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Abstract

To date, detecting robust single-cell-regulated splicing is viewed as out of reach from droplet
based technologies such as 10x Chromium. This prevents the discovery of single-cell-regulated
splicing in rare cell types or those that are difficult or impossible to sequence deeply. Here, we
introduce a novel, robust, and computationally efficient set of statistics, the Splicing Z Score
(SpliZ) and SpliZVD, to detect regulated splicing in single cell RNA-seq including 10x
Chromium. The SpliZ(VD) provides annotation-free detection of differentially regulated, complex
alternative splicing events. The SpliZ generalizes and increases statistical power compared to
the Percent Spliced In (PSI) and mathematically reduces to PSI for simple exon-skipping. We
applied the SpliZ to primary human lung cells to discover hundreds of genes with new regulated
cell-type-specific splicing. The SpliZ has wide application to enable biological discovery of
genes predicted to have functionally significant splicing programs including those regulated in
development.

Main Text

Splicing is a core function of eukaryotic genes that generates proteins with diverse and even
opposite functions', changes translation efficiency?, controls localization®, and generates
non-coding RNAs*. Very few genes’ splicing programs have been characterized at single-cell
resolution, and the function of splicing remains a critical open problem in biology®. Constant
advances in single-cell RNA sequencing (scRNA-seq) technology now provide an
unprecedented opportunity to understand how splicing is regulated at the single cell level.

The enormous complexity of splicing in eukaryotic genomes and the low sequencing
depth per cell in scRNA-seq experiments makes it challenging to precisely quantify RNA isoform
expression and its differential regulation in single cells. With few exceptions®, the field has
typically attempted to either estimate isoform expression using model-based approaches’'° and
then perform differential splicing analysis, or directly quantify exon inclusion’® using percent
spliced-in (PSI).

Each such approach has significant drawbacks, especially in scRNA-seq. First,
annotation-based methods for isoform quantification give notoriously unstable point estimates in
the presence of non-uniform read sampling® or when annotations are incomplete or erroneous.
These problems are exacerbated at low sequencing depths. Further, droplet-based scRNA-seq
methods are 3’-biased, making accurate isoform estimation impossible even with deep
sequencing.

The second approach is to use PSI, which quantifies the fraction of transcripts that skip a
specific exon'. However, tests based on PSI must proceed exon-by-exon, requiring hundreds of
thousands of tests, and cannot detect splicing events beyond simple exon skipping. This
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diminishes statistical power through multiple hypothesis testing, and creates problems with
statistical dependency when testing differential exon skipping multiple times per gene.
Moreover, PSl is thought to be statistically unreliable for capturing exon skipping with less than
10 recovered mRNA on average per exon skipping event.

For these reasons, published methods for analyzing splicing in scRNA-seq are almost
exclusively inappropriate for use on droplet-based data''3. Those that are recommended for
droplet-based analysis rely on genome annotation, require pairwise tests between all cell types
which scale poorly for many cell types and lose sensitivity due to multiple hypothesis testing,
and only analyze exon-skipping'. These issues have led to the view that robust differential
splicing analysis in droplet-based scRNA-seq is out of reach>¢,

Here we introduce the Splicing Z Score (SpliZ), a scalar value assigned to each
gene-cell pair that quantifies how deviant a cell’s splicing is compared to a population average.
The SpliZ can be applied to compiled junctional read counts from any single cell data (e.g.
STAR-aligned'” and SICILIAN'"8-processed plate or droplet-based scRNA-seq data) and, even
more generally, to bulk data, though that is not the focus of this work. The SpliZ integrates all
non-constitutive spliced reads on a per-gene basis to detect deviant splicing patterns in single
cells under low and biased sampling (Fig. 1A). It also requires one test per gene, greatly
reducing the number of tests from potentially 10s (or in some cases, 100s) required by PSI. As
shown below, the SpliZ has power to detect isoform expression changes beyond exon skipping.

