data integration. This holistic and hierarchical approach to 53 

plant form and function affords unique insight into how plants change over developmental time, and in 54 

response to environmental cues and horticultural manipulation.  55 

One common horticultural manipulation is grafting, the ancient agricultural practice that joins the 56 

stem of one plant (the scion) with the root system of another plant (the rootstock) (Mudge et al., 2009). In 57 

agriculture, grafting is commonly used to confer favorable phenotypes that preferred scions lack. Such 58 

phenotypes include enhanced disease resistance (Pouget, 1990; Walker et al., 2014), fruit quality, plant 59 

form (Warschefsky et al., 2016), response to water stress (Tramontini et al., 2013), and growth on 60 

particular soils (Bavaresco & Lovisolo, 2015; Ferlito et al., 2020). Because grafting involves the union of 61 

a scion with a different (genetically distinct) rootstock, it offers a valuable experimental system in which 62 

root system impacts on shoot system phenotypes can be evaluated.  63 

The cultivated grapevine, Vitis spp., is among the most economically important fruit crops in the 64 

world. Grapevines are cultivated primarily for fruits used to make wine and juice, as well as for table 65 

grape and raisin production. Most work on the molecular response to grafting in grapevine shows a 66 
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remarkable breadth of scion response patterns. For example, a study of ‘Cabernet Sauvignon’ grafted to 67 

different rootstocks identified transcriptome reprogramming in the scion of grafted plants; this appeared 68 

to be a general effect of grafting to a rootstock and was not rootstock-specific (Cookson & Ollat, 2013). 69 

In contrast, other studies have found signatures of rootstock genotype in the transcriptome in early berry 70 

development, although this distinction was lost in later development (Berdeja et al., 2015; Corso et al., 71 

2016), but see (Zombardo et al., 2020). Collectively, these studies suggest the effects of grafting are 72 

diverse and may vary over the course of vine development.  73 

Comprehensive phenomic analyses, including those that link transcriptome data with other high-74 

throughput phenotypic assays, offer an opportunity to expand understanding of grafting effects on 75 

grapevine shoots. For example, leaves of the cultivar ‘Gaglioppo’ show variation in stilbene and abscisic 76 

acid concentrations due to rootstock genotype, as well as differences in transcriptional profiles (Chitarra 77 

et al., 2017). Likewise, gene expression, ion concentrations, and leaf shape in the cultivar ‘Chambourcin’ 78 

varied in response to rootstock genotype (Chitarra et al., 2017; Migicovsky et al., 2019a). Nonetheless, 79 

questions remain regarding variation imparted by grafting over the course of the growing season and the 80 

extent to which different phenotypes covary. 81 

 Grapevine leaves are the main photosynthetic engine of the organism and a primary site for 82 

perception and response to environmental change. Leaves present a wide variety of highly variable and 83 

readily assayable phenotypes, providing an important opportunity for comprehensive phenomic 84 

assessment. Grapevine leaves have been used for centuries as markers of species and cultivar 85 

delimitation, developmental variation, disease presence, and nutrient deficiency (Galet, 1979; Mullins et 86 

al., 1992). More recently, analysis of grapevine leaf morphology has identified genetic architecture of leaf 87 

shapes (Chitwood et al., 2014), developmental patterns across the season (Chitwood et al., 2015), and 88 

signatures of evolution in the grapevine genus (Klein et al., 2017). Grapevine leaves respond to stress 89 

through gas and water exchange with the atmosphere (Williams & Grimes, 1987; Grimes & Williams, 90 

1990) and have been shown to differentially partition the ionome depending on their position on the shoot 91 

(Migicovsky et al., 2019a) and their rootstock genotype (Lecourt et al., 2015; Migicovsky et al., 2019a; 92 

Gautier et al., 2020a). The volume of work on grapevine leaves provides a foundation for the analysis of 93 

phenomic variation in a vineyard over a season in response to grafting.  94 

In this study, we investigate effects of seasonal variation and grafting on leaf phenomic variation 95 

of the hybrid cultivar ‘Chambourcin’. We show that ionomic, metabolomic, transcriptomic, 96 

morphometric, and physiology phenotypes vary over the course of the season and reflect subtle but 97 

ubiquitous responses to grafting and rootstock genotype. Rootstock effects were often dynamic across the 98 

season, suggesting that accounting for seasonal variation could alter our understanding of grafting in 99 

viticulture.  100 
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 101 

Methods 102 

 103 

Study Design 104 

Data were collected in an experimental rootstock trial at the University of Missouri’s Southwest 105 

Research Center (37.074167 N; 93.879167 W). Samples were collected in 2017 at three phenological 106 

stages: anthesis (~80% of open flowers; 22 May 2017); veraison ( ~50% of berries had transitioned from 107 

green to red; 30 July 2017); and immediately prior to harvest (25 September 2017). The vineyard includes 108 

the interspecific hybrid cultivar ‘Chambourcin’ growing ungrafted (own-rooted) and grafted to three 109 

rootstocks: ‘1103P’, ‘3309C’, and ‘SO4’. Each of the four rootstock-scion combinations was replicated 110 

72 times for a total of 288 vines planted in nine rows. Each row was treated with one of three irrigation 111 

treatments: full evapotranspiration replacement, partial (50%) evapotranspiration replacement (reduced 112 

deficit irrigation; RDI), or no evapotranspiration replacement. Rainfall in 2017 likely mitigated the 113 

applied irrigation treatment (see: Supplemental Note 1). Vine position in the vineyard corresponded to 114 

time of sampling for some phenotypes, as samples were taken from one end of the vineyard to the other 115 

over the course of two to three hours. Because vineyard microclimates and sampling time may be 116 

associated with phenotypic variation, we defined ‘temporal block’ as a factor that captures this spatial and 117 

temporal variation inherent in sampling. Unique rootstock-scion combinations were planted in cells of 118 

four adjacent replicated vines, with rows consisting of eight cells. Depending on the phenotype being 119 

assayed, leaves were sampled from either the full vineyard (the 288-vine set) or from a nested set 120 

comprising 72 vines representing the middle two vines in each four-vine cell (the 72-vine set).  121 

 122 

Leaf Ionomics 123 

The ionome describes concentrations of ions in a tissue at a particular time point (Salt et al., 124 

2008). From the 288-vine set, three leaves were collected along a single shoot: the youngest fully opened 125 

leaf at the shoot tip, the approximate middle leaf, and the oldest leaf at the shoot base. Leaves were 126 

sampled from primary shoots, placed in zip-lock bags in the field and dried in coin envelopes at 50°C for 127 

one to three days. Between 20 and 100 mg of leaf tissue was acid digested and 20 ions were quantified 128 

using inductively coupled plasma mass spectrometry (ICP-MS) following standard protocol (Baxter, 129 

