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Abstract 15 

Brain age prediction from brain MRI scans not only helps improve brain ageing modelling generally, 16 
but also provides benchmarks for predictive analysis methods. Brain-age delta, which is the difference 17 
between a subject’s predicted age and true age, has become a meaningful biomarker for the health of 18 
the brain. Here, we report the details of our brain age prediction models and results in the Predictive 19 
Analysis Challenge 2019.  The aim of the challenge was to use T1-weighted brain MRIs to predict a 20 
subject’s age in multicentre datasets. We apply a lightweight deep convolutional neural network 21 
architecture, Simple Fully Convolutional Neural Network (SFCN), and combined several techniques 22 
including data augmentation, transfer learning, model ensemble, and bias correction for brain age 23 
prediction. The model achieved first places in both of the two objectives in the PAC 2019 brain age 24 
prediction challenge: Mean absolute error (MAE) = 2.90 years without bias removal, and MAE = 2.95 25 
years with bias removal.  26 

1 Introduction 27 

Predictive analysis with data-driven machine learning algorithms brings huge promise in neuroimaging 28 
and neuroscience research. Predictive analysis can not only help disease diagnosis, such as Alzheimer’s 29 
(Liu et al., 2018), Autism (Thomas et al., 2020), ADHD (Zou et al., 2017) and schizophrenia (Zeng et 30 
al., 2018), but also helps in formulating new hypotheses (Shmueli, 2010) and identifying new 31 
biomarkers (Rosenberg et al., 2018). Yet, the predictive analysis paradigm brings new challenges. First, 32 
a fair way to compare predictive analysis models is needed. In predictive analysis, it is common 33 
practice to build models in a training set, and then apply the models to a test set (Bzdok et al., 2020; 34 
Scheinost et al., 2019). It is important that no test data is used for model training or hyperparameter 35 
tuning (e.g. learning rate for gradient decent optimisations, number of layers in convnets) and to report 36 
the result objectively (LeCun et al., 2015) and avoid accidental data leakage (Lanka et al., 2019). 37 
Second, data is usually scarce for many diseases so that training a large deep learning model in such 38 
modest datasets is still hard (Raghu et al., 2019). 39 
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Brain ageing study is a recent example of the predictive analysis paradigm (Brown et al., 2012; Cole 40 
et al., 2018, 2017; Cole and Franke, 2017; Dosenbach et al., 2010; Franke et al., 2010; Levakov et al., 41 
2020; Neeb et al., 2006). Studies showed that individuals’ chronological age can be predicted 42 
accurately from brain MRI scans (Cole et al., 2017). Brain age delta, the difference of a subject’s 43 
predicted (brain) age and chronological age, is linked with a variety of biological factors within the 44 
healthy population (Smith et al., 2020b), and group differences can be found in disease populations 45 
(Cole et al., 2019; Kaufmann et al., 2019). Yet, accurate prediction of a subject’s age in healthy 46 
population is still a challenging task. 47 

To tackle these challenges, a benchmarking platform is needed to objectively evaluate the models and 48 
strategies. Competitions have been seen in the field of computer vision (e.g. ImageNet (Russakovsky 49 
et al., 2015)) and proved to be a valuable vehicle for pushing AI technology (LeCun et al., 2015). In 50 
the field of neuroimaging, the Predictive Analysis Challenge (PAC) 2019 for brain age prediction1 51 
provides such opportunities for participants to train machine learning methods, and then objectively 52 
evaluate the models in a test dataset whose labels are hidden from the participants. PAC 2019 sets two 53 
objectives for brain age predictions: (1) to achieve the most accurate age prediction from brain 54 
structural MRI scans, and (2) to achieve the best accuracy while keeping the correlation between the 55 
prediction error and the ground truth age sufficiently small.  56 

Our team ‘BrainAgeDifference’ achieved the first places in both two objectives among 79 participating 57 
teams. Our method is largely based on our previous work (Peng et al., 2019), with adaptations made 58 
for the challenge. In this report, we will provide a detailed description of our methods for PAC 2019, 59 
including the lightweight deep convnet architecture - Simple Fully Convolutional Neural Network 60 
(SFCN), and the combined techniques including data augmentation, transfer learning, model ensemble, 61 
and bias correction. We find that the lightweight model, which has achieved the state-of-the-art results 62 
in UK Biobank, works well in the multi-centre PAC 2019 dataset with a slightly adaptation in 63 
hyperparameters. SFCN pretrained on UK Biobank data achieves better single model performance than 64 
random initialized models in the PAC 2019 dataset. In addition, model ensemble with different T1-65 
image derived maps, and different initializations, and training/validation data splits are important to 66 
achieve the best performance for the competition. 67 

