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ABSTRACT 
We collected clinical measurements, health surveys and multiomics profiles (genomics, 26 

proteomics, autoantibodies, metabolomics and gut microbiome) from 96 individuals over 16 months, 
along with daily activity and sleep monitoring. Between- and within-individual variability was analysed 28 

as the participants underwent data-driven health coaching. Multiomics factor analysis resulted in an 
unsupervised integrated view of the data, with individual factors explaining distinct aspects of 30 

variability in human health and lifestyle, such as obesity, diabetes, liver function, cardiovascular 

disease, inflammation, immunity, hormonal function, exercise and diet. The data revealed both known 32 

and new associations between molecular pathways, risk factors, behaviour and lifestyle aspects. Data-

driven analysis of multidimensional molecular and digital signatures of participants over time enabled 34 

deep understanding of biological variability between people as well as the systemic effects of lifestyle 
changes. Our study facilitates a detailed evaluation of aspects impacting on health and underlines the 36 

importance of personal molecular signatures. 

 38 
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Monitoring of human health, impact of lifestyle and disease development is possible by 40 

longitudinal measurements of clinical laboratory tests, omics technologies, or digital health monitoring 

using wearable sensors. This provides opportunities to explore human systems biology and to predict 42 

and intervene in processes leading to disease development. However, our knowledge and ability to 

make use of such data and define actionable insights, correlations and causal patterns are limited. 44 

There is a lack of deep integrated datasets, where different dimensions of human biology have been 

explored at the same time. Each individual has a unique profile, composed of genetic, epigenetic, 46 

molecular, clinical and lifestyle parameters, which may change over time during development, aging 

and disease transitions. These processes cannot be understood as a single general pathway for the 48 

average human or patient, but they can best be described as a collection of individual trajectories. 

Several studies have investigated the use of individualized molecular profiles to assess disease risks 50 

or the connection between omics measurements and clinical tests, using an n-of-one longitudinal 

approach1,2, a cross-sectional design 3, a controlled longitudinal perturbation study 4, or a cohort study 52 

with personal behavioural coaching5. More recently, other studies6-8 analysed longitudinal data over 

an extended time period in a cohort of individuals at risk for diabetes, while another prospective 54 

observational study investigated the stability of the individual molecular signatures9. 

The Digital Health Revolution (DHR) program10 in 2015-2020 was based on the concept that future 56 

healthcare strategies will evolve in a direction which allows citizens to control and make use of their 

own personal data to improve their health and wellness. The project aimed at implementing proactive 58 

P4 (predictive, preventive, personalized, and participatory) healthcare with multi-level molecular and 

digital data. Within this framework, we integrated deep multi-omics profiles and connected them to 60 

health surveys, clinical observations and digital health measurements. We aimed to: 1) integrate 

longitudinal multi-omics data between and within people over time; 2) exploit the discovered 62 

associations to understand novel links between molecular and clinical data; and 3) verify if data 

feedback and coaching would guide and motivate people to make lifestyle changes. Overall, we aimed 64 

at achieving a holistic understanding of the variables involved in different aspects of human biology 

and health. To accomplish these goals, we applied multi-omics factor analysis and connected the 66 

learned factors with interpretable features of health and behaviour. 
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RESULTS  68 

STUDY OVERVIEW 

We carried out a 16-month longitudinal study on 96 individuals (aged 25-59) recruited from an 70 

occupational healthcare clinic in Helsinki, Finland (Supplementary Figure 1-2 and Supplementary Table 

1). The participants had no previously diagnosed serious chronic diseases, although we allowed 72 

individuals with risk factors for chronic diseases. We acquired comprehensive measurements of health 

and behaviour, including anthropometrics, clinical laboratory tests, questionnaire data, physical fitness 74 

tests and activity and sleep quantification with a wearable device. In addition, we performed a series 

of omics measurements to study the genome, the plasma proteome and metabolome, the 76 

autoantibody profile and the gut microbiome. The prospective collection of molecular and digital 

profiles resulted in a thorough longitudinal dataset of human health and lifestyle aspects (Figure 1). 78 

This allowed to define baseline molecular profiles and longitudinal trajectories of health data in the 

participants during a personalized lifestyle coaching. We collected over 20,000 biological samples 80 

during five study visits and generated a compendium of >53 million primary data points, for 558,032 

distinct features. Two types of feedback were applied to stimulate and motivate lifestyle changes. 82 

First, actionable health data were returned to participants through a web dashboard and interpreted 

by a study physician, starting from the second visit. Second, personal data-driven coaching was 84 

provided, including three face-to-face and six remote meetings, plus continuous email and phone 

support, starting from the third visit. Personal actionable possibilities were identified with the help of 86 

questionnaires, clinical laboratory tests and physical examination, and focused on diet, exercise, 

mental wellbeing, stress and time management.  Of the 107 people enrolled, 96 completed the study. 88 

The data-driven coaching positively impacted on the health of the participants, and 86% reported 

subjective improvement in at least of the following aspects: diet, exercise, sleep, mental wellbeing, 90 

stress management, drinking or smoking (Supplementary Figure 3). For example, the percentage of 

people who did not exercise decreased from 9% to 1%, the percentage of smokers decreased from 92 

16% to 8%, and the percentage of daily drinkers from 8% to 5%. The participants felt that the wearable 

device, return of personal health data, and tailored coaching were the most motivating aspects of the 94 
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study. Overall, the subjects were enthusiastic about participating and 76% indicated that they would 

again take part in a similar study.  96 

LONGITUDINAL ACTIONABLE CHANGES 

We defined a phenotype using the ensemble of questionnaires, anthropometrics, vitals and clinical 98 

laboratory tests. Actionable health issues were defined at baseline, including dyslipidaemia, 

overweight and obesity, elevated systolic blood pressure, low vitamin D, elevated blood glucose, 100 

anaemia and self-reported obstructive sleep apnea (Supplementary table 1 and Supplementary Figure 

4). 102 

We first analysed the clinical measurements at baseline to define the group of individuals with Out-Of-