2010; Ziegler et al., 2013)at the Donald Danforth Plant Science Center (DDPSC). Ion quantifications 130 

were corrected for sample losses, internal standard concentrations, instrument drift and by initial sample 131 

mass as part of the DDPSC Ionomics Pipeline. For each ion concentration, we computed z-score 132 

distributions and used those values as the basis for linear models. Non-standardized values were used for 133 

machine learning analysis. 134 
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 135 

Leaf Metabolomics 136 

 The metabolome represents a catalogue of small molecules present in a tissue, likely stemming 137 

from metabolic processes (Oliver et al., 1998; Tweeddale et al., 1998). Metabolomic analysis was 138 

completed at veraison and harvest on the 72-vine set. Three mature leaves were sampled from the middle 139 

of a shoot and immediately flash frozen in liquid nitrogen to capture the metabolic state of the leaves 140 

when attached to the vine. Frozen leaves were transported to the University of Missouri Enology lab on 141 

dry ice and stored at -80˚C. Leaf metabolomes were analyzed using a modified form of a previously 142 

established protocol (Islam et al., 2011); Supplemental Note 2). LC-MS instrument files were converted 143 

to .cdf format and uploaded to XCMS online (Tautenhahn et al., 2012) for chromatogram normalization 144 

and feature detection via “single job” parameters. Identified metabolomic features were used as the basis 145 

of a principal components (PC) analysis. The top 20 PCs were treated as distinct phenotypes to model 146 

according to the experimental design. In PCs that varied significantly by rootstock, features that loaded 147 

more than 1.96 standard deviations above or below the mean were fit independently with the same model 148 

design.  149 

 150 

Gene Expression 151 

 The youngest fully-opened leaves (~1 cm) on two shoots were collected from each plant of the 152 

72-vine set and pooled for RNA sequencing. Samples were sequenced using 3’-RNAseq, a method ideal 153 

for organisms with reasonably characterized reference genomes (Tandonnet & Torres, 2017). The first 12 154 

nucleotides from each read were trimmed to remove low-quality sequences using Trimmomatic (options: 155 

HEADCROP:12; (Bolger et al., 2014)). Low quality trimmed reads were additionally identified based on 156 

overrepresentation of kmers and removed using BBduk (April 2019 release) (Bushnell, 2017). Trimmed 157 

and QC-controlled reads were mapped to the 12Xv2 reference Vitis vinifera genome (Jaillon et al., 2007; 158 

Canaguier et al., 2017) using STAR (v2.7.2b) (Dobin et al., 2013) with default alignment parameters. 159 

RNAseq read alignments were quantified using HTSeq-count (v0.11.2) (Anders et al., 2010) and a 160 

modified version of the VCost.v3 reference V. vinifera genome annotation (Canaguier et al., 2017). To 161 

capture mis-annotated gene body boundaries in the genome, all gene boundaries in the annotation were 162 

extended 500 bp.  163 

 Variation in gene expression was assessed using two methodologies. First, we identified 164 

individual genes which responded to specific factors in the experimental design using DESeq2 (Love et 165 

al., 2014). Genes were filtered to a gene set that included only genes with a normalized count greater than 166 

or equal to two in at least five samples. Each filtered gene was fit with the model “~ Block + Irrigation + 167 

Phenology_Rootstock” where the ‘Phenology_Rootstock’ model term was used to understand the 168 
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potential interaction of phenology and rootstock. Differentially expressed genes were identified for each 169 

pairwise contrast in the model. Second, we used principal component analysis (PCA) to identify co-170 

expressed genes and analyzed the top PCs in the context of the broader experiment. Filtered genes were 171 

transformed using the variance stabilizing transformation (VST; (Anders & Huber, 2010)) and input into 172 

a PCA. To approximate the impacts of both spatial variation and pseudotime (row) in the vineyard, linear 173 

models were first fit to remove variation imparted by irrigation for each of the top 100 PCs. The residuals 174 

from these models were then used as the basis for linear models and as the basis for machine learning 175 

analysis. 176 

 177 

Leaf Shape 178 

All leaves from a single shoot directly emerging from a trained cordon were collected from each 179 

vine at 80% anthesis and veraison. At harvest, we collected only the oldest (first emerging leaf), middle 180 

(estimated from the middle of a whole shoot), and youngest (smallest fully emerged leaf at the shoot tip, 181 

>1cm). Leaves were collected approximately in row order (from south to north) and stored in a cooler. 182 

Each leaf was imaged using an Epson DS-50000 scanner. In order to mimic the sampling regime at 183 

harvest, we subset the leaves collected at anthesis and veraison by extracting the youngest leaf, the 184 

approximate middle leaf, and the oldest leaf sampled.  185 

We assessed leaf morphological variation using generalized procrustes analysis (GPA) of 186 

landmarks. For each leaf, 17 homologous landmark features were identified (Chitwood et al., 2014). The 187 

GPA-rotated coordinate space was used for all subsequent statistical analysis including PCA in order to 188 

summarize variation in leaf shape (Dryden & Mardia, 2016). From the PCA, we extracted the top 20 PCs 189 

and fit linear models and machine learning models to describe variation. 190 

 191 

Vine physiology 192 

Intracellular CO2 concentration, stomatal conductance and leaf transpiration rate were measured 193 

on a fully expanded sun-exposed leaf during midday (10 am to 1 pm) using an LI-6400XT Portable 194 

Photosynthesis system coupled with a pulse amplitude-modulated (PAM) leaf chamber fluorometer with 195 

the following parameters: incident photosynthetic photo flux density level of 1000 μmol m−2 s−1 196 

generated by a red LED array and 10% blue light to maximize stomatal opening (Li-Cor, Inc., Lincoln, 197 

NE, USA), CO2 mixer of 400 umol/s, fixed flow of 300 umol/s, and ambient leaf and block temperature. 198 

Soil moisture was measured for each plant in the 72-vine set using a fieldScout TDR 300 Moisture meter 199 

equipped with 20 cm rods (Spectrum Technologies, Inc. Aurora, IL, USA). Midday stem water potential 200 

was measured using a pressure bomb/chamber (PMS Instrument Co., Albany, OR, USA) after enclosing 201 
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the leaves in an aluminum foil bag for at least 15 minutes to equilibrate the water potential of the xylem in 202 

the stem to that of attached leaf.    203 

 204 

Linear Models 205 

Linear models were fit to the 20 measured ion concentrations, the top 20 PCs of the leaf 206 

metabolome, the top 100 PCs of the leaf transcriptome, the top 20 PCs of leaf morphospace, and each 207 

measured physiological trait. Each model was fit with fixed effect factors representing phenological stage 208 

(anthesis, veraison, or harvest), rootstock (Ungrafted, ‘1103P’, ‘3309C’, or ‘SO4’), leaf position 209 

(youngest, middle, or oldest; only used in leaf morphology and leaf ion concentration models), and all 210 

pairwise interactions of those terms. Both irrigation and block were included as fixed, non-interacting 211 

effects with the exceptions of physiology and metabolomics, for which we allowed the interaction of 212 