2 Datasets and Preprocessing 68 

2.1 PAC 2019  69 

The Predictive Analytic Challenge (PAC) 2019 was to predict age from brain MRI scans. The goal of 70 
the challenge includes two parts: (1) to achieve the most accurate age prediction, as measured by mean 71 
absolute error (MAE), and (2) to achieve the best MAE while keeping the Spearman correlation r-value 72 
between the prediction error (brain age delta) and the actual age below 0.1 ( |𝑟| < 0.1 ). The dataset 73 
consists of both label-known training/validation dataset (2638 subjects in total) and a ‘true’ test set of 74 
660 subjects whose labels are unknown to the competition participants. The participants had a one-75 
time opportunity to upload their predictions in the test set to the competition server for each objective, 76 
and the MAE and the Spearman’s r-value were evaluated automatically. The subjects are from 17 77 
different sites. Most of the data is based on (Cole et al., 2017) and a few new sites were added by the 78 
organisers. The training set and the test set have the same age and site distribution. 79 

 
1 https://web.archive.org/web/20200214101600/https://www.photon-ai.com/pac2019 
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PAC 2019 organizers provide three version of MRI data: (a) raw T1 brain MRI scans, (b) white matter 80 
volume segmentation (WM) and (c) grey matter volume (GM) segmentation derived from T1 data. We 81 
use all three versions to develop deep learning models. We further preprocess the raw T1 images using 82 
FSL (Smith et al., 2004) (command fsl_anat) to derive two different pseudo-modalities: one is brain 83 
linearly registered to standard 1mm MNI space (by FLIRT), and the other is brain non-linearly 84 
registered to standard 1mm MNI space (by FNIRT). We use all the four pseudo-modalities to develop 85 
the convnet models. WM and GM segmentations are in 1.5mm MNI space as provided by the PAC 86 
2019 organisers, and the preprocessing pipeline is described in (Cole and Franke, 2017).  87 

For linearly and non-linearly registered modalities, the input images are cropped to retain the central 88 
160x192x160 voxels, which is the same as what we had done with UK Biobank data. The WM and 89 
GM modalities are cropped in the central 96x128x96 voxels. 90 

2.2 UK Biobank 91 

UK Biobank brain imaging data consists of multimodal brain scans from a predominantly healthy 92 
cohort (Miller et al., 2016). Currently (year 2020) there are about 40,000 subjects released for research, 93 
and the number will eventually reach 100,000 (Smith et al., 2020a). In our previous study, we reported 94 
SFCN trained and tested on the initial 14,503 structural MRI brain images (Peng et al., 2019), and 95 
released the pretrained model in a GitHub repository (https://github.com/ha-ha-ha-96 
han/UKBiobank_deep_pretrain). In this study, we mainly focus on optimising pipelines and models 97 
for PAC 2019, and most of the models are initialised randomly and then trained with the PAC 2019 98 
data unless otherwise stated. To apply transfer learning, we also use 5698 UK Biobank T1 images to 99 
pretrain a model, and then use the trained weights as initialisations for finetuning five models in the 100 
PAC 2019 dataset (see details in the section Experiments and Results – Transfer Learning).  101 

The UK Biobank preprocessing pipeline can be found in (Alfaro-Almagro et al., 2018), and the UKB 102 
data release includes preprocessed data, so that researchers do not need to re-run the preprocessing 103 
pipeline. Models are trained/validated/tested separately. The inputs are in 1mm MNI space, cropped 104 
for the central 160x192x160 voxels to reduce GPU memory required.  105 

 106 

 

Figure 1. Age distribution of different datasets. The UK Biobank (blue bars) and the 
PAC 2019 (orange bars) differ in age range and number of subjects. 