Range (OORB) values. To explore if the data feedback and coaching had a positive effect on objective 104 

health parameters, we modelled the longitudinal changes in the ORRB individuals, based on the 

assumption that measurements outside the reference values represented an actionable finding to 106 

improve lifestyle and health. We analysed the average change per visit, adjusting for sex and age. We 

found significant improvements (FDR<0.05) in several key health parameters for the OORB group 108 

during the course of the study, such as an increase in vitamin D levels and a decrease in blood 

pressure, LDL-cholesterol, and total/HDL cholesterol ratio (Figure 2 and Supplementary Table 3).  110 

Secondly, we obtained an overview of all the clinical variables and compared the individuals using 

Principal Component Analysis (PCA). The first three PCs (Figure 2) accounted for 44.8% of the variance 112 

and the major drivers of variability were cardiometabolic variables (for PC1 and PC3: BMI, insulin, 

fasting glucose, cholesterol, and lipoprotein profiles) and sex-dependent anthropometrics and 114 

hematological measurements (PC2). Trajectories for selected individuals showed the changes during 

the multiple study visits and visualized the improvements in the clinical parameters (Figure 2 and 116 

Supplementary Figure 5). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2020. ; https://doi.org/10.1101/2020.11.11.365387doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.11.365387
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

5 

 

In summary, we showed that the return of data as well as data-driven lifestyle coaching resulted in 118 

objective improvements of health behaviour and health outcomes, including physiological and 

laboratory measurements indicative of cardiovascular risk.  120 

MULTIOMICS SIGNATURES 

DISTINCT SOURCES OF MOLECULAR VARIABILITY 122 

We next generated multiomics profiles and set out to explore the association of these variables with 

each other and with the clinical features. We first investigated the sources of variability in the omics, 124 

by partitioning the variance for each feature into personal variation (i.e. between-individual), known 

factors (age, sex and study visit) and residual unknown sources (for example biological, environmental 126 

or technical aspects). We found that the personal variation impacted all data types but to a different 

extent (Supplementary Figure 6). Autoantibodies represented a highly personal signature and on 128 

average 92% of the variance was explained by personal variation. Metabolites were dominated by 

personal variation (56-71% on average) but residual components were also present (23-35% on 130 

average). Proteins had similar average personal (49%) and residual components (45%). The 

microbiome data was dominated by unexplained factors (68% on average). These results were 132 

confirmed by an alternative distance-based method (Supplementary Figure 6). We observed that the 

average within-individual distance was lower than the between-individual distance, to a different extent 134 

for different omics, and autoantibodies showed the lowest within-individual distance, i.e. high 

similarity.  136 

UNDERSTANDING THE MOLECULAR VARIABILITY 

We used Multi-Omics Factor Analysis (MOFA+)11,12 to carry out an unsupervised analysis of the 138 

complete multiomics data, hence excluding the clinical variables and other phenotypic data. MOFA+ 

helped to integrate and interpret the measurements and their variability across all the omics layers. 140 

MOFA+ resulted in an interpretable low-dimensional representation in the form of a small number of 

independent factors that captured the major sources variability in the data and originated from 142 

simultaneous inclusion of baseline and longitudinal differences. The analysis facilitated the 

identification of subgroups of samples and the molecular features that contributed to the ordination of 144 
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the samples in the dimensions defined by the factors. An overview of the samples based on the learned 

factors is given in Supplementary Figure 7.  We identified 14 factors (F1-F14), each explaining a 146 

minimum of 2% of the variance in at least one data type. The fraction of the total variance explained 

across the six omics types varied from 6% for gut microbiome to 95% for the autoantibodies (Figure 148 

3). The learned factors were either predominantly associated with one omics type or contributed to 

several omics types, suggesting that the underlying biological determinants might affect different types 150 

of measurements simultaneously. We then explored the molecular basis of each factor. First, we 

investigated the contribution of the original omics features, by inspecting the loadings on each factor, 152 

which represent their weights, in order to interpret the nature of the associated biological domains. 

Second, we tested the association between the factors and the phenotype, including questionnaire 154 

data, clinical variables, fitness tests, activity and sleep data, and other metrics. Each factor was linked 

to specific phenotypic characteristics (linear models, FDR<0.001, Figure 3 and Supplementary Table 156 

4). Importantly, most of the factors were associated with distinct sets of variables across the different 

categories and thereby defined molecular patterns that were linked to distinct aspects of lifestyle and 158 

health, including modifiable behavioural aspects, such as diet and exercise. We then refined the top 

associations for each factor with a covariate-adjusted statistical model. We aimed at accounting for 160 

the correlation among observations from the same individual and fitted a linear mixed model (LMM), 

with age and sex as fixed effects and the individual as a random effect. We also interpreted the 162 

association in view of the contributing molecular features and pathways and the results are presented 

below.  164 

Obesity and insulin resistance. The top features with high positive loadings on F11 included plasma 

proteins involved in pathways known to be dysregulated in obesity or dyslipidemia (LEP13, IL-1ra 166 

(IL1RN)14, t-PA (PLAT)15, FABP416, FGF2117, IL-614, LDL receptor18). Interestingly, several proteins 

reported as protective factors against obesity (GH1, IGFBP1, PON3)19-21 had negative loadings. We 168 

found significant correlations between F11 and well-known metabolic traits and clinical measurements 

(Figure 4 and Supplementary figure 9). These included positive association with BMI (plmm=1.53E−21), 170 

LDL-cholesterol levels (plmm=4.47E−03) and insulin resistance (log10HOMA-IR, plmm=6.51E−14). Also, 
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we found a negative association with HDL-cholesterol (plmm =2.16E-06) as well as with measures of 172 

physical activity and fitness gathered from the questionnaire, such as leisure-time exercise 

(plmm=1.06E−03) and exercise habits (plmm=8.25E−04), or the activity levels in terms of steps/day 174 

measured by the wearable device (plmm=0.01). An inverse correlation was also observed with physical 

fitness at the level of upper body (plmm=5.53E−05) abdominal (plmm=1.59E−03) and lower body 176 

(plmm=1.14E−03). Participants with first-degree relatives with diabetes had higher factor values 

compared to the individuals who did not report family-history for diabetes (plmm=6.25E−03). Finally, an 178 

individual who was diagnosed with type 2 diabetes during the study had the highest factor values. We 

therefore interpreted F11 as strongly related to obesity, insulin resistance and diabetes risk and 180 

pathogenesis as well as clearly associated with quantitative data on exercise and mobility. F11 was 

also associated with overall health, as evidenced by a negative association with self-reported overall 182 

health (plmm=9.26E−07) and a positive correlation with predicted coronary heart disease (CHD) risk 

(plmm=0.01). In summary, F11 assisted in estimating molecular patterns of health and behaviour that 184 

are associated with obesity as well as potential trajectories leading to diabetes. 