The SpliZ quantifies cell-type-specific splicing for each cell-gene pair by (1) assigning
each read aligning to a splice junction to a rank based on the relative size of the intron
compared to the set of observed introns for that 3’ and 5’ splice site, respectively (Methods); (2)
converting the rank to a residual measuring its statistical deviation compared to “the typical”
intron length rank (Methods); (3) statistically grounded scaling and summing of these values to a
single SpliZ per gene and cell. A cell-gene pair has a large negative (resp. positive) SpliZ, if, on
average, introns have statistically significantly smaller (resp. longer) intron length compared to
the population of cells profiled in an experiment (Fig. 1B).

The SpliZ is a statistic developed from first principles and has the important property that
it is a formal generalization of PSI (Methods), mathematically reducing to PSI in the case of
exon-skipping with only two measured junctions. The SpliZ increases power over PSl in cases
of more complicated splicing. If there are multiple differential exon skipping events in the same
gene, PSI lacks power to detect each difference, while the SpliZ builds strength across both
events, resulting in increased power.

The theoretical properties of the SpliZ allow it to be efficiently integrated into significance
testing: Under the null hypothesis, the SpliZ has mean 0 for every cell type, while under the
alternative hypothesis each cell type has a constant mean SpliZ value, not all of which equal
zero (Fig. 1C, Methods). A common bioinformatics practice approximates p values, in this case
to test for differential splicing by cell type in each gene, using permutation distributions.
However, this approach, while intuitive, has been proven to dramatically underestimate the type
| error in the case of unequal variance between cell types'®. Further, permutation testing is
computationally intensive, requiring (number of genes)*(number of permutations) evaluations.
To overcome this computational and statistical problem, we adopted a procedure with better
type | error control'® and developed a two-step method to estimate significance: First, the SpliZ
is referred to a theoretical null distribution. For p-values passing a nominal 0.05 level,
permutations are performed to estimate the p value with higher precision. This results in (a) a
conservative FDR estimate (b) 95% less computational cost under a global null distribution.
Final p values are adjusted using the Benjamini-Hochberg correction®. By performing only one
test per gene, and determining differential alternative splicing between cell types by one
gene-wide test rather than pairwise tests between cell types, this method avoids reduction in
statistical power by removing unnecessary multiple hypothesis testing.
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As predicted by theory, the SpliZ has higher power than PSI when multiple exons are
skipped in the same transcript. When there are multiple isoforms for a gene, each of which
includes one more exon, the SpliZ builds strength across these isoforms to identify real
differences between cell types at lower read depths than PSI, while maintaining the same type Il
error rate (Fig. 1D). Although all spliced reads are used both to compute both the SpliZ and PSI,
three different PSI values must be computed for each non-constitutive exon, yielding three
scores each of which have less power than the SpliZ to detect differences in isoform usage
across the two cell populations. At an average of five reads per cell, there is a 90% chance of a
difference being detected by the SpliZ, but less than an 80% chance of a difference being
detected by PSI.

While the SpliZ has high statistical power to detect exon skipping and other complex
patterns (Fig. 1D), it lacks power to detect isoform shifts in some cases, for example between
isoforms with alternative cassette exons. To overcome this lack of power, we developed the
SplizVD, a modification of the SpliZ, which as suggested by the name, is a gene-cell score
computed by projecting splicing residuals onto eigenvectors of its SVD (we consider only the
first projection in this work) (Fig. 2A, Methods). The SVD of the residual matrix used to compute
the SpliZVD is also used for biological interpretability of the SpliZ and SpliZVD. Splice sites
corresponding to up to the three largest-magnitude components of the first eigenvector are
nominated as the statistically most variable splice sites (Fig. 2B, Methods).

The SpliZVD maintains the power of PSI in simulation with two cassette exons, a
situation where the SpliZ has no power to detect differences because both isoforms contain one
‘long” and one “short” intron (Fig. 2C). In both this and the previous simulation, the splice sites
involved in differential alternative splicing were correctly identified by the method (Fig. 1D, Fig
2C). The SpliZ and SpliZVD together have been shown both through theory and simulation to
identify splicing differences with as much power as PSI or more, while extending to more
complicated splicing patterns.