 

UK Biobank

PAC 2019
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2.3 Difference between UK Biobank and PAC 2019 107 

UK Biobank and PAC 2019 datasets differ in age distribution and number of subjects. A summary of 108 
the statistics of both datasets (mean and standard deviation of age distribution, and number of subjects) 109 
is shown in Table 1 and visualised in Figure 1. The PAC 2019 dataset has a significantly smaller 110 
number of subjects and larger age range. Moreover, PAC 2019 contains multisite data with different 111 
data quality and scanner configurations. All these factors make the prediction task more difficult in 112 
PAC 2019 than UK Biobank. 113 

Note that the test set labels are not available to the participants in the PAC 2019 challenge. This setup 114 
of a ‘true’ test set prevents the competition participants from the risk of accidental data leakage. During 115 
the competition, the prediction results were allowed to be uploaded only once, and then the 116 
performance metric was evaluated automatically. Therefore, no hyperparameter adjustment could be 117 
made for the testing process to elaboratively overfit the test set. In summary, we believe the results in 118 
the test set are an objective measurement of model performance in an unknown dataset with a similar 119 
age and site distribution.  120 

 121 

3 Method 122 

3.1 Model 123 

The backbone of our method is the lightweight fully convolutional neural network architecture, Simple 124 
Fully Convolutional Neural Network (SFCN), that we proposed in (Peng et al., 2019). We briefly 125 
summarise the key aspects of the model and the adjustment for PAC 2019 here.  126 

The SFCN model architecture is shown in Figure 2 (reproduced from the original work by (Peng et al., 127 
2019)). The model consists of seven convolution blocks. Each of the first five blocks consist of a 3x3x3 128 
3D convolution layer, a batch normalisation layer, a max pooling layer, and a ReLU activation layer. 129 
The key facet of this architecture is that the model downsamples the input every time after a 130 
convolution layer. As a result, the spatial dimension is reduced quickly as the layer goes deeper, and it 131 
takes only five blocks to reduce the input data size from 160x192x160 to 5x6x5 (voxels). This simple 132 

Dataset 
Age 

Range 
(yrs) 

Age (yrs) 
Mean±STD 

Number of Subject 
Number of 

Site 
Training/Validation/Test Total 

UK 
Biobank 44 - 80 62.7±7.5 5698 / 518 / - 6216 2 

PAC 
2019 17 - 90 35.9±16.2 2198 / 440 / 660 

2638 with 
label + 660 

without label 
17 

Table 1. Difference in age distribution between PAC 2019 used in this study and UK 
Biobank dataset used in (Peng et al., 2019).  
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design saves GPU memory and reduced the number trainable weights. The sixth block is similar but 133 
without a max pooling layer and uses a 1x1x1 3D convolution layer to increase non-linearity without 134 
changing feature map spatial dimensions. The resulting 5x6x5 feature map is pooled by an average 135 
pooling layer and then projected to the output layer with a linear transformation (i.e. fully connected 136 
layer). For convenience of implementation, the fully connected layer is also treated as an 1x1x1 137 
Conv3D in a 1x1x1 input ‘feature map’.   138 

The input size is 160x192x160 voxels for both T1 non-linearly registered brains and linearly registered 139 
brains, and 96x128x96 voxels for both WM and GM for PAC 2019. Note that the model is fully 140 
convolutional; therefore it can take different input sizes without modifying the architecture. The feature 141 
map size before the average pooling layer in the final block is 5x6x5 for the input size 160x192x160, 142 
and 3x4x3 for the input size 96x128x96. 143 

 144 

3.2 Model Output and Loss function 145 

We treat the regression as a soft classification problem. In this set-up, the label of the age is not treated 146 
as a single number, but a discretized Gaussian probability distribution centred at the true age. The 147 
output of the model is also a probability distribution. Kullback-Leibler divergence is used to measure 148 
the similarity between the two probabilities.  149 

The output is 40 digits standing for 40 age bins for the UK Biobank data. Each age bin covers a 1-year 150 
range. The number of age bins is 38 for trained-from-scratch models for PAC 2019, each of which 151 
covers a 2-year range. The sigma of the Gaussian distribution for the labels is set to be the size of one 152 
age bin (i.e. 1 year for UK Biobank and 2 years for PAC 2019). The final age prediction is the average 153 
of all the age bins weighted by the output probability.  154 

 

Figure 2. Illustration of the core network for the Simple Fully Convolutional Neural 
Network (SFCN) model. A) SFCN model architecture. B) An example of soft labels and 
output probabilities. The figure is reproduced from (Peng et al., 2019) under CC-BY-NC-
ND 4.0. 
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For models pretrained in UK Biobank and finetuned in PAC 2019, the number of output age bins is set 155 
to 40 to reduce coding effort (although the bins stand for different age ranges). 156 