Impact of hormones and ethinyl estradiol. F9 was influenced by sex and sex-specific biological 186 

differences in multiomics. In contrast, F14 was linked to the use hormone replacement therapy or 

hormonal contraception in women. Particularly, young women reporting the use of a contraceptive 188 

containing ethinyl estradiol (EE) had elevated F14 values (plmm=2.28e−10). F14 appeared to be almost 

exclusively linked to the use of EE. Consistent with this observation, known estrogen-sensitive proteins 190 

had the highest positive weights for F14 (Figure 4), but there were also contributions from cortisol and 

thyroxine levels, which we interpreted as potential secondary effects22,23. Pulse (plmm=9.32E−03), 192 

hsCRP (log-transformed, plmm=7.40E−09) and leukocyte numbers (log-transformed, plmm=6.09e−05) 

also positively correlated with F14 and alterations of these clinical laboratory parameters were 194 

prominent in women with particularly high factor values. These observations indicated that EE use is 

associated with strong and distinct effects on human biology, which may lead to increased levels of 196 

inflammation, impact on thyroid and cortisol levels as well as physiological effects. 
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Dietary habits. F3 and F6 were mostly connected to the metabolome, they were associated with 198 

dietary habits (Supplementary figure 10), such as reported consumption of fresh fruit and vegetables. 

However, all the predictors were not significantly associated to the factors (plmm>0.05) in the covariate-200 

adjusted models, suggesting that the association may be explained by individual-specific (person-to-

person) differences and not by changes of the diet during the study. Moreover, caffeine and its 202 

metabolites were abundantly represented among the features with largest loadings for F7 (Figure 4), 

and indeed this factor was strongly correlated with self-reported coffee consumption (plmm=7.63E−12). 204 

Lipids, free fatty acids and fatty acid esters. F5, F8 and F12 (Supplementary figure 11) were each 

associated with distinct aspects of plasma lipid composition. In particular, free fatty acids (FFA) 206 

contributed mostly to F12, while fatty acid esters (FAEs), mostly in the form of acylcarnitines, 

contributed to F5 and F8. In the postabsorptive state, blood FFA are a result of lipolysis from adipose 208 

tissue and they reflect dietary intake24, while changes in the acylcarnitine pool can be linked to changes 

in fatty acid oxidation. Accumulation of acylcarnitines as products of incomplete mitochondrial fatty 210 

acid oxidation has been associated with obesity and diabetes25. Even after adjusting for the covariates, 

F12 was negatively associated with blood pressure (systolic, p=0.035; diastolic p=0.021), in line with 212 

the known association between FFA and hypertension26. F5 and F8 were both strongly associated with 

clinical measurements indicating dyslipidemia, including total cholesterol (plmm=1.64E-08 and  214 

plmm=8.48E−10) LDL cholesterol (plmm=7.13E-06 and plmm=1.74E−05), triglycerides (plmm=3.74E-05 and 

plmm=8.45E−7) and ApoB (plmm=3.24E-08 and plmm=9.11E−06), thus implicating dysregulation of lipid 216 

metabolism as an underlying influence for F5 and F8. Importantly, they were only weakly associated 

with BMI (R2=0.004 and R2=0.006; plmm=0.05 and plmm=0.07), suggesting that these two factors were 218 

associated with dyslipidemia independently of obesity. Sex was a significant covariate for the 

associations seen for F5 (maximum plmm=1.21E-05) but not for F8 (minimum plmm=0.73). 220 

Hepatic function. Metabolites connected to liver function had major loadings on F2 (Supplementary 

figure 12). Bile acids or their glycine or taurine conjugates had negative weights and a major impact in 222 

the classification of the individuals along the F2 axis. The involvement of the liver function in 

determining F2 values was supported by the contribution of other liver-associated metabolites that on 224 
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average were increased in the samples with negative factor values. These metabolites are known to 

be increased in blood after liver disease (biliverdin) or used to eliminate the hepatic nitrogen pool 226 

(glutamine, hippuric acid, phenylacetylglutamine). The liver is a fundamental organ in maintaining 

metabolic homeostasis, it modulates the composition of the blood metabolome and therefore we 228 

assumed that F2 reflected the structural and functional integrity of the liver. 

Autoantibodies. F1 was mostly explained by the presence of autoantibodies, which did not contribute 230 

importantly to other factors. F1 was influenced by the binary nature of the autoantibody data 

(presence/absence) and due to the stable autoantibody signature over time. Indeed, autoantibodies 232 

can be considered as an IgG reactivity barcode for each individual27. F1 correlated well with the 

autoantibody counts and to a lesser extent with the age (Supplementary Figure 8), in agreement with 234 

the fact that autoreactivity is more common in the elderly, possibly linked to age-associated B cells28.  

In summary, we demonstrated that we could understand the pattern of molecular variation by 236 

exploiting the factors, each reflecting distinct types of human biology, behaviour, lifestyle, hormonal 

use or potential transitions to disease. 238 

CORRELATION NETWORK  

We performed a correlation analysis, including all the multiomics data as well as an ensemble of 240 

quantitative or semi-quantitative measures consisting of clinical data, activity and sleep, fitness test 

data, and other scores. We computed a cross-correlation network between features of different types 242 

using two alternative metrics. For the between-individuals network (BIN), we averaged the 

measurements from all time points before calculating correlations between features. We also included 244 

146 genetic trait scores obtained by summing up the contribution from all the variants associated with 

each trait as reported by the GWAS catalog. The within-individuals network (WIN) consisted of linear 246 

correlations of repeated measures of pairs of features within-participants. It estimated a common 

regression slope, representing a measure of association shared among individuals, and resulting from 248 

changes occurring at the individual level during the study. The BIN and WIN were calculated after age- 
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and sex-adjustment and p-values were corrected for multiple hypothesis (FDR<0.05).  We then 250 

identified distinct communities of interconnected features (modules), as an aid for interpretation. 