We analyzed 60,550 carefully annotated human lung cells from the Human Lung Cell
Atlas (HLCA)?' from two individuals to test the performance of the SpliZ and SpliZVD on real
scRNA-seq data. The HLCA, sequenced on the 10x (53,469 cells) and Smart-seqg2 (7,081 cells)
platforms, includes 57 annotated cell types with highly variable depth of sampling per cell type.
We focused the SpliZ analysis on 10x because orders of magnitude more cells are profiled
through the technology, including cell types that cannot be profiled or are poorly sampled by
Smart-seq2, and ran the pipeline on Smart-seq2 restricted to junctions found in the 10x data for
comparison and validation purposes (Fig. 2D, Supplement). The SpliZ pipeline took under 3
hours and 80 GB to run on all analyzed data in parallel. A median of 912 genes are detected per
cell in 10x data (1,660 in Smart-seq2 data), and a median of 67 genes have a computable SpliZ
per cell for 10x data (833 for Smart-seqg2 data). 1,754 genes have a computable SpliZ in at least
10 cells in one of the individuals (11,640 for Smart-seq2 data) (Methods).

The SpliZ and SpliZVD identified hundreds of differential alternative splicing events
between cell types in 10x data from human lung. 210 (resp. 219) genes were called as having
significant cell-type-specific splicing by the SpliZ, and 133 (141) genes were called by the
SpliZVD, with 89 (90) genes called by both (p < 0.05). 178 genes were called by either the SpliZ
or SpliZVD in both individuals’ 10x data (p value: 1.11e-16). There is significant correlation
between median SpliZ scores for the same gene and cell type for 10x and Smart-seqg2 data in
the same individual, restricting to genes that are significant in both (Pearson correlation of 0.315
and 0.650).

Genes with the most deviant SpliZ values (Methods) include ATP5F1C, a core
component of the mitochondrial ATP-synthase machinery, and MYLG6, an essential component
of the actin cytoskeleton with partially characterized splicing, both of which we find have
cell-type-specific exon skipping events (Supp. Fig. 1A-B, Supp. Table 1, in preparation). Another
of the many examples of highly cell-type-specifically spliced genes discovered is LMO7, an
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emerin-binding protein with alternative splicing affecting a protein domain of unknown function
(Fig 3A).

The SpliZ identifies a pattern of differential alternative splicing involving at least three
isoforms in CD47 (Fig. 3B, Supp. Table 1). CD47 is an immune-regulatory membrane protein
that has recently been identified as a therapeutic target in a set of myeloid malignancies? but
has undescribed cell-type-specific splicing programs. Automatic detection of the most variable
splice sites for CD47 identified the 5’ and 3’ splice sites flanking a region with three exons that
can be sequentially included to create four different isoforms, just as in Figure 1D. The SpliZ
builds strength across these multiple skipping events to identify differential alternative splicing in
the gene, with cells in the epithelial compartment tending to express three different isoforms
equally while the other compartments are dominated by just one of the isoforms.

In real biological scenarios the SpliZVD improves power to detect differential splicing for
some genes: 44 (51) genes are called by the SpliZVD but not the SpliZ in individual 1 (2).
Although the tropomyosin gene TPM2 is called by both the SpliZ and SpliZVD, it only had the
266 (204)th-largest-magnitude maximum ontology median by the SpliZ, it had the 121 (82)
largest by the SpliZVD in individual 1 (2). This differential alternative splicing event is also called
as significant by Smart-seq2 in the second individual with the SpliZVD. Increased power of the
SpliZVD over the SpliZ would be predicted due to the cassette exon gene structure of TPM2,
which is analogous to the gene structure in Figure 2C. The residual matrix’s SVD automatically
identifies the most variable splice sites for TPM2: a 3’ splice site bordering the two cassette
exons, as well as a 5’ splice site that can splice to two different transcript ends.

Overall, ~28% (147 out of 529) of the most variable splice sites for significantly
differentially spliced genes (p<0.05) in the HLCA corpus are annotated alternative exons
(Methods). One of the genes with the highest magnitude median SpliZ is PPP1R12A, a protein
phosphatase regulatory subunit: its most variable splice site is not annotated as being
alternatively spliced (Supp. Fig. 1C). PPP1R12A is also called as by the SpliZVD in Smart-seq2.
This supports the use of the SpliZ to re-identify known alternative splicing events and as a
purely statistical, annotation-free, approach to discover new alternative splicing events that are
cell type-specifically regulated.