3.3 Hyper parameter, optimiser choice and training 157 

Hyper parameters are tuned with the validation set. We also evaluate different optimizers, namely, 158 
ADAM and SGD. In UK Biobank we find ADAM easily overfits the model and thus performs worse 159 
than SGD (Peng et al., 2019). However, in PAC 2019, we find that ADAM, although it overfits more 160 
than SGD (as measured by the val-train gap in Figure 3), performs slightly better than SGD in the 161 
validation set. Also, ADAM is observed to be more stable during the training process for the PAC 2019 162 
dataset (as shown in Figure 3), so that we use ADAM for PAC 2019 for the rest of our experiments.  163 

The validation set is used to evaluate model performance after every epoch (i.e. one iteration through 164 
the full dataset) in the training set, and the model weights for the best validation performance within 165 
150 epochs are chosen for testing.  166 

Data augmentation and weight regularization are important to achieve the best prediction accuracy and 167 
to reduce overfitting. We use the same augmentation and regularization strategy as specified in detail  168 
in (Peng et al., 2019) for all experiments reported in this work: voxel shifting, mirroring and dropout.  169 

4 Experiments and Results 170 

To achieve accurate brain age prediction, we use several techniques in the competition setup besides 171 
the lightweight SFCN model, the regularization and the data augmentations. For a single model, we 172 
applied transfer learning to boost the single model prediction accuracy. We also train multiple models 173 
using different (pseudo-)modalities to form an ensemble for better performance. As summarised in 174 
Table 2, we find that the best ensemble uses all the modalities. While transfer learning stably achieves 175 
better single-model performance, only 5 out of 45 models in the final ensemble are transferred from 176 
UK Biobank, due to the limit of time and computational power. The details of the experiments and the 177 
results are described below. 178 

4.1 Transfer learning 179 

 

Figure 3. Training curves for the SGD and ADAM optimisers in PAC 2019 data. The 
curves are smoothed with a 7-step averaging window. The shading areas show the 
standard deviation within the window. 
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To test how pretraining in the large UK Biobank dataset can help smaller datasets such as PAC 2019, 180 
we compare the performance of models that are pretrained-and-finetuned and those trained-from-181 
scratch using the PAC 2019 data only.   182 

The finetuning process and all the hyperparameters are the same with the trained-from-scratch ones 183 
except for the initialisation of model weights. For the pretraining, an SFCN model is trained with 5698 184 
UK Biobank subjects using the methods specified in (Peng et al., 2019) and achieving validation MAE 185 
= 2.20 yrs in UK Biobank dataset. This MAE is slightly worse than the reported value due to the smaller 186 
training dataset size we use. The trained weights are then used to initialise models that are finetuned 187 
with the PAC 2019 dataset. There are five models initialised with the same weights, and then trained 188 
with different train-validation split under a five-fold cross validation scheme using the PAC 2019 189 
training data. as shown in Figure 4, the five finetuned models achieve a mean MAE of 3.69±0.19 yrs 190 
(mean±STD), which is 0.22 years better than the randomly initialised models (MAE = 3.91±0.13 yrs, 191 
mean±STD). The pretrained models also converge faster. This result shows that initialising models 192 
with pretrained weights from UK Biobank can help achieve better performance in small datasets, even 193 
using a naïve finetuning protocol. 194 

 195 

4.2 Performance of different (pseudo-)modalities and model ensembles 196 

Different T1-derived data contain distinct information regarding brain ageing. We find that averaging 197 
predictions with different pseudo-modalities (outputs from distinct pre-processing approaches applied 198 
to the same original input data modality, here T1) is an effective method to utilise the independent 199 
information to achieve the overall best ensemble performance. We train and test 10 models (from 200 
scratch, no pretraining) in each pseudo-modality, namely, T1 data linearly registered to the MNI space 201 
(Lin), raw T1 data nonlinearly registered to the MNI space (NonLin), segmented grey matter (GM) 202 
and white matter (WM) volumes. Lin and NonLin modalities are preprocessed by us, and GM and WM 203 
are provided by the organiser. Models are randomly initialized (with different random seeds). As shown 204 
in Table 2, models trained with Lin, NonLin and GM achieve comparable MAEs ranging from 3.89 to 205 