‘Block’ as it correlates with the time of sampling. Row, an additional correlate for time and spatial 213 

variation, was included in place of a temporal block for the gene expression models after removal of the 214 

variation attributable to irrigation, a factor collinear with row. All linear models were interpreted using a 215 

type-3 sum of squares computation using the R package ‘car’ (Fox et al., 2013). Estimated p-values for 216 

each term in the models were corrected for multiple tests (within phenotype) using FDR correction as 217 

implemented by the R package ‘stats’ (R Core Team, 2013). Results from the models are reported as the 218 

variation explained by a particular term in the model and the estimated p-value. When appropriate, post-219 

hoc mean comparisons were computed using the package ‘emmeans’ (Lenth et al., 2018). Where multiple 220 

linear models were being simultaneously interpreted, we applied a Bonferonni correction to reduce the 221 

number of false positives.  222 

 223 

Machine Learning to Identify Rootstock Effects 224 

For visualization of between-class variation, we fit linear discriminant analysis models (LDA) to 225 

the full phenotypic data sets of ionomics, metabolomics, gene expression, and leaf morphology using the 226 

‘lda’ function of the R package ‘MASS’ (Ripley, 2002). Projections of all samples into the LD space were 227 

plotted using ggplot2 (Wickham, 2016). In addition, we employed machine learning to capture subtle 228 

experimental effects. We partitioned phenotypic data sets into 80% training partitions and 20% testing 229 

partitions. Models were fit to predict the phenological stage from which a sample was taken, the rootstock 230 

to which the scion was grafted, and the joint prediction of phenology and rootstock. We also tested the 231 

predictability of leaf position for ionomics and leaf shape, and the interaction of rootstock and leaf 232 

position for ionomics. We used the ‘randomForest’ (Liaw et al., 2002) implementation of the random 233 

forest algorithm. Models were fit and tuned using the R package ‘caret’ (Kuhn, 2013). Each performance 234 

was assessed using accuracy, with performance on each class being assessed using the balanced accuracy, 235 
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the midpoint of class-wise sensitivity and specificity. Where appropriate, models were compared to 236 

‘chance’, or the occurrence frequency of each class. Confusion matrices were visualized from the out-of-237 

bag predictions using ggplot2. Important features were identified from the randomForest object based on 238 

a phenotype-specific mean decrease in model accuracy (MDA).  239 

 240 

Phenomic trait covariation 241 

We extracted from each data set the youngest available leaf from the 72 vine-set from which 242 

ionomics, metabolomics, gene expression, and leaf shape were measured. Each class of phenotypic data 243 

was summarized along the primary dimensions of variation using PCA. For each class, we extracted the 244 

top 10 PCs and fit Pearson’s correlations across all pairs of PCs at each phenological stage. P-values from 245 

computed correlations were corrected using the FDR method from  the package ‘stats’ (Team & Others, 246 

2013). Correlations and their strengths were visualized using the R package ‘igraph’ (Csardi et al., 2006). 247 

Example correlations were reported after running 10,000 bootstrapped subsamples of 90% of data for 248 

paired traits. From the distribution of estimated correlation coefficients, confidence intervals were 249 

computed from the 0.025 and 0.975 quantiles. A subset of example correlations were plotted using the R 250 

package ‘ggplot2’ (Wickham, 2016). 251 

 252 

Results 253 

 254 

Leaf ionome 255 

 To characterize the leaf ionome over the growing season, we sampled the youngest, middle, and 256 

oldest leaf on a single shoot from each of 288 vines at three phenological stages for ionomics analysis 257 

(Fig. 1). Bivariate correlations showed that ion concentrations are not independent of each other. 258 

However, the strength and direction of relationships between ions vary with respect to most experimental 259 

factors (for example, phenological stage and leaf position; Sup Fig. 1). As such, we fit independent linear 260 

models to each ion. Leaf position, phenological stage, or the interaction of phenological stage and leaf 261 

position explained the highest amount of variation for most ions (Fig. 1a-b). Many ions significant for the 262 

interaction showed a clear signal of leaf position at anthesis and veraison, and either no explainable 263 

variation or muted variation at harvest. For example, calcium (Fig 1b) varied with leaf position (22.7%; p 264 

< 1e-05), phenology (24.0%; p < 1e-05), and their interaction (7.4%, p < 1e-05). All possible pairwise 265 

combinations of leaf position were significantly different at anthesis, and both the youngest and middle 266 

leaves were different from the oldest leaves at veraison and harvest. In the case of potassium (Fig 1b), 267 

significant variation was explained by leaf position (16.1%; p < 1e-05), phenology (19.6%; p < 1e-05), 268 

and their interaction (10.6%; p < 1e-05). However, post-hoc comparisons showed that differences were 269 
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present only at anthesis and veraison. Ions that responded weakly to the interaction of leaf position and 270 

phenology tended to show significant variation explained by the interaction of rootstock and phenology 271 

(see below). These ions showed similar patterns to the leaf position by phenology interaction where clear 272 

signal is exhibited at anthesis and veraison then is either absent or muted at harvest (see, for example, 273 

cobalt and nickel; Fig 1c). 274 

 Machine learning on ion concentrations showed that rootstock and the interactions of rootstock 275 

with phenology and leaf position were independently predictable classifications. A random forest model 276 

trained to predict rootstock showed an overall accuracy of 75.2% (Fig 1d). Ions important for this 277 

classification were nickel (MDA=0.089), molybdenum (MDA=0.058), and magnesium (MDA=0.054). 278 

Notably, when we trained a model to simultaneously predict phenological stage and rootstock, rootstock 279 

prediction accuracy increased appreciably (Fig. 1e). For example, the ability of the model to detect 280 

ungrafted vines (the balanced accuracy of ungrafted predictions) improved from 81.7% accuracy overall 281 

to 91.1% accuracy at anthesis and 85.9% at harvest. Generally, performance at veraison matched the 282 

rootstock-only model performance. The ions most important for this simultaneous classification were 283 

nickel (MDA=0.167), phosphorus (MDA=0.110), and strontium (MDA=0.065). Interestingly, the joint 284 

prediction of rootstock and leaf prediction performed substantially better than chance (p < 1e-05), 285 

however average performance of the model as assessed through class-wise balanced accuracies were 286 

comparable to if not slightly worse than just predicting rootstock (Fig 1f). Ions important for this 287 

classification were sulfur (MDA = 0.051), rubidium (MDA = 0.051), and nickel (MDA = 0.049).  288 

 289 

Leaf metabolomics 290 

 We performed untargeted metabolomics on leaves from 72 vines at veraison and harvest, 291 

quantifying the concentrations of 661 metabolites (Fig. 2). The top 20 PCs accounted for a total of 67.3% 292 

of the total metabolomic variation, with the top three capturing 23.1%, 9.2%, and 6.2%, respectively. 293 