Among the strongest correlations of the BIN (|ρ| > 0.6), we detected not only pairs measuring the same 252 

molecular entity using different assays (i.e. TSH (clinical-PEA), ρ= 0.96; Cholesterol (clinical-GCMS) 

ρ=0.82), but also features of different types, for example LDL-receptor protein and triglycerides  254 

(ρ=0.82) or LEP protein and BMI (ρ=0.68). The network consisted of 375 nodes and 570 edges 

(Supplementary table 5). Several clinical variables represented hubs with the largest number of 256 

associated connections to metabolites and proteins (Figure 5). Those hubs were inversely correlated 

to modifiable behavioural risk factors, consisting in wearable-based measures of physical activity 258 

(intense physical activities to insulin, number of steps to waist circumference). Similarly, measures of 

physical fitness (lower body, abdominal and upper body) inversely correlated with LEP. Notably, the 260 

proteins with common genetic defects in familial hypercholesterolemia figured in the cardiometabolic 

subnetwork, namely LDLR, PCSK9, and apolipoprotein. For instance, PCSK9, a pharmacological 262 

target of LDL-lowering therapies, correlated positively to several glycerophospholipids and ApoB, but 

negatively to CMPF (3-Carboxy-4-methyl-5-propyl-2-furanpropionic acid), a metabolite that is formed 264 

from the consumption of fish oil and may have positive metabolic effects29. In the whole network, 24 

GWAS summary scores resulted significantly associated with at least one other node (Supplementary 266 

figure 13), and 11 scores concerned haematological measurements (erythrocytes, leucocytes and 

thrombocytes). While some edges associated the genetic score directly with the corresponding trait 268 

measured in this study, especially for haematological traits, other associations occurred between 

proteins or metabolites and the genetic susceptibility to a disease/trait with cardiometabolic relevance. 270 

For example, we observed an inverse association between the score for BMI in physically inactive 

individuals and several FAEs, carnitine and tyrosine. Furthermore, an inverse association was observed 272 

between the score for abdominal aortic aneurysm and IL-6RA levels, supporting the contribution of IL-

6 signalling and inflammation to this disease30. These observations indicated that the between-274 

individuals variability might be explained at least partly by personal genetic differences. 
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The WIN captured associations between pairs of features that resulted from concordant variation in 276 

repeated measures obtained from the same individuals. This source of variation is assumed to be 

complementary to the BIN, it does not average or aggregate the data, neither does it violate the 278 

assumption of independence of the observations. We interpreted the edges in this network as 

associations resulting from changes occurring over time and not due to baseline between-individuals 280 

characteristics. The network consisted of 302 nodes and 611 edges (Supplementary table 5). Only 46 

edges and 151 nodes were also detected in the BIN, suggesting that a non-overlapping set of 282 

correlations were represented. For example, in an inflammation-related subnetwork (Figure 5), hsCRP 

and leucocytes lay in the proximity of cytokines, cytokine receptors, proteins involved in leukocyte 284 

functions and members of the tryptophan metabolic pathway (kyneurine and indoles). This subnetwork 

was not revealed in the BIN and the observed edges likely originate from individuals transitioning 286 

through inflammatory states or infections during the study, although we cannot completely exclude 

seasonal variation. Other edges specifically observed in the WIN positioned measures of activities and 288 

sleep in the proximity of several metabolites and proteins. Among the proteins, we observed well-

known members of lipid metabolism pathways (LEP, LPL) and proteins with related functions 290 

(PTX331,32, NRP133, PRSS834). Correspondingly, FFA and FAEs appeared in this subnetwork. The above 

correlations suggested that within-individual dietary factors, changes in fat metabolism and changes 292 

in physical activity could be further investigated as motivations for the observed associations. 

Furthermore, the connection with sleep and physical activity is reminiscent of the link between leptin, 294 

circadian rhythm, sleep quality, and obesity35. 

PERSONAL TRAJECTORIES  296 

In order to stimulate lifestyle changes and improve health, we defined personalized, actionable 

possibilities for each participant. This strategy resulted in groupwise significant changes in actionable 298 

clinical variables. When considered individual-wise, the changes unfolded into personal trajectories, 

and often a connection with the multiomics was established. Common behavioural adjustments were 300 

related to diet and exercise, illustrated by the case of a 28-year male. The subject underwent positive 

adaptations resulting in improvement of clinical variables and self-rated health (Figure 2 and Figure 6), 302 

in agreement with the nutritional and exercise recommendations. At baseline, he presented with 
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obesity, high systolic blood pressure, dyslipidaemia, elevated insulin levels and elevated hsCRP 304 

(Figure 6A). During the study, he reported increases in self-rated health, frequency and amount of 

exercise (Figure 6C), and these adaptations were confirmed by the activity levels detected by the 306 

wearable device (Figure 6B). The sustained level of activity resulted in longitudinal changes in key 

actionable clinical variables at the end of the study (Figure 6A), including decreased BMI, improved 308 

lipid profile, reduced low-grade systemic inflammation, reduced systolic blood pressure, normalization 

of insulin levels and improvement of the estimated insulin resistance. These interpretable changes 310 

reflected variation in the omics domain as well, as shown by the MOFA+ factors (Figure 6D). Indeed, 

the improvement in the BMI, lipid profile and insulin resistance, combined with an increase in physical 312 

activity, is compatible with the observed decrease in F11 values for this subject. We indeed observed 

longitudinal decrease of obesity- and inflammation-associated proteins and other adaptations 314 

suggesting an involvement of the GH/IGF‐1 axis. Similarly, the changes in F8 and F10 - associated 

with fatty acid esters and lipid metabolism - reflected the variation in the total cholesterol levels. 316 

Several acylcarnitines peaked at the third visit, suggesting a metabolic adjustment during a transition 

period toward increased physical activity. For comparison, we show (Figure 2 and Supplementary 318 

figure 14) the case of a 36-years female, presenting obesity, dyslipidaemia, hyperinsulinemia and 

hyperglycaemia at baseline. She was referred to consult her physician and was indeed diagnosed with 320 

type 2 diabetes. During the study, phenotypic changes occurred: reduction in the glucose, insulin and 

cholesterol levels, as a result of therapeutic intervention (Metformin, Atorvastatin, Empagliflozin) and 322 

not a genuine lifestyle change with increased physical activity. Correspondingly, the levels of the 

MOFA+ factors did not change considerably and this individual remained an outlier at all the time 324 

points.  