Undoubtedly, the 3’ bias of 10x genomics data derived from priming on the poly-A tail
restricts discovery of regulated splicing in this study by biasing data and measurement towards
only a subset of splice sites. Moreover, because the SpliZ collapses all splice events to a single
scalar, it lacks power to detect some differential splicing events. The SpliZVD remedies this
problem through a data-driven approach based on variance-maximizing projections of splicing
residuals which are especially important for statistical power when transcripts are profiled more
deeply and more uniformly and isoform structure is complex. Indeed, as predicted by theory, the
SpliZVD detects significantly more events than the SpliZ in Smartseq-2, explored in other work
(in preparation). Also note that the methodology in the SpliZ pipeline can be applied to any
RNA-seq dataset, including bulk sequencing.

Because the SpliZ has a tractable statistical distribution and is single-cell resolved, it
enables new biological analysis beyond the scope of this paper, including clustering approaches
on the basis of the SpliZ alone or in combination with gene expression. In addition, the SpliZ
can be correlated with any other numerical phenotype, such as pseudotime, cell cycle trajectory,
gene expression or spatial position in the context of single cell spatial genomics. In summary, by
deconvolving technical and biological noise in splicing, the SpliZ provides a new method for the
field to identify and prioritize splicing events that are regulated and functional and to address
decades-long debates regarding the degree to which alternative splicing is regulated at a single
cell level.
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Figure Captions

Figure 1. (A) The SpliZ takes spliced reads and metadata and returns genes called as
differentially spliced by cell type. (B) SpliZ toy example: cell on the left has short average introns
vs the cell on the right, giving it a lower SpliZ. (C) SpliZ scores can be aggregated for each cell
type, identifying cell types with statistically deviant splicing. (L) cell type with significant
enrichment for short introns; (R) cell type with significant enrichment for long introns. (D)
Simulations of the SpliZ, SpliZVD, and PSI: In both, two cell types with 20 cells respectively are
simulated, each having a different proportion of isoforms (1000 trials). At each read depth,
Poisson(n) reads are sampled in proportion to isoform abundances. Null values are calculated
from cell populations with identical isoform expression. Driving splice sites are starred by
asterisks and coincide with simulated alternative splice sites. The SpliZ increases power over
PSI for cell types expressing different proportions of CD47 isoform structure.

Figure 2. (A) The SpliZVD is the projection of the matrix of splicing residuals onto its first
eigenvector. (B) The SVD is used to identify the most variably alternatively spliced sites. (C)
Simulation as described in 1D. As predicted by theory, the SpliZVD calls differential alternative
splicing between the two cell types with different proportions of TPM2-like isoforms, while the
SpliZ does not. (D) The SpliZ is calculated independently for Smart-seq2 data restricted to
junctions detected by 10x to measure technology-dependence of results.

Figure 3. (A) LMOY7 has significant splicing differences within epithelial cell types at splice site
75817161. Dot size represents the fraction of reads from each 5’ splice site to the 3’ site at
108047292. The arcs show the average site use across the tissue compartment,thicker arcs
corresponding to higher fractional use. Read fractions from two 10x and Smart-seq2 datasets
are shown by dots and squares, respectively. 92% of reads skip the proximal exons, compared
to 2% in alveolar epithelial type 1 cells in Smart-seq2 data. (B) Differential splicing in CD47 is
tissue-compartment-specific. 6% of reads from 10x splice to an unannotated 5’ splice site
(dashed lines).
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Methods
1 Code Availability

The SpliZ code along with the codes used for data analysis and to create the figures are available through a GitHub
repository: https://github.com/juliaolivieri/SZS_pipeline/. Installed package versions (also available in
environment.yml file on github): matplotlib [6]: 2.2.3; numpy [5]: 1.18.4; pandas [7, 12]: 1.0.4; pickle [10]: 4.0,
scipy [11]: 1.4.1; statsmodels [8]: 0.11.1; tqdm [2]: 4.46.0.