Linear models for each of the top 20 PCs found that the strongest drivers of variation in leaf 294 

metabolomics were phenology and temporal blocking factor. For example, 90.6% of variation on PC1 295 

was due to phenology (p < 1e-05; Fig 2a). PC2 primarily reflected the interaction of phenology and 296 

temporal block (26.4%, p < 1e-05) and temporal block as a main effect (18.9%, p < 1e-05). The patterns 297 

of variation attributable to PC2 were similar in PCs 3-10 (Fig 2a).  298 

PC17 was controlled by rootstock as a main effect (18.5%, p < 1e-03; Fig 2b). On PC17, 299 

ungrafted vines were significantly different from vines grafted to ‘3309C’ (p = 0.02) and ‘SO4’ (p < 1e-300 

05). Vines grafted to ‘1103P’ were also significantly different from vines grafted to ‘SO4’ (p = 0.009). 301 

Metabolites that loaded more than 1.96 sd from the mean loading on PC17 were extracted and 302 

independently fit to additional linear models. We identified four metabolite features (M374T1 [rt = 1.33,  303 
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m/z = 374.1146], M117T1 [rt = 0.61, m/z = 117.0583], M175T1_1 [rt = 0.87,  m/z = 175.1269], and 304 

M333T1_3 [rt = 0.71; m/z = 333.1582]) which were influenced by rootstock as a main effect and the 305 

metabolite (M112T1 [rt = 1.48, m/z =  112.0061]) which was influenced by the interaction of rootstock 306 

genotype and phenological stage.  307 

 Linear discriminant analysis confirmed that many experimental factors likely influence the 308 

metabolome. For example, when trained to maximize variation between classes of rootstocks, the model 309 

identified a space that weakly separates ‘1103P’-grafted and ‘SO4’-grafted vines from Ungrafted and 310 

3309C-grafted vines (LD1) and separates 3309C-grafted vines from other classes (on LD2) (Fig 2c). 311 

Despite this, machine learning showed minimal predictability for any class other than phenology, which 312 

was predictable with an accuracy of 100% for withheld samples. Rootstock genotype was not predictable 313 

with accuracy only marginally better than chance (34.6%).  314 

 315 

Gene Expression 316 

We performed 3’-RNAseq on 72 vines at three time points (Fig. 3). We identified variation in 317 

23,460 genes that had a DESeq2-normalized count greater than two in at least five samples. Hierarchical 318 

clustering of the 500 most variable genes after variance stabilizing transformation (VST) showed that 319 

most variation in the transcriptome was explained by phenological stage (Fig 3a). The top 100 PCs on the 320 

VST-transformed gene counts accounted for nearly 92.3% of variation in the transcriptome. Linear 321 

models on each of the top 100 PCs indicated that 82.4% and 61.4% of the variation on PC1 and PC2 322 

respectively were attributable to the phenological stage (Fig 3b-c). Row was also a significant descriptor 323 

of variation as a single, fixed effect and in interactions with rootstock and phenological stage. For 324 

example, row accounted for 36.0% and 43.3% of the variation on PC4 and PC6, respectively. Interacting 325 

with phenological stage, row accounted for >10% of variation on 17 additional PCs. 326 

LDA to separate phenological stages defined three distinct, non-overlapping groups in the space 327 

spanning LD1 and LD2 (Sup Fig. 2). When trying to separate rows into distinct classes, the model 328 

converged on a ‘horseshoe’ shape in the LD1- LD2 space (Fig 3d). LD1 maximized the variation between 329 

row 8 (sampled early in the day) and row 16 (sampled a few hours later). LD2 maximized the separation 330 

of both rows 8 and 16 with row 12 (the row sampled in the middle of the sampling window). A model 331 

trained to separate rootstock classes (Fig. 3e) showed that LD1 separated the rootstock 1103P from other 332 

rootstock genotypes, and LD2 primarily separated the rootstock ‘3309C’ from ungrafted vines (Sup Fig. 333 

2).  334 

Formal machine learning on gene expression PCs largely supported the linear models. A random 335 

forest trained to predict phenological stage classified testing samples with 92.9% accuracy. Anthesis was 336 

the most predictable class with a balanced accuracy of 100%; veraison and harvest displayed balanced 337 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2020. ; https://doi.org/10.1101/2020.11.10.376947doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.10.376947
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

11 

accuracies of 92.7% and 92.4%, respectively. The PCs most important in phenology prediction were PC1 338 

(MDA = 0.16) and PC2 (MDA = 0.12). Gene expression PCs were unable to predict rootstock, with a 339 

total prediction accuracy of 23.4%. While no features were especially important in the prediction 340 

processes, PC44 showed the largest mean decrease in Gini impurity corroborating its signal in the linear 341 

models.  342 

 343 

Leaf shape 344 

We collected leaves from the 288-vine set at three time points and landmarked a total of 2,422 345 

leaves (Fig. 4). Homologous leaf landmarks were used for generalized procrustes analysis (GPA). PCA 346 

on the GPA-rotated coordinates revealed ~97.2% of the total shape variation was captured by the top 20 347 

principal components with PC1, PC2, and PC3 explaining 24.1%, 19.0%, and 13.3% of the variation 348 

respectively. Lower values on PC1 primarily capture leaves with shallow petiolar sinuses and short 349 

midvein distance from the depth of the superior sinus to the top of the midvein, whereas higher values on 350 

PC1 capture the opposite  (Fig. 4a). Similarly, lower values on PC2 capture deep petiolar sinuses 351 

combined with very shallow superior sinuses, and vice versa for higher values. PC3 primarily captures 352 

asymmetry (Fig. 4a).   353 

In total, only 5.76% of variation on PC1 was explained by the experimental design, with most 354 

variation explained by phenology (2.63%; padj < 1e-05 ), rootstock (0.95%; padj < 0.001), leaf position 355 

(2.61%; padj = 0.03), and the interaction of phenology and leaf position (0.62%; padj = 0.009) (Sup Fig 356 

3a). Post-hoc mean comparisons on PC1 showed that shapes of leaves from ungrafted vines were 357 

significantly different from leaves of vines grafted to 3309C (p < 0.001) and SO4 (p < 0.001) (Sup Fig 358 

3b). Moreover, PC1 captured subtle variation in the leaf position by phenological stage interaction where 359 

middle leaves showed significant differences between anthesis and veraison (p < 1e-03), and the oldest 360 

leaves showed significant differences when comparing anthesis to veraison (p < 1e-05) and anthesis to 361 

harvest (p < 1e-03).  362 

For PC2, 61.4% of variation could be assigned to an experimental factor. This included 363 

significant variation from leaf position (46.9%, padj < 1e-05), phenology (1.4%; padj < 1e-05), and the 364 

interaction of leaf position and phenology (12.05%; padj < 1e-05; Fig 4d). Specifically, younger leaves 365 

tended to have shallower sinuses and exaggerated superior sinus depths (higher values on PC2), whereas 366 

older leaves tended to develop deeper petiolar sinuses and more shallow superior sinuses (lower values on 367 