 

Figure 4. Training curves for transfer learning. The curves are averaged by five models 
trained with five-fold cross-validation splitting, and then smoothed with a 7-step averaging 
window. The shading areas show the standard deviation within the window. 
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3.93 years, which are all better than the MAE for WM (4.19 years), and is in accordance with our 206 
previous findings (Peng et al., 2019).   207 

We show in our previous work (Peng et al., 2019) that, even though with comparable MAEs, brain-208 
PADs contain different information from different pseudo-modalities. This result is consolidated in the 209 
PAC 2019 dataset using the left-out validation set (not used in cross-validation) in Figure 5. Models 210 
with the same modalities show higher correlation for the brain-PAD prediction.  211 

To achieve the best performance in the challenge, we use all four pseudo-modalities to form an 212 
ensemble. For every pseudo-modality, there are 10 models initialised randomly and trained separately 213 
with different train/validation splits. For the Lin modality, 5 additional models are pretrained in UK 214 
Biobank and finetuned in PAC 2019, as previously mentioned, adding up to 45 models in total. All 215 

Modality 

Performance 

Single Model Ensemble 

MAE 
(yrs) r value MAE 

(yrs) r value 

Raw, linearly registered, 
Pretrained with UK 

Biobank x 5 
3.69±0.08 0.946±0.006 3.22 0.960 

Raw, linearly registered 
x 10 3.91±0.13 0.935±0.007 3.48 0.951 

Raw, non-linearly 
registered x 10 3.89±0.16 0.937±0.006 3.40 0.957 

Grey matter 

x 10 
3.93±0.13 0.948±0.003 3.54 0.957 

White matter 

x 10 
4.19±0.09 0.937±0.003 3.74 0.951 

All 45 models 3.95±0.19 0.940±0.007 2.98 0.971 

Table 2. Performance of model ensembles with different pseudo modalities in PAC 
2019. 5 models are initialized with pretrained weights and then finetuned with linearly 
registered brains. For all other experiments, 10 models are trained from scratch for each 
modality and used to predict brain age individually. The mean and the standard deviation of 
the single model performances are computed within each modality.  
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models are trained separately, and make predictions independently. For every subject, mean and 216 
standard deviation (STD) are computed for the 45 age predictions, and the predictions deviating more 217 
than 𝜆-STD from the mean are treated as outliers (𝜆 is a coefficient of our choice), and the final 218 
prediction is the new average of the rest predictions. 𝜆  is set to be 1.1 to optimise the performance in 219 
the left-out validation set, which makes the ensemble performance slightly biased towards this 220 
‘validation’ set. This strategy achieves MAE = 2.98 yrs in the left-out validation set and MAE = 2.90 221 
yrs in the test set, as shown in Table 3. Our result in the test set ranks the first for the first goal of PAC 222 
2019 (best MAE), and is 0.18/0.42 years better than the second/third place (MAE: Ours = 2.904 yrs; 223 
Second Place = 3.086 yrs; Third Place = 3.328 yrs).  224 

 225 

In our previous work (Peng et al., 2019), we showed that independent predictions are important to form 226 
a good ensemble. Here, we further show that a sufficiently large number of models is also important 227 
for good ensemble performance. To demonstrate this, we explore the ensemble performance with 228 
different number of models, as summarised in Figure 6. Ensembles are randomly formed using some 229 
of the 45 trained models (replacement allowed) and predictions are made using the mean without 230 
excluding outliers. As the number of models increases, the MAE decreases and finally saturate. A 231 
power law can be fitted to empirically describe the quantitative relationship between the size of 232 
ensemble and the MAE, as shown in Figure 6B. A ‘critical point’ of MAE of 3.07 yrs is estimated, and 233 
can be interpreted as the ideal MAE if we can increase the number of models to infinity. This empirical 234 
observation suggests that simply increasing ensemble size will result in only limited performance gain.  235 

 

Figure 5. Correlations of predicted brain age difference (d-age) between different 
models, showing similar results as (Peng et al., 2019).  