2 Data Availability

Human lung cell atlas (HLCA) data was downloaded from the EGA archive at accession number EGAS00001004344
[9]. We refer to Patient 2 in HLCA as Individual 1 and Patient 3 as Individual 2 in this manuscript. The cell types we
use here are based on concatenating the “compartment” and “free annotation” columns from the HLCA metadata
and only considering lung cells (not blood).

Preparing splice junction input files

The scRNA-Seq data sets were mapped to the reference human genome (GRCh38) using STAR version 2.7.5a with
default parameters [4].

We used SICILIAN [3] for calling splice junctions. SICILIAN is a statistical wrapper that can be applied to the
alignment output file from a spliced aligner and can distinguish false positive junction calls from true positives via
assigning a statistical score to each splice junction reported by the aligner.

3 File Downloads

Human RefSeq hg38 annotation file was downloaded from:

ftp://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/annotation/GRCh38_latest/refseq_identifiers/GRCh38_latest_

genomic.gff.gz

4 SpliZ calculation

The SpliZ score computation for a gene consists of two parts: one relative to the 5’ splice sites in the gene (the 5’
splice site SpliZ) and one relative to the 3’ splice sites (the 3’ splice site SpliZ). We first explain how to calculate the
5 splice site SpliZ for one gene (suppressing the notation specifying the gene for simplicity) and the 3’ splice site
SpliZ can be computed similarly. Let ¢ specify the 5’ splice site, j specify the 3’ splice site, k specify the cell, and ¢
specify the read. Therefore each junctional read for the gene in the dataset is specified by a unique combination of
ijkl. Note that we only consider junctions for which the 5’ splice site has multiple 3’ splice sites in the dataset.

The 5’ splice site SpliZ score calculation proceeds by treating each 5’ splice site separately. We will consider a plus
strand gene and assume that 5’ splice site ¢ has multiple 3’ splice sites across the whole dataset (otherwise we would
have filtered it out). We rank these 3’ splice sites in order from closest to the farthest from the 5’ splice site in question
i (i.e. from lowest to the highest genomic coordinate). For example, if there were four 3’ splice sites partnered with ¢
across the whole dataset, we would rank them 1, 2, 3, and 4 in the order of their genomic coordinates. For genes that
are on the minus strand, the 3’ splice sites are ranked differently as described in the Supplement. Let r;;,, denote
the 3’ splice site rank for the read specified by ijk¢. If 7;;5, = 1, it means the 3’ splice site has the smallest genomic
coordinate among all 3’ splice sites in the dataset.

Now, let IV; be the number of junctional reads observed across all cells for 5’ splice site . We can compute 7;, the
average rank of the 3’ splice sites for 5’ splice site i, as

o Dk Tijkt
e
N;


https://github.com/juliaolivieri/SZS_pipeline/
ftp://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/annotation/GRCh38_latest/refseq_identifiers/GRCh38_latest_genomic.gff.gz
ftp://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/annotation/GRCh38_latest/refseq_identifiers/GRCh38_latest_genomic.gff.gz
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Figure 1: Exon skip with only one junction corresponding to inclusion and one junction corresponding to exclusion

We can also find the variance of the ranks as:

o D (Tigee —T7)?
o7 = N,

Now, we renormalize the rank r;;z¢ using the sample variance and mean as:

Tijke — T4
Sijke = Tﬁ'
We can see that E [S; k] = 0 and var (S;jx¢) = 1 as we subtract the mean and divide by the standard deviation.

The closer the 3’ splice site of a read is to the 5’ splice site, the smaller its corresponding S;;x¢ value would be . In
practice, we truncate the Sj;i, values at the 10th and 90th quantiles across all genes to avoid effects from extreme
outliers.

We now aggregate these zero-mean and unit-variance variables for all 5’ splice sites in the gene to compute the 5’
splice site SpliZ (z{) in the kth cell as:

L 23,0 Sight

k — Mk: ’
where M}, is the number of junctional reads mapping to the gene in the kth cell. It is straightforward to see that
E [2] = 0. Note that under the alternative hypothesis, for a given cell type E [S;;re] = 1 # 0. For a cell of this cell

type,

E[+] = E |:Zi,j,£ Sijkf} _ > i BSijre] _ Myp I

My, My, My,
meaning that the SpliZ is not correlated with read depth M.