PC2). The degree of this separation decreased across the season, and the shapes converged on the mean 368 

leaf shape on PC2, consistent with the middle leaf at all three phenological stages. PC2 additionally 369 

reflected the interaction of leaf position and rootstock (0.22%; p = 0.04; (Sup Fig. 4b)), but post-hoc 370 

comparisons did not find any significant pairwise comparisons.  371 
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Machine learning on the GPA-rotated coordinate space identified moderate division of 372 

developmental and phenological classes. Random forest models could predict the leaf position with 373 

73.1% accuracy, with the most important feature being the y-component of the leaf apex (MDA = 0.051). 374 

A model trained to predict phenology performed at 64.3% with the most important features being the x-375 

components of the points corresponding to superior sinus depth (left sinus MDA = 0.030, right sinus 376 

MDA = 0.019). A model trained to predict rootstock performed only marginally better than chance at 377 

28.1% accuracy.  378 

 379 

Vine physiology 380 

For 72 plants in the vineyard, we measured intracellular CO2 concentration (Ci), stomatal 381 

conductance (gs), leaf transpiration, water potential (𝜓), and soil moisture (Fig. 5). Each physiological 382 

trait varied significantly across phenology and the block by phenology interaction (Fig 5a). For example, 383 

at harvest, we observed specific differences in leaf CO2 concentration (A vs C: p=0.003; B vs C: p=0.002) 384 

and leaf transpiration (A vs B: p < 1e-03; A vs C: p < 1e-05; B vs C: p < 1e-05). Additionally, stomatal 385 

conductance and leaf transpiration rate varied significantly with the interaction of rootstock and 386 

phenology. For both traits, a post-hoc comparison of means showed that these values were elevated in 387 

1103P at veraison as compared to ungrafted vines (stomatal conductance: p = 0.002; leaf transpiration: p 388 

= 0.001; Fig 5b-c). 389 

 390 

Phenomic trait covariation 391 

For each of the 72 plants measured for all phenotypes in the vineyard, we explored the extent to 392 

which different phenotypes covaried (Fig. 6). Within each phenotyping modality, we summarized the 393 

primary dimensions of variation using PCA. From each PCA, we extracted the top ten PCs, which 394 

explained a total of 88.9% of variation in the ionomics PCA (iPCA), 55.9% of the variation for the 395 

metabolomics PCA (mPCA), 74.8% of the variation in the gene expression PCA (gPCA) and 87.9% of 396 

the variation in the leaf shape PCA (sPCA). Pairwise correlations of each PC within each phenological 397 

stage showed diverse correlation magnitudes and directions both within a phenotyping modality and 398 

between phenotyping modalities (Fig 6a-c). Generally, the strongest relationships were between PCs 399 

within phenotypic modalities. For example, the strongest correlations identified were between gPC1 and 400 

gPC2 at anthesis (r = 0.85, CI = [0.81, 0.87]; Sup Fig 4a), and mPC1 and mPC2 at harvest (r = -0.78, CI = 401 

[-0.82. -0.76]). Correlations between modalities represented a diversity of responses across phenological 402 

stages. For example, the correlation between gPC4 and sPC3 is similar across the phenological stages, but 403 

only the correlation at veraison is significant (r = 0.41, CI = [0.34, 0.47]; Sup. Fig 4b). Correlations such 404 

as between mPC3 and gPC6 were similar and significant at both veraison (r = -0.44, CI = [-0.50, -0.37]; 405 
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Sup Fig 4c) and harvest (r = -0.37, CI = [-0.45, -0.28]; Fig 6c). While many correlations varied over the 406 

course of the season, some relationships entirely shifted in direction. For example, the correlation 407 

between mPC3 and mPC6 shifted from a positive significant relationship (r = 0.58, CI = [0.52, 0.63]) at 408 

veraison to a negative significant relationship at veraison (r = -0.66, CI = [-0.73, -0.59]) (Sup Fig 4d). 409 

 410 

Discussion: 411 

 412 

In this study, we characterized variation in leaf ionomics, untargeted metabolomics, transcriptomics, leaf 413 

morphology, and physiology in an experimental rootstock vineyard at three distinct time points over the 414 

course of a growing season. Overall, we find that time of season was the primary driver of most leaf 415 

phenotypic variation, and that rootstock influences on leaf traits can be season-specific. Generally, 416 

‘Chambourcin’ leaves show subtle responses to grafting, with the strongest signals observed in 417 

phenotypes for which the root systems have a noted and well-understood role (e.g., ion concentrations in 418 

leaves). 419 

 420 

Phenology explains significant variation in all leaf phenotypes 421 

We found that the phenological stage was the strongest driver of phenotypic variation for most 422 

leaf phenotypes. For example, all 20 ions varied with the phenology and most ions showed that 423 

phenology, or the interaction of phenology with leaf developmental position, was the strongest source of 424 

variation (Fig. 1). Additionally, nearly one third of all measured transcripts responded to seasonal 425 

variation, and the strongest effects on the transcriptome were the phenology and the row, a correlate for 426 

the time within a three hour sampling window. The only phenotype for which phenology was not the 427 

most explanatory factor is leaf shape. Consistent with previous studies (Chitwood et al., 2015), we 428 

confirm that most of the leaf shape variation measured reflects development along a single shoot, but 429 

much of this variation is explained via interaction with the phenology.  430 

 The seasonal component to grapevine phenotypic variation is a subject of much research, 431 

especially in the berry. In studies designed to characterize effects of cultivar variation and molecular 432 

underpinnings of terroir, seasonal variation was the strongest signal in the metabolome (Degu et al., 2014; 433 

Anesi et al., 2015; Cuadros-Inostroza et al., 2016; Dal Santo et al., 2016). Several studies have also 434 

sought to characterize transcriptomic variation over the course of the season. For example, in conjunction 435 

with metabolomics, seasonal variation of berry development was used to identify developmental markers 436 

in ‘Corvina’ (Zamboni et al., 2010). Follow-up analysis showed that nearly 18% of transcripts varied 437 

seasonally (Dal Santo et al., 2013). Grapevine leaves also vary tremendously in shape over the growing 438 

season (Chitwood et al., 2015) and are stable over multiple growing seasons; interestingly, the climate of 439 
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the season in which the leaves were patterned influence aspects of leaf shape (Chitwood et al., 2016, 440 

2020). We confirm that the patterns of variation previously identified in berries are also present in the 441 

leaves, and that patterns of leaf shape seem to be stable across studies.  442 

 While many studies have uncovered temporal effects on the ionome across years (Baxter et al., 443 