The case of participant with a respiratory tract infection is illustrated in Supplementary Figure 15, it 326 

shows the dysregulation of metabolic pathways during infection as previously observed1,6, and it 

highlights the importance of personal metabolic signatures which can be altered during infections. 328 
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DISCUSSION 330 

The convergence of systems medicine, digital health, big data, consumer-driven healthcare and social 

networks is at the heart of the P4 healthcare model. To promote the P4 approach into the current 332 

healthcare systems, longitudinal personalized health intervention studies are needed, and numerous 

initiatives exist to profile healthy individuals according to the precision medicine principle. However, 334 

fewer studies have simultaneously combined longitudinal multiomics profiling, digital self-tracking and 

health monitoring, data feedback and tailored lifestyle coaching. We have done all this with a 336 

comprehensive approach and generated a valuable longitudinal data set which can serve both as a 

resource and a reference for future precision medicine studies. Our study has provided several steps 338 

in the context of precision medicine. Firstly, by adding layers of molecular information and long-term 

monitoring on top of genomics, we have stressed the importance of including multiomics profiling 340 

other than genomics to precision medicine initiatives. Indeed, current large-scale academic and 

commercial initiatives largely rely on genetic data connected to health outcomes, while there is a need 342 

for expanding the precision medicine toolbox to include multiomics and functional assays, especially 

in precision oncology35,36. Secondly, by integrating the molecular data with digital health parameters, 344 

we have demonstrated that a connection between the molecular environment and the external 

manifest characteristics (phenotype) occurs and concerns a multiplicity of health and lifestyle aspects, 346 

collected with traditional and emerging modalities, and including adiposity, hormonal influences, diet 

and physical activity, to mention a few. Our holistic efforts resulted in an unsupervised re-discovery of 348 

known associations between molecular features and indicate that changes in measures from a 

consumer health wearable device are connected with changes in molecular features. Thirdly, our study 350 

design implemented data feedback and coaching to stimulate lifestyle changes and we anticipate that 

this model could become broadly applicable to future efforts. However, only information derived from 352 

the genetic data was actively returned to the participants, while the other multiomics data were 

generated at the end of the study, mostly to minimize systematic biases and batch effects. Currently, 354 

this challenge remains to be solved, especially in the context of precision medicine, where collections 

can be assembled from n-of-one experiments and longitudinally collected samples, but systematic 356 

biases are common due for example to systematic variations of instrument responses or reagents lots. 
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Our analysis proposed a low-dimensional space to investigate the complexity of the multiomics and 358 

the connection to known sources of variation. Among those, sex, age and BMI are among the most 

studied and often are confounders in association models. For this reason, we regressed out the effect 360 

of age and sex in the correlation networks, but we allowed the effect of these covariates to appear in 

the MOFA+ analysis, in order to verify if separate axes of variability could be retrieved and if they were 362 

independent of them. Indeed, we verified that BMI, as a proxy for adiposity and obesity, could only be 

strongly associated with one factor but it did not influence relevantly the others. Similarly, age and sex 364 

associated to a few but not all factors, showing that the identified axes of variation represented a 

spectrum of molecular variation connected to several lifestyle factors, which cannot simply be 366 

explained by the most common predictors mentioned above. 

One interesting observation is that the use of oral contraceptives containing EE is alone a sufficient 368 

element to influence the covariance of the proteome and metabolome, to such extent that one of the 

identified factors is nearly an indication of the use of this drug. These effects were identified in a data-370 

driven manner and we discovered a distinct dimension of variability in human biology influenced by an 

external hormone, whose effects are strong enough to be clearly picked up in an unsupervised 372 

analysis, above all other causes of variability and noise. F14 could therefore be a potentially useful 

metric to assess exposure to EE as well as associated health effects. Besides being the major female 374 

hormone, estrogen is a fundamental hormone for the maintenance of tissue homeostasis of several 

tissue types in both males and females, and therefore it is not unexpected that modulation of this 376 

pathway has detectable consequences in the proteome and metabolome. However, considering that 

the exposure to EE from contraceptives could be long-term, what remains to be investigated is either 378 

the biological significance of this persistent alteration, but also to what extent this covariate is generally 

unaccounted in multiomics screens, in view of the fact that similar alterations could be associated to 380 

other physiopathological conditions. For example, serum TFF3 was found to be elevated in women 

with breast cancer36, and FETUB is a highly abundant liver-secreted protein sensitive to estrogen and 382 

increased in type 2 diabetes37,38. 
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Our analysis showed that part of the variability in the multiomics features could be explained by genetic 384 

determinants. This raised the question whether an interaction could exist between the genetic 

predisposition and the magnitude of the changes observed in clinical and omics variables. We have 386 

addressed this subject specifically for the levels of 25(OH)D (vitamin D) and tailored the 

supplementation guided by genetic markers. The results are presented elsewhere (Sallinen et al., The 388 

Journal of Nutrition, in press) and support the evidence that genetic predispositions impact the 

response to certain lifestyle changes and interventions39,40. 390 

While the average individual does not exist, empirical evidence and conclusions based on large groups 

of individuals and summary measures are the norm in experimental research. Under the paradigm of 392 

precision medicine and health, this assumption is mitigated by the application of treatment and 

prevention strategies taking into account the individual variability. However, when highly dense 394 

longitudinal multiomics and phenotyping studies are performed, the challenges and drawbacks of 

aggregating personal profiles are increasing. For example, the presence of outlier measurements for 396 

some individuals could be explained by the occurrence of specific events detected by traditional 

methods or inferred from the use of wearable devices. Indeed, the use of wearable devices offer the 398 

opportunity of continuously monitoring the participants, therefore allowing the detection of acute 

events or behaviours that would be missing when registering outcomes with traditional methods or 400 

when averaging across time. Our data contribute to the accumulating evidence that personal 

multiomics signatures show individual dynamics and associate with specific physiological or 402 

pathological events1,6,7. 