Knowing that the variance of the sum of independent random variables is the sum of their variances:

> ovar (Siike) 1
d ije J

var (21, ) ~ —m—//mm ——— = —.
( k) M,? M,

The approximation is due to the fact that the S;;x¢’s are not necessarily independent but we expect them to be close
enough to independent.

Similarly, we can compute the 3’ splice site SpliZ zj}. We average the two scores z}} and z,gl to compute the SpliZ z
for the gene in cell k:

2k = (2 = 2)/ V2.

These values are subtracted to correct for signs, such that short introns correspond to small values and long introns
correspond to high values for both. Division by /2 ensures that the variance will be comparable between averaged
SpliZ values and SpliZ values for which only one of zg and zj is calculable (in which case that is the SpliZ value for
the cell and there is no averaging).

For computing SpliZ, we only consider cells with at least 6 junctional reads mapping to the gene, and the junctional
reads for which the 5’ splice site has more than one 3’ splice site observed in the dataset.
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5 SpliZ PSI equivalence

We will prove the equivalence of the SpliZ and PSI under a specific scenario: when only one of the junctional reads
of the exon inclusion event is measured; this could correspond to different ending exons of the transcript (Methods
Fig. 1).

Let n; be the number of reads for a given cell mapping to the junction between the 5’ splice site and the first exon,
and let no be the number of reads mapping between the 5’ splice site and the second exon for that cell.

Then the value of PSI for the cell is ¢p = —™

ni+ng’

To calculate the SpliZ z, we need to calculate the rank mean and standard deviation across the population of
cells.

Assume in the overall population the fraction of junctions including the exon is f. Then the mean rank 7 =

w = 2 — f where N is the total number of reads mapping to these two junctions across all cells.

2

The variance ¢ is given by

g2 INA-Q2= N+ 1 - NE2-(2- /)
N

==

Then the SpliZ value is given by

1—(2—f) 2—(2—f)
_ " ( f(l—f)> e (x/f(l—f)) B 1 (f— n1 )
) '

ny + ng N n1 + ng

Therefore z can be written in terms of ¢ and f:

implying that z and 1 are equivalent in this case.

For example, if f = 0.5 then z =1 — 2.

6 SpliZVD Calculation

Let M be an n x p matrix, where n is the number of cells and p is the number of splice sites for the given gene.
Matrix entries are defined by:

Yeer, S0

Mg, = —————
' | Lik|

Here Ly, is the set of reads using splice site 4 in cell k. S (¢) is the normalized residual of the rank of read ¢, defined
as follows. For a given gene, let G be the set of spliced reads that map to the gene across the data set. Let S(¢) be
the residual of read [. Then let

2ec S0

="
|G|

and

o2 = > eec(S(0) — 1)*
|G| '

Then S(¢) = W7 so E [5’([)} =0 and var (5’([)) =1

Let a9) be the jth eigenvector of My;. Then the the jth SpliZVD score for cell k is given by < ms,al?) > (note
that for this paper we only consider the SpliZVD score based on the first eigenvector, < my, a(*) >, and refer to this
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1

single score as the SpliZVD though more components can be considered). This score has mean 0 and variance i

Lig|
(j supressed for simplicity in these calculations):
P S( P Yer, E[S0)]
E[<mk,a>]:ElZai (ZZTZ’“|()> =ZaiHL%|=O
=1 ik i=1 ik
and
NS JSrer, var (S(0)
eele ik
var (< mg, o >) = var (a7} a; Qa;
S @ =) (; ( Lo )) Z Lol \mez - o
(this is assuming the residuals are uncorrelated).
Under the alternative hypothesis for a cell type, as with the SpliZ, for an individual cell type if E [5 (E)} uw #

0:

P Yier, B S(0) P _ P
E[< mg,a>] = Zaim&/iw —Zaiﬁﬂi;d :Zaiu

i=1 i=1 i=1

So the SpliZVD value is not dependent on read depth.