2013; Pauli et al., 2018), variation within a single year or a single growing season remains relatively 444 

unstudied. One example included the joint analysis of the ionome and metabolome in Aleppo pine (Pinus 445 

halepensis), a perennial system with a bimodal growth habit in both spring and summer, where a suite of 446 

ions more abundant during spring growth were identified while only potassium was more abundant in the 447 

summer (López-Orenes et al., 2018). Other studies profiled tangential effects of the seasonal ionome; for 448 

example, winter-phased cultivars of barley (Hordeum vulgare) show differential uptake of nutrients in 449 

comparison to summer-phased cultivars, but the study was primarily targeted to identify genotypic rather 450 

than temporal effects (Thomas et al., 2016). Our data advances these previous studies by identifying the 451 

dynamic nature of ion uptake over the course of a season. More work is needed to understand how 452 

seasonal variation in ion concentrations vary inter-annually, by plant organ, or spatially; similarly, 453 

relationships between ion concentrations in leaves (a proxy for ion uptake) and berry chemistry and wine 454 

quality is another important area of future work.   455 

 456 

Grafting and rootstock genotype exhibits a complex and subtle signal on most leaf phenotypes 457 

Consistent with previous studies, we confirm that grafting in general, as well as rootstock 458 

genotype, has a complex effect on phenotypic variation in grapevine shoot systems. Most notably, we 459 

show that the rootstock to which a scion is grafted is predictable from ion concentrations in the leaves, 460 

and that this signal is strengthened by inclusion of phenological stage. For example, we previously 461 

showed that nickel concentration was elevated in the rootstock ‘SO4’ (Migicovsky et al., 2019b). At a 462 

similar point in the season, we observe the same pattern, but by harvest, nickel is almost entirely excluded 463 

from the leaf suggesting that the biological implications of this differential uptake could be missed if not 464 

surveyed across the season. We also confirm that rootstock genotype influences the metabolome of 465 

grafted grapevine, in some cases in a season-specific manner. In the transcriptome, PCA was able to 466 

identify dimensions of variation that were significantly described by rootstock and the interaction of 467 

rootstock and time of day, confirming prior observations (Migicovsky et al., 2019a). Moreover, 468 

supervised methodologies identified linear discriminants in the PC space that weakly separated some 469 

rootstock genotypes. However, gene-by-gene analysis (with default p-value correction regimes) finds no 470 

genes modulated by rootstock genotype, or even just from the act of grafting. Finally, of the physiology 471 

traits we measured, leaf transpiration and stomatal conductance were higher in ‘1103P’ in the middle of 472 

the season. Thus the impact of grafting on leaf phenotypic variation varies by phenotype. Regardless, we 473 
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identify subtle but ubiquitous effects from rootstock genotype on shoot system phenotypes that are often 474 

season-specific.  475 

The impact of root genotype on shoot phenotype is a growing area of research, especially in 476 

grapevine. For ‘Cabernet Sauvignon’, grafting increased ion uptake globally and some rootstock 477 

genotypes provide a clear signal in the scion (Lecourt et al., 2015; Gautier et al., 2020b). Also, the 478 

metabolome is a key driver of the formation of the graft junction and some key metabolites could be 479 

responsible for graft incompatibility (Canas et al., 2015). Building on this work, targeted metabolomics 480 

showed two classes of metabolites, flavanols and stilbenes, were differentially abundant at graft junctions 481 

and in the rootstocks of ‘Cabernet Sauvignon’ vines one month after grafting (Prodhomme et al., 2019). 482 

However, flavanols were not differentially abundant in the scion, but scion stilbene concentrations were 483 

apparently controlled by rootstock genotype. The effect of rootstock genotype on the scion transcriptome 484 

is perhaps the most varied. For example, ‘Cabernet Sauvignon’ shoot apical meristems show no effects by 485 

rootstock genotype (Cookson & Ollat, 2013), but berries of the same cultivar do, although the effect is 486 

tempered by seasonal variation (Corso et al., 2016). Variation in ‘Chambourcin’ leaf shape is also driven 487 

by rootstock genotype, especially in conjunction with differences in irrigation (Migicovsky et al., 2019a). 488 

Collectively, these studies all suggest that rootstock genotype influences scion phenotypes, but those 489 

effects will vary by phenotype, scion genotype, and perhaps other experimental conditions. Our results 490 

confirm this suggestion adding that aspects of time are tremendously influential to the observed results 491 

regardless of phenotype.  492 

 493 

Phenomic covariation warrants work toward latent phenotypes 494 

In the present study, we assess the extent of covariation among leaf phenotypes. For the primary 495 

dimensions of variation in each data type, within-data-type correlations are strong. Correlations also exist 496 

between phenotypes, suggesting room for the analysis of latent phenotypic structure for experimental 497 

questions. For example, aspects of the metabolome are frequently correlated with other data types such as 498 

the transcriptome and aspects of leaf shape. Interestingly, correlations within and between data types are 499 

highly dynamic over a growing season. For example, several correlations with leaf shape were present at 500 

veraison, but were completely missing from anthesis and harvest. We believe this work warrants further 501 

investigation, specifically, by adding data on other phenotypic classes such as lncRNAs (Vitulo et al., 502 

2014; Harris et al., 2017), epigenetics (Williams et al., 2020), and microbiomes (Marasco et al., 2018; 503 

Swift et al., 2020). Much of the work constituting phenomics in grapevine has addressed how berries 504 

develop over the growing season, how cultivars differ from one another, and how the concept of terroir 505 

influences wine (Zamboni et al., 2010; Palumbo et al., 2014; Degu et al., 2014; Anesi et al., 2015; Savoi 506 

et al., 2016, 2017). Despite data integration becoming more popular, there are still many open questions 507 
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as to what methods are most appropriate and how to most effectively utilize them (reviewed for grapevine 508 

in (Wong & Matus, 2017; Fabres et al., 2017); reviewed broadly in (Huang et al., 2017; Stein-O’Brien et 509 

al., 2018). Ongoing work attempts to integrate high-dimensional phenotypic datasets generated within a 510 

single organ system (e.g., leaves); and future studies should expand this to explore phenomic variation in 511 

and among organs, over time, and across space. 512 

 513 

References 514 

 515 

Figure Legends 516 

 517 

Figure 1. The ionome shows strong signal from rootstock genotype, leaf position, and phenological stage 518 

(a) Percent variation captured in linear models fit to each of 20 ions measured in the ionomics pipeline. 519 

Presence of a cell indicates the model term (top) was significant (FDR; p.adj < 0.05) for that ion (left). (b) 520 

Example ions shown to vary significantly by the interaction of leaf position and phenological stage. 521 

Boxes are bound by 25th and 75th percentile with whiskers extending 1.5 IQR from the box. (c) Example 522 

ions shown to vary significantly by the interaction of rootstock genotype and phenological state. Boxes 523 

are bound by 25th and 75th percentile with whiskers extending 1.5 IQR from the box. (d) Standardized 524 

heatmap for out-of-bag (OOB) predictions by a random forest trained to predict rootstock genotype, (e) 525 

the interaction between rootstock genotype by phenology, and (f) the interaction between rootstock 526 

genotype and leaf position.   527 

 528 

Figure 2. The metabolome is influenced by rootstock genotype, phenological stage, and time of sampling. 529 