We have to acknowledge limitations of our study. Firstly, the small sample size limits the discovery of 404 

novel associations and implies that the conclusion should be confirmed in larger cohorts to have 

further empirical evidence. Nevertheless, we retrieved several known associations, likely resulting from 406 

strong underlying effect sizes. For example, we showed that several blood cell measures in our study 

are under genetic control, in agreement with the high heritability of hematological traits41. By extension, 408 

it is possible that the associations with cardiometabolic relevance observed in our study have also 

larger true effect sizes. While this is a limitation for the discovery of unknown relationships, it is on the 410 
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contrary important from the translational point of view, because our study qualifies as a resource for 

extracting further candidate investigations, especially in medically relevant terms.  412 

Because of the highly personalized, non-structured nature of the coaching, our work does not strictly 

qualify as an interventional study, and we have to recognize the lack of a proper control group not 414 

receiving data feedback and coaching. A certain heterogeneity in the individual adherence to the 

recommendations might bias the conclusions based on aggregated measures. We have shown that 416 

individual trajectories and multiomics profiles exists and our data collection can propose certain 

connections only when specific cases were considered. For example, in the case of activity and sleep 418 

tracking, we observed good overall engagement, although the compliance over time was not constant 

for all the individuals. In addition, a certain seasonality cannot be excluded and indeed periodicity in 420 

immune systems gene expression and cellular composition is often investigated42,43. Therefore, 

seasonality might have a contribution in influencing the changes occurring at the within-individual level. 422 

Our study is truly a forerunner in shaping person centric data driven care for the future. It demonstrated 

not only the power of combination of multi-omics data and lifestyle data, but new opportunities for the 424 

healthcare system to design their services towards predictive data-driven care and support individuals 

in lifestyle changes. New data sets, like multiomics measurements and continuous monitoring via 426 

wearable devices will shape the traditional disease-based healthcare. However, more research is 

needed to truly enhance the proactive, personalized health maintenance for the benefit of individuals, 428 

and society. 

  430 
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METHODS 

ETHICAL PERMIT AND CONSENT 432 

The study was conducted in line with the Declaration of Helsinki and approved by the Coordinating 

Ethics Committee of the Helsinki University Hospital, Finland. Each participant provided informed 434 

written consent for the study and the biobanking of samples and data. Participants were free to drop 

out any time, but their samples and data were still available for analyses. If a participant withdrew the 436 

consent, samples and data were discarded. 

OVERVIEW 438 

The study was conducted at the Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of 

Helsinki, Finland, between September 2015 and January 2017. Recruitment was performed in 440 

September 2015, and five study visits followed, approximately every four months, (Supplementary 

Figure 1). Every visit included a health check-up and blood and urine sampling. Before or after every 442 

visit, participants collected fecal and saliva samples, filled out a questionnaire, and performed fitness 

tests. Data on physical activity and sleep was collected from the second visit onward with an activity 444 

watch. Key actionable health data were returned to the participants via a web dashboard starting at 

the second visit. Tailored health and wellness advice and coaching was provided by two personal 446 

trainers from the third visit onward. Between visits 4 and 5, participants could compare their data to 

summary measures calculated with the other participants’ data. 448 

ELIGIBILITY CRITERIA AND RECRUITMENT 

The requirements included: age of 25-64 years at the study start, sufficient computer skills and Internet 450 

access via a smartphone compatible with the provided smartwatch; sufficient English language 

knowledge to be able to understand simple messages and to use health and wellness applications. 452 

We excluded individuals with severe diseases (cancer, cardiovascular, debilitating neurological, 

psychiatric or orthopaedic diseases). However, individuals with risk factors for chronic diseases (e.g., 454 
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obesity, elevated blood pressure, dyslipidaemias, disturbances in sugar metabolism, mild forms of 

metabolic syndrome, smoking, moderate drinking or sleep problems) were allowed. Individuals 456 

diagnosed with or suspected of having rare monogenic diseases were excluded. In addition, 

individuals under custody, with special needs or with limited decisional capacity were excluded, as 458 

well as people suffering from severe forms of alcoholism and depression. Pregnant women were 

excluded and women becoming pregnant during the study were no longer asked to provide samples 460 

or contribute to the study. Altogether, 645 clients of a private occupational health service (Mehiläinen 

Töölö, Helsinki, Finland) were invited to participate (Supplementary Figure 1). People interested in 462 

participating (n=125) filled out a questionnaire to assess eligibility. A total of 107 volunteers of 

European descent from the Helsinki metropolitan area were selected to participate and 96 completed 464 

the study (Supplementary Table 1). 

RETURN OF PERSONAL HEALTH DATA 466 

The ensemble of anthropometrics, clinical laboratory tests, and physiological measurements is called 

clinical variables in this paper. We returned actionable health data via the Health Dashboard web 468 

application, which allowed participants to: explore and compare their data against reference values 

and the mean values for the other participants, fill out questionnaires and read informational material. 470 

The clinical variables and their reference values were returned starting at visit 2. A physician interpreted 

the clinical data and was available to discuss the results with the participants. The occupational health 472 

service communicated any medically-relevant finding requiring immediate actions, while the study 

group communicated non-acute findings. Clinical decisions were made according to the national 474 

Current Care Guidelines (https://www.kaypahoito.fi/). Genetic data were returned to participants under 

the guidance of a clinical geneticist after visit 2. A personal 10-year risk for coronary heart disease 476 

(CHD) was communicated using KardioKompassi44. The risk model is based on both traditional (sex, 

age, family history, smoking, systolic blood pressure, total and HDL cholesterol) and hereditary risk 478 

factors (approximately 49,000 SNPs). If the risk was >10% the participant was referred to a doctor. 