 
10 

This is a provisional file, not the final typeset article 

The ‘critical’ MAE is worse than the actual MAE we get from the all the models. This is because the 236 
bootstrap process allows replacement, i.e. the same model is allowed to be selected more than once, 237 
which reduces the independent information gathered from the ensemble.  238 

4.3 Bias correction 239 

We follow (Smith et al., 2019) and (Peng et al., 2019) to fit a straight line between the predicted brain-240 
PAD and the ground truth age in the left-out validation set, and then apply the fitted parameters (slope 241 
and intercept) to bias-correct predictions in the test set whose labels are unknown. We correct the bias 242 
for the ensemble predictions rather than for every single model. 243 

For the validation set, this linear regression method reduces the Spearman’s r-value (between delta and 244 
age) from -0.44 to -0.06 with a small increase (0.03 years) in the MAE. The generalization to the test 245 
set reduces the Spearman’s r-value from -0.39 to 0.03, with a small increase of 0.05 years in the MAE 246 
(from MAE = 2.90 to MAE = 2.95). This result is summarised in Table 3.  247 

The result in the test set achieves the first place for the second goal of the competition (smallest MAE 248 
with sufficiently small Spearman’s r-value between brain-PAD and the true age), and it leads by a large 249 
margin (MAE: Ours = 2.950 yrs; Second Place = 3.799 yrs; Third Place = 3.924 yrs). 250 

 251 

 

Figure 6. Ensemble performance with different number of models. A) Average 
performance in MAE with different number of models used by ensemble. The mean and 
standard deviation come from 1000-time bootstraps. B) The fitted line of a power law. 𝑀𝐴𝐸! 
is the critical point if an infinite number of models are used to form the ensemble.  

y = 0.92*x^(-0.97)+3.07A B



 
11 

 252 

5 Discussion and conclusion 253 

We note that different datasets may require distinct hyperparameters and optimisers for optimal 254 
performance for a deep learning algorithm. For example, we showed in our previous study that ADAM 255 
easily overfits the model and thus performs worse than SGD in UK Biobank data (Peng et al., 2019). 256 
In this study, we find ADAM works comparable or even slightly better than SGD in PAC 2019 257 
validation data. We have not fully explored the mechanism behind this empirical difference. One can 258 
assume that PAC 2019 is a more difficult dataset for deep learning models to optimize, due to the 259 
multi-site origin and inhomogeneous data quality, and this may be the reason why ADAM performs 260 
better in PAC 2019; it has been shown to be a more powerful optimizer for other problems (Kingma 261 
and Ba, 2014).  For future studies, it may be beneficial to explore and choose different optimisers for 262 
different datasets even for similar tasks.  263 

Despite additional hyperparameter tuning, we have shown that the SFCN method together with the 264 
data augmentation and model regularisation methods are generalisable outside the UK Biobank dataset. 265 
However, this ‘generalisability’ requires retraining or finetuning in the targeting dataset, and may not 266 
be feasible for smaller datasets (e.g. a dataset with 100-subject). Also, although PAC 2019 provides a 267 
true measurement for generalisability of models to unseen data (because the test set labels are hidden 268 
from the participants), this does not guarantee the generalisability to unseen scanning site (because the 269 
test set follows the same site and age distribution as the training set). For applications requiring site 270 
generalisability, see recent work aiming to address this specific issue (Dinsdale et al., 2020).  271 

Model 

Performance Performance with Bias Correction 

MAE 
(years) 

Spearman 
Correlation 

d-age vs age 

MAE (years) 

Spearman 
Correlation 

d-age vs age 

45 Model 
Ensemble 

(Left-out validation 
set) 

2.98 -0.44 3.01 -0.06 

45 Model 
Ensemble (PAC 

Test Set) 
2.90 -0.39 2.95 -0.03 

Table 3. Bias correction results. 
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Finally, we need to point out that our choice of hyperparameters, transfer learning and the naïve 272 
ensemble strategy may not be optimal, due to the limit of time and computation power in the 273 
competition setup.  274 

To conclude, we have applied the lightweight convnet - SFCN model, data augmentation, 275 
regularisation, and bias correction techniques proposed in (Peng et al., 2019) to PAC 2019 challenge 276 
and achieved leading results. Besides initialising models randomly, we have shown that initialising 277 
weights pretrained in UK Biobank achieve better single-model results for the PAC 2019 dataset (after 278 
retraining/finetuning). For ensembles with multiple models, we have shown that the best ensemble 279 
comes from a large number of models taking the input of different pseudo-modalities.  280 
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