7 Calling differentially alternatively spliced genes by cell type

We perform the following test independently on each gene for each individual, technology, and score (SpliZ and
SpliZVD). The procedure is the same for both SpliZ and SpliZVD, but we will only discuss the SpliZ here for
simplicity. For a given gene, we only consider cell types with more than 10 cells with SpliZ values for that gene.

Significance of alternative splicing between cell types in a gene is determined by calculating p values using a two-step
procedure based on the work of Chung and Roman [1J.

Consider the following equation from Chung and Romano, Lemma 3.1:

k ~ ~ 2
i ng |a Zi:l nien,l’/”i,i
Tor=) o5 |bni— S
i=1 Ini D=1 M/
We can compute 7}, 1 based on the SpliZ values for all cells with splicing expression for the given gene as follows: The
k samples represent the k cell types with splicing expression for the given gene. Then 6, ; = median(X; 1,...,Xin;)
is our test statistic, where X; 1,...,X; ,, are the SpliZ values for the n; cells from cell type ¢ with splicing expression
for the gene. 0,2”- is the sample standard deviation of the SpliZ values for cell type i; in practice, we inflate the
variance to o2 ; + 0.1 for robustness. Our null hypothesis is that all cell types have the same median SpliZ for this
gene.

Performing all permutations of cell types to cells and re-calculating T, ; yields the permutation distribution (a subset
of the permutations yields an approximation of the permutation distribution). Theorem 3.1 states that under some
assumptions, this permutation distribution converges to the x2 distribution with & — 1 degrees of freedom. Also, if
the sample distributions do not have different medians, the probability that the permutation test rejects the null
hypothesis tends to nominal level a.

It is a lot quicker in practice compare to the x? distribution than compute permutations, so we first calculate the
p value based on comparing to the y? distribution (Py2)- Then if p2 < 0.05 we compute the permutation p value
Pperm Dy permuting the assignments of cell types to cells for the gene and calculating T(j ) hased on this permuted

data where j is the current permutation. This results in a permutation null distribution T(l) "'7Tr§,:]1) where J is
the number of permutations performed. Then

STV < Ton}
J

Cdfperm =


https://doi.org/10.1101/2020.11.10.377572
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.10.377572; this version posted March 31, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

and pperm = 2min(cdfperm, 1 — c¢dfperm) (quantifies whether the real value is extreme in either direction). We then
adjust the p values for multiple hypothesis testing using the Benjamini-Hochberg procedure. Genes are called as
significant if their adjusted p values are less than 0.05.

Genes with the “most deviant SpliZ values” are defined as follows: Find the largest magnitude median SpliZ value
Z; across all cell types for each gene i. Then genes with higher Z; values have more “deviant” SpliZ values.

8 Finding the most variable splice sites driving the alternative splicing
of a gene

To provide further biological interpretation for the SpliZ and SpliZVD scores and automatically identify the most
variable splice sites driving the alternative splicing in a significantly regulated gene, we take the SVD of the residual
matrix and use its eigenvalues and eigenvectors to select the most variable splice sites. To do so, we select up to
three eigenvectors depending on the values of their corresponding eigenvalues and then in each chosen eigenvector
we define up to three splice sites that correspond to up to three elements of the eigenvector with the highest absolute
value as the most variable splice site. If the first eigenvalue is greater than 0.7 we select only the first eigenvector
and otherwise we select the second and third eigenvectors if their corresponding eigenvalues are at least 0.2. When
an eigenvaector is selected we choose the three splice sites corresponding to the top entries that have at least 10% of
the eigenvector loadings based on the L? norm of the eigenvector.

Automatic detection of the most variable splice sites in each significant gene re-identified know alternatively spliced
splice sites for CD47 and TPM2. Driving splice sites in CD47 are in chr3-108047292 (a 3’ splice site) and chr3-
108057477 (a 5’ splice site), both being involved in annotated alternative splicing events (Figure 3.A). Similarly,
the most variable splice sites for TPM2 are chr9-35684550 (a 3’ splice site) and chr9-35684246 (a 5’ splice site),
both known to be annotated alternative exons (Supp. Table *). Also, our SVD-based analysis on MYL6 identified
56161387 as the most variable splice site, which is involved in a well-known exon skipping event recently shown to
be compartment-specific-regulated.