We also communicated the risk for low serum 25(OH)D concentration after visit 4 (Sallinen et al., The 480 

Journal of Nutrition, in press).  We returned visualizations of questionnaire data on diet, physical 
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activity, sitting, sleeping, subjective health status, and mental wellbeing after visit 4. We also 482 

determined a self-reported obstructive sleep apnea risk score45. Participants were able to monitor their 

physical activity and sleep data using the Withings Health Mate app starting at visit 2. 484 

COACHING AND GROUP MEETINGS 

Two personal trainers (PTs) coached participants from visit 3 onward. Coaching included nine 30-486 

minute private meetings (three face-to-face and six remote), email/phone support, as well as group 

meetings. The PTs were accredited by the European Health and Fitness Association. No structured, 488 

evidence-based coaching protocol was used, but personal actionable possibilities were defined to 

help participants change their behaviour and improve their health. With the help of a physician and a 490 

nutritionist, the PTs translated and customized actionable possibilities to specific recommendations. 

The PTs had access to participants’ age, clinical variables, fitness test data, and information about 492 

their occupation, exercise, and diet. Tailored health advice and coaching were based on each 

participant’s behaviour, health risks, lifestyle, and goals. One to three relevant, personalized and 494 

actionable opportunities were offered to guide and motivate participants to make lifestyle changes to 

optimize wellness and health and delay predicted pathologies. Personalized advice usually focused 496 

on diet, exercise, mental wellbeing, or stress and time management. If necessary, a physician limited 

exercise. Twenty-one informational group meetings were organized during the study, where 498 

participants could interact with a physician, a nutritionist, a nurse, PTs, and other experts. Participation 

in these meetings was voluntary except for the first, during which a physician and a geneticist 500 

interpreted the clinical variables data as well as the CHD risk prediction. 

EXPERIMENTAL PROCEDURES 502 

HEALTH CHECK-UP AND CLINICAL VARIABLES 

Health check-ups occurred on weekdays between 7:30 and noon. Body weight, height, waist and hip 504 

circumferences, blood pressure, and pulse were measured using standard procedures. Participants 

were asked about medications, dietary supplements, and the use of health care services. Blood and 506 
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urine samples were collected at every visit. Fasting (≥8 h) blood samples were collected, and clinical 

chemistry assays were performed on blood, plasma or serum, at the diagnostic laboratory of 508 

Mehiläinen Töölö (Helsinki, Finland), United Medix Laboratories Ltd (Helsinki, Finland) and HUS 

Diagnostic Center (Helsinki, Finland). Urine samples (≥2 h without urinating) were collected using 510 

standard procedures. A dipstick test was performed on the urine samples at the diagnostic laboratory 

of Mehiläinen Töölö (Helsinki, Finland). Aliquots of blood, plasma, serum and urine were frozen at -512 

20°C and stored in liquid nitrogen for biobanking. 

QUESTIONNAIRE 514 

Before every visit, participants filled out an online questionnaire, including approximately 150-190 

questions, depending on the visit, and covering the following: personal information; sociodemographic 516 

and socioeconomic characteristics; familial and individual disease history; functional capacity and 

health; mental wellbeing; physical activity and exercise habits; diet (including food frequency 518 

questionnaire, FFQ); smoking; alcohol consumption; sleep; occupational health; personality traits; 

attitudes and expectations towards lifestyle changes; monitoring own health and wellbeing; 520 

expectations towards health technology. Healthy Food Intake Index is a food-based diet quality index, 

calculated from the FFQ data and adapting an available method46. 522 

FITNESS TESTS 

After every visit, participants were instructed to perform lower-body (squats, repetitions/30s), 524 

abdominal (sit-ups, repetitions/30s) and upper-body (push-ups, max number of repetitions) muscular 

fitness, balance and mobility tests. Participants executed the tests and uploaded the results to the 526 

Health Dashboard. 

ACTIVITY AND SLEEP MONITORING 528 

After the second visit, participants were equipped with the Withings Activité Pop smartwatch, 

connected to the Withings Health Mate app, to measure physical activity, energy expenditure and 530 

sleep. Participants were requested to wear the watch until the end of the study. Wellness Warehouse 
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Engine 47 embedded in the Health Dashboard was used to authorize and provide the research group 532 

access to participants’ data. Only aggregated daily activity and sleep data were exported and included 

in this study. 534 

SALIVARY CORTISOL 

Participants collected saliva samples within two weeks of every visit, using Cortisol-Salivette® with a 536 

synthetic swab (Sarstedt). Four samples (awakening, 15 min and 30 min after wake up, bedtime) were 

collected on a typical weekday. Time and mood at sampling were recorded. Samples were stored at 538 

+4°C until aliquoting and storage at -20°C. Salivary cortisol levels were determined at the University 

of Trier (Trier, Germany) using a DELFIA immunoassay 48. The stress scores derived from the 540 

measurements inlcuded:  AUCi, AUCg (according to49), awakening, evening, peak and Delta (peak - 

ground) cortisol levels.  542 

DNA EXTRACTION AND GENOTYPING 

DNA was extracted from whole blood with Chemagic MSM1 (PerkinElmer). Genotyping was performed 544 

at the FIMM Technology Centre (HiLIFE, University of Helsinki, Finland) using InfiniumCoreExome-24 

v1.0 DNA Analysis Kit, iScan system and standard reagent and protocols (Illumina). Genotypes were 546 

pre-phased with ShapeIT2 and imputed with IMPUTE2. Two pre-phased reference panels were used 

(--merge_ref_panels): 1000G Phase 1 and a Finnish low-coverage WGS imputation reference panel, 548 

composed of 1,941 whole-genome sequences (SISu project). Imputation resulted in 30.3 million 

quality-filtered variants (R2>0.3 and missingness<0.05). 550 

GCMS AND LCMS 

GCMS and LCMS experiments were performed at the Swedish Metabolomics Center (Umeå). 100 μl 552 

of plasma were processed as described50, with the following details: extraction with 900 μl of 90% v/v 

methanol, containing internal standards for both GCMS and LCMS, at 30 Hz for 2 minutes; protein 554 

precipitation at +4 °C; centrifugation at +4 °C, 14 000 rpm, 10 minutes. 50 or 200 μl of supernatant 

were evaporated to dryness in a speed-vac concentrator, for GCMS or LCMS analysis respectively, 556 
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and stored at -80 °C. Quality control (QC) samples were created by pooling supernatants. MSMS 

analysis (LCMS) was run on the QC samples for identification purposes. Sample batches were created 558 

according to a randomized run order. For GCMS, derivatization and analysis were performed as 

described previously50, with the following modifications: 0.5 μL of derivatized sample; splitless injection 560 

with a L-PAL3 autosampler (CTC Analytics AG); 7890B gas chromatograph (Agilent Technologies); 

chemically bonded 0.18 μm Rxi-5 Sil MS stationary phase (Restek Corporation); column temperature 562 

increased from 70 to to 320 °C at 40 °C/min; Pegasus BT TOFMS (Leco Corporation); solvent delay of 