(a) Percent variation captured in linear models fit to each of the top 20 principal components of the 530 

metabolome (661 measured metabolites). Presence of a cell indicates the model term (top) was significant 531 

for that PC (left, percent variation explained by the PC in parentheses). (b) The distribution of projections 532 

onto PC17, the strongest captured rootstock effect in the metabolome. Boxes are bound by the 25th and 533 

75th percentiles with whiskers extending 1.5 IQR from the box. (c) Projections of all samples into the 534 

first two dimensions of a linear discriminant space trained to maximize variation between rootstock 535 

genotypes.  536 

 537 

Figure 3. Gene expression primarily responds to time of season and circadian correlates 538 

(a) Heatmap showing 500 genes with the highest variance following the filtering of lowly expressed 539 

genes and gene-by-gene variance stabilizing transformations (VST) ordered by example model factors 540 

(below). (b) Percent variation captured in linear models fit to the top 100 Principal Components of the 541 
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VST-transformed gene-expression space. Presence of a cell indicates the model term (top) was significant 542 

for that PC (left, percent variation explained by the PC in parentheses). (c) Projections of all samples 543 

projected into the first two dimensions of the linear discriminant space trained to maximize variation 544 

between phenological stages, (d) row of the vineyard, and (e) rootstock genotype.  545 

 546 

Figure 4. Leaf shape variation is primarily determined by shoot position but changes over the season  547 

(a) Representative shapes showing leaf variation (-3 sd, mean, +3 sd) captured in each of the top 4 548 

principal components of the Generalized Procrustes Analysis-rotated leaf shapes. (b) Projections of all 549 

leaves into the first two dimensions of principal component space colored by the strongest determinant of 550 

variation in the top two PCs. (c) Projections of all leaves into the first two dimensions of a linear 551 

discriminant space trained to maximize variation between phenological stages. (d) Variation in leaf shape 552 

captured on PC2 shown by leaf position and phenological stage. Large points represent the mean of the 553 

group when projected onto PC2. Bars surrounding the mean show one standard deviation. Variation in 554 

each group is shown as a composite leaf trace scaled to a standard size and centered over the mean.  555 

 556 

Figure 5. Vine physiology measurements show signal from most experimental manipulation 557 

(a) Percent variation explained by model terms (top) from linear models fit to each of four physiology 558 

traits (left). (b) Variation in leaf transpiration rate for each rootstock genotype over the course of the 559 

season. Boxes are bound by the 25th and 75th percentiles with whiskers extending 1.5 IQR from the box. 560 

(c) Variation in stomatal conductance for each rootstock genotype over the course of the season. Boxes 561 

are bound by the 25th and 75th percentiles with whiskers extending 1.5 IQR from the box.  562 

 563 

Figure 6. Trait covariation varies over the course of the season 564 

Correlation networks showing patterns of covariation within and between phenotyping modalities. Nodes 565 

of the network are connected if they are significantly correlated (Pearson, FDR; p.adj < 0.05). Edge 566 

thickness is proportional to the strength of correlation (multiplied by 16 for visibility). Edge color reflects 567 

the direction of the correlation where blue edges indicate positive correlations and orange edges indicate 568 

negative correlations. Modalities are indicated by a leading character and node color: ionomics (iPCs; 569 

purple), metabolomics (mPCs; pink), gene expression (gPCs; yellow), leaf shape (sPCs; green). Network 570 

topologies are shown for (a) anthesis, (b) veraison, and (c) harvest.  571 

 572 

Supplemental Figures: 573 

 574 

SFig 1. Patterns of ion covariation change over experimental treatments 575 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2020. ; https://doi.org/10.1101/2020.11.10.376947doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.10.376947
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

18 

Correlation networks showing patterns of ion covariation across phenological stages and shoot position. 576 

Nodes of the network are connected if they are significantly correlated (Pearson, FDR; p.adj < 0.05). 577 

Edge thickness is proportional to the strength of correlation (multiplied by 16 for visibility). Edge color 578 

reflects the direction of the correlation where blue edges indicate positive correlations and orange edges 579 

indicate negative correlations. 580 

 581 

SFig 2. Patterns of variation contributing to gene expression linear discriminants 582 

(A) Projections of leaf gene expression samples into the first two dimensions of a linear discriminant 583 

space trained to maximize variation between phenological stages, rows in the vineyard, and rootstock 584 

genotype. For each LD, the PCs that loaded significantly (>1.96 sd from the mean loading) are listed in 585 

order of loading magnitude. (B) Distribution of the top loading PCs onto LD1 and LD2 for each of the 586 

trained models.  587 

 588 

SFig 3. Patterns of variation in leaf are subtle 589 

A Percent variation captured in linear models fit to each of the top 20 principal components of leaf 590 

morphology. Presence of a cell indicates the model term (top) was significant for that PC (left, percent 591 

variation explained by the PC in parentheses). (B) Composite leaf traces for the main rootstock genotype 592 

effect identified on PC1.  593 

 594 

SFig 4. Example correlations within and between data modalities over the course of the season 595 

(A) Example correlation showing a strong within-modality correlation between the ionomics gPC1 and 596 

gPC2 at anthesis. Pearson correlations by phenological stage and CIs derived from 10000 random 90% 597 

draws are shown for each panel. Generally speaking, CIs overlapping with 0 were not accepted as 598 

significant. (B) Example correlation showing one of the stronger between-modality correlations between 599 

the gene expression gPC4 and morphology (shape) sPC3 at veraison. (C) Example correlation of a 600 

relationship that is present multiple times over the course of the season between metabolomics mPC3 and 601 

gene expression gPC6 at both veraison and harvest. (D) Example correlation that is dynamic over the 602 

course of the growing season between the ionomics mPC3 and mPC6.  603 

 604 

Data Availability: 605 

Ionomics data are available at 10.6084/m9.figshare.13200980. Metabolomics data are available at 606 

10.6084/m9.figshare.13201043. Gene expression data are available in the Sequence Read Archive under 607 

BioProject PRJNA674915. Leaf scans and leaf landmarks are available at 10.6084/m9.figshare.13200953. 608 
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Weather and physiology data are available at 10.6084/m9.figshare.13198682 and 609 

10.6084/m9.figshare.13201016, respectively.  610 

 611 

Code Availability: 612 

All code for this paper including shell scripts for RNAseq analysis and Jupyter Notebooks for data 613 
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Figure 1:  The ionome shows strong signal from rootstock genotype, leaf position, and phenological stage 858 

(a) Percent variation captured in linear models fit to each of 20 ions measured in the ionomics pipeline. 859 

Presence of a cell indicates the model term (top) was significant (FDR; p.adj < 0.05) for that ion (left). (b) 860 

Example ions shown to vary significantly by the interaction of leaf position and phenological stage. 861 