For each driving splice site, we additionally report its annotation status, including whether it is annotated as an
alternatively spliced exon. To determine whether an exon is known to be involved in alternative splicing, we extracted
the splice sites from the GRCh38 annotation GTF file and then considered those 5’ splice sites (resp. 3’ splice sites)
that are observed to be spliced to more than one distinct 3’ splice site (resp. 5’ splice site) across the extracted
junctions as known alternatively spliced sites.

9 Simulation methods

For each simulation, two cell types are simulated with 20 cells in each. They have pre-defined proportions of each
isoform as described in the figure. At each mean read depth n, 100 trials are performed, each of which proceeds as
follows. First, a read depth for each cell k is sampled independently from Poisson(n). Then for each cell of cell type
¢, the distribution of the k reads among splice junctions is drawn from a multinomial distribution, for which each
junction from isoform ¢ has the probability fi(c) /m;, where fi(c) is the underlying fraction of isoform i in cell type ¢
and m; is the number of exons in isoform 1.

Next, the SpliZ and SpliZVD are calculated as described above for this gene and this population of 40 cells. PSI
is calculated on a cell-by-cell basis for each cassette exon by dividing the number of reads including that exon over
all of the reads that either skip or include the exon in the given cell (note that some reads may not either skip or
include the exon; these are disregarded in the PSI calculation).

Then p values are calculated separately for the SpliZ, SpliZVDO0, and each PSI value as described above, except x?
filtering is not used and variances are not inflated. Benjamini-Hochberg multiple hypothesis testing correction is not
used (there is only one score calculated for each of the SpliZ and SpliZVDO; if the multiple PSI values were corrected,
it would only cause them to be less significant). The gene is called as having differential alternative splicing between
cell types if the calculated p value is < 0.05.

Most variable splice sites are calculated for each by simulating the two cell types at a read depth of 20 and performing
the procedure described in section 7.

For each simulation, a “null” simulation is also included, which follows the same setup except both cell types have
the same distribution among the isoforms as the first cell type in the original simulation. This allows us to estimate
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the type I error rate.

10 Concordance between datasets

We test whether the number of genes significant in both 10x datasets is more than expected under the null hypothesis,
which is that genes found significant in both datasets are due to chance. Let s be the number genes that are called
as significant in both individual 1 and individual 2 10x data. The probability that a given gene is significant in both
datasets is:

P (gene sig in both) = P (gene sig in individual 1) P (gene sig in individual 2|gene sig in individual 1)

Under the null hypothesis, assume that a gene being significant in one individual is independent from it being
significant in the other individual. Therefore under the null hypothesis

[P (gene sig in both) = P (gene sig in individual 1) P (gene sig in individual 2)
We can estimate the quantities on the right hand side of the question for each individual:
p; = (# genes called in individual 7)/(total # genes with computable SpliZ in individual ¢)

Therefore under the null hypothesis, the probability that > x genes are significant in both individuals out of n genes
is given by

1 — binom_cdf(z, n, p1p2).

Correlation between datasets is calculated by considering only gene/cell type pairs with at least 10 cells in both
datasets, restricting to genes called as significant in both datasets, and calculating the Pearson correlation.

11 Cell types “missed” by Smart-seq2

We defined cell types that were almost completely missed through Smart-seq2 sequencing compared to 10x sequencing
as SS2-missed cell types. Based on Supplementary Table 2 of the HLCA paper we defined SS2-missed cell types to
be those for which

max (# measured Smart-seq2 cells/# measured 10x cells) < 0.01.
indl,ind2

This results in the following cell types as SS2-missed: Proximal Ciliated, Proximal Basal, Proliferating Basal, Mu-
cous, Serous, Capillary Intermediate 2, Bronchial Vessel 1, Bronchial Vessel 2, Lipofibroblast, Mesothelial, CD8+
Memory/Effector T, CD4+ Memory/Effector T, Neutrophil, Mast Cell/Basophil Type 2, Platelet/Megakaryocyt,
Macrophage, Proliferating Macrophage, Myeloid Dendritic Type 1, EREG+ Dendritic, TREM2+ Dendritic, Classi-
cal Monocyte, OLR1+ Classical Monocyte.
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