Boxes are bound by 25th and 75th percentile with whiskers extending 1.5 IQR from the box. (c) Example 862 

ions shown to vary significantly by the interaction of rootstock genotype and phenological state. Boxes 863 

are bound by 25th and 75th percentile with whiskers extending 1.5 IQR from the box. (d) Standardized 864 

heatmap for out-of-bag (OOB) predictions by a random forest trained to predict rootstock genotype, (e) 865 

the interaction between rootstock genotype by phenology, and (f) the interaction between rootstock 866 

genotype and leaf position.   867 
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Figure 2: The metabolome is influenced by rootstock genotype, phenological stage, and time of sampling. 871 

(a) Percent variation captured in linear models fit to each of the top 20 principal components of the 872 

metabolome (661 measured metabolites). Presence of a cell indicates the model term (top) was significant 873 

for that PC (left, percent variation explained by the PC in parentheses). (b) The distribution of projections 874 

onto PC17, the strongest captured rootstock effect in the metabolome. Boxes are bound by the 25th and 875 

75th percentiles with whiskers extending 1.5 IQR from the box. (c) Projections of all samples into the 876 

first two dimensions of a linear discriminant space trained to maximize variation between rootstock 877 

genotypes.  878 
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Figure 3: Gene expression primarily responds to time of season and circadian correlates 883 

(a) Heatmap showing 500 genes with the highest variance following the filtering of lowly expressed 884 

genes and gene-by-gene variance stabilizing transformations (VST) ordered by example model factors 885 

(below). (b) Percent variation captured in linear models fit to the top 100 Principal Components of the 886 

VST-transformed gene-expression space. Presence of a cell indicates the model term (top) was significant 887 

for that PC (left, percent variation explained by the PC in parentheses). (c) Projections of all samples 888 

projected into the first two dimensions of the linear discriminant space trained to maximize variation 889 

between phenological stages, (d) row of the vineyard, and (e) rootstock genotype.  890 
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Figure 4: Leaf shape variation is primarily determined by shoot position but changes over the season  896 

(a) Representative shapes showing leaf variation (-3 sd, mean, +3 sd) captured in each of the top 4 897 

principal components of the Generalized Procrustes Analysis-rotated leaf shapes. (b) Projections of all 898 

leaves into the first two dimensions of principal component space colored by the strongest determinant of 899 

variation in the top two PCs. (c) Projections of all leaves into the first two dimensions of a linear 900 

discriminant space trained to maximize variation between phenological stages. (d) Variation in leaf shape 901 

captured on PC2 shown by leaf position and phenological stage. Large points represent the mean of the 902 

group when projected onto PC2. Bars surrounding the mean show one standard deviation. Variation in 903 

each group is shown as a composite leaf trace scaled to a standard size and centered over the mean.  904 
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Figure 5: Vine physiology measurements show signal from most experimental manipulation 912 

(a) Percent variation explained by model terms (top) from linear models fit to each of four physiology 913 

traits (left). (b) Variation in leaf transpiration rate for each rootstock genotype over the course of the 914 

season. Boxes are bound by the 25th and 75th percentiles with whiskers extending 1.5 IQR from the box. 915 

(c) Variation in stomatal conductance for each rootstock genotype over the course of the season. Boxes 916 

are bound by the 25th and 75th percentiles with whiskers extending 1.5 IQR from the box.  917 
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Figure 6: Trait covariation varies over the course of the season 921 

Correlation networks showing patterns of covariation within and between phenotyping modalities. Nodes 922 

of the network are connected if they are significantly correlated (Pearson, FDR; p.adj < 0.05). Edge 923 

thickness is proportional to the strength of correlation (multiplied by 16 for visibility). Edge color reflects 924 

the direction of the correlation where blue edges indicate positive correlations and orange edges indicate 925 

negative correlations. Modalities are indicated by a leading character and node color: ionomics (iPCs; 926 

purple), metabolomics (mPCs; pink), gene expression (gPCs; yellow), leaf shape (sPCs; green). Network 927 

topologies are shown for (a) anthesis, (b) veraison, and (c) harvest.  928 
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Supp Figure 1:  Patterns of ion covariation change over experimental treatments 943 

Correlation networks showing patterns of ion covariation across phenological stages and shoot position. 944 

Nodes of the network are connected if they are significantly correlated (Pearson, FDR; p.adj < 0.05). 945 

Edge thickness is proportional to the strength of correlation (multiplied by 16 for visibility). Edge color 946 

reflects the direction of the correlation where blue edges indicate positive correlations and orange edges 947 

indicate negative correlations. 948 
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 956 

Supp Figure 2: Patterns of variation contributing to gene expression linear discriminants 957 

(A) Projections of leaf gene expression samples into the first two dimensions of a linear discriminant 958 

space trained to maximize variation between phenological stages, rows in the vineyard, and rootstock 959 

genotype. For each LD, the PCs that loaded significantly (>1.96 sd from the mean loading) are listed in 960 

order of loading magnitude. (B) Distribution of the top loading PCs onto LD1 and LD2 for each of the 961 

trained models.  962 
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Supp Figure 3: Patterns of variation in leaf are subtle 966 

A Percent variation captured in linear models fit to each of the top 20 principal components of leaf 967 

morphology. Presence of a cell indicates the model term (top) was significant for that PC (left, percent 968 

variation explained by the PC in parentheses). (B) Composite leaf traces for the main rootstock genotype 969 

effect identified on PC1.  970 

 971 

 972 

 973 

 974 

 975 

 976 

 977 

 978 

 979 

 980 

 981 

 982 

Rootstock Phenology Irrigation Block

10 20 30 40
% variance explained

Leaf position
Leaf position ×

Rootstock
Leaf position ×

Phenology
Rootstock ×
Phenology

PC1 (24.06)
PC2 (18.96)
PC4 (8.21)
PC5 (4.97)
PC6 (4.63)
PC8 (2.92)
PC9 (2.86)

PC10 (2.31)
PC12 (1.59)
PC13 (1.42)
PC14 (1.29)
PC15 (1.17)
PC17 (0.78)
PC18 (0.66)
PC19 (0.60)

(a)

(b)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2020. ; https://doi.org/10.1101/2020.11.10.376947doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.10.376947
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

35 

Supp Figure 4: Example correlations within and between data modalities over the course of the season 983 

(A) Example correlation showing a strong within-modality correlation between the ionomics gPC1 and 984 

gPC2 at anthesis. Pearson correlations by phenological stage and CIs derived from 10000 random 90% 985 

draws are shown for each panel. Generally speaking, CIs overlapping with 0 were not accepted as 986 

significant. (B) Example correlation showing one of the stronger between-modality correlations between 987 

the gene expression gPC4 and morphology (shape) sPC3 at veraison. (C) Example correlation of a 988 

relationship that is present multiple times over the course of the season between metabolomics mPC3 and 989 

gene expression gPC6 at both veraison and harvest. (D) Example correlation that is dynamic over the 990 

course of the growing season between the ionomics mPC3 and mPC6.  991 
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