150 s; detector voltage 1800-2300 V. Unprocessed MS-files were exported from the ChromaTOF 564 

software in NetCDF format to MATLAB R2016a (Mathworks), where processing occurred, including 

baseline correction, chromatogram alignment, data compression and Multivariate Curve Resolution. 566 

The extracted mass spectra were identified by comparisons of their retention index and mass spectra 

with known libraries using the NIST MS 2.0 software51. Annotation was based on reverse and forward 568 

searches in the library. LCMS experiments were performed as described52 and all data processing was 

performed using the Masshunter Profinder version B.08.00 (Agilent Technologies). The processing was 570 

performed both in a target and an untargeted fashion. For target processing, a predefined list of 

metabolites commonly found in plasma and serum were searched for using the Batch Targeted feature 572 

extraction in Masshunter Profinder. An-in-house LCMS library, built up by authentic standards run on 

the same system with the same chromatographic and MS settings, was used for the targeted 574 

processing. The identification of the metabolites was based on MS, MSMS and retention time 

information. 576 

AUTOANTIBODY BEAD ARRAYS 

Autoantibody profiling on antigen bead arrays was performed as previously described27, at the 578 

Autoimmunity and Serology Profiling facility at SciLifeLab (Stockholm). 

PEA 580 

Plasma proteins were quantified using Proximity Extension Assay (PEA) at Olink Bioscience (Uppsala), 

using 6 panels: Cardiometabolic, CVD II, CVD III, Inflammation I, Metabolism and Oncology II. Each 582 
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panel assayed 92 proteins using a matched pair of antibodies coupled to oligonucleotides, which form 

an amplicon by proximity extension and can be quantified by real-time PCR. The data were normalized 584 

against an extension control and an interplate control and expressed as Normalized Protein 

eXpression (NPX) values, which represent an arbitrary relative quantification unit on log2 scale. The 586 

NPX values below the limit of detection (LOD) were considered missing and their value was replaced 

with the LOD value for each assay. 588 

MICROBIOME ANALYSIS 

Participants collected faecal samples within two weeks of every visit. Samples were collected in 590 

precooled vials placed in styrofoam boxes with ice gel packs and then stored at +4°C for a maximum 

of one day until aliquoting, freezing at -20°C, and storage in liquid nitrogen without additives. Thawed 592 

faecal samples were spun-down and DNA was extracted, with 50 ng of DNA submitted to PCR 

amplification as described53, using 341f and 805r primers (CCTACGGGNGGCWGCAG and 594 

GTGBCAGCMGCCGCGGTAA) for the V3−V4 regions of 16S rRNA54. Sequencing was done on an 

Illumina MiSeq with 2x250 bp reads. After quality trimming with Cutadapt, an ASV (amplified sequence 596 

variants) table was generated using the DADA2 pipeline55, including the following steps: filtering and 

trimming, learning of error rates, dereplication, sample inference, read pairs merging, removal of 598 

chimeras and taxonomy assignment using SILVA v128 database. 

BIOINFORMATIC ANALYSES 600 

LONGITUDINAL ANALYSIS 

We applied Generalized Estimating Equations (GEE) to the quantitative clinical variables to investigate 602 

the longitudinal changes while controlling for sex and age. As data feedback and coaching started 

respectively from visit two and three, we excluded the first visit and considered the second visit as 604 

baseline. Four time points (0-4) were then considered and we aimed at extracting the average change 

per visit, assuming the same change in the values between any two successive visits. Furthermore, 606 

for each variable, individuals were classified as Out-Of-Range at Baseline (OORB) if the values were 
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outside the reference range (Supplementary Table 2) at baseline. We assumed that the longitudinal 608 

changes could be distinct for individuals classified as ORRB. In other words, we allowed the effect of 

coaching and data feedback to be different in the two groups by introducing an interaction term. If the 610 

OORB group included at least five individuals, then the variable was modelled as: 

value ~ Sex + Age + Time.point + OORB + Time.point:OORB 612 

Otherwise, a model with no groups of individuals was considered: 

value ~ Sex + Age + Time.point 614 

GEE models were fitted using the geepack library and exchangeable correlation structure. We 

extracted the effects, their standard errors and p-values using the esticon function in the doBy 616 

library. If no interaction was specified, the coefficient for Time.point represented the estimated change 

for all the individuals, expressed as the change occurring between two successive visits. If the 618 

interaction was included, we considered the change occurring in the ORRB group between two 

successive visits, and we extracted the effect as the linear combination of the coefficients of 620 

Time.point and OORB. P-values were adjusted with the Benjamini-Hochberg method. Model 

prediction of the variable values was visualized by stratifying for sex and OORB group. The 95% 622 

confidence levels were estimated by bootstrapping with 1000 replications. 

DIMENSIONALITY REDUCTION 624 

We selected the quantitative clinical variables and imputed missing using the imputePCA function in 

the missMDA package. Principal Component Analysis (PCA) was performed with the PCA function in 626 

the FactoMineR package on scaled data. Variable contribution to a given PC was defined as the ratio 

between the squared cosine of a variable and the sum of the squared cosines for all the variables for 628 

that component. 

DATA PREPROCESSING 630 
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Activity and sleep. We obtained summary measures for the activity and sleep data by calculating 

average values for the different variables in the previous 30 days before each visit. We considered only 632 

samples for which at least 10 days were included in the calculation. 

GCMS. The relative quantities (RQs) were log2-transformed and missing values were imputed with the 634 

KNN algorithm. Data were normalized using the RUV4 method in the ruv R library 56. RUV4 was applied 

to remove sources of technical variability, including batch effect and the signal drift over time. Briefly, 636 

we used the internal standards (IS) as negative controls, k=4 and a design matrix with individuals and 

visits as covariates, in order to estimate the matrix W of unwanted factors and their respective α 638 

coefficients. The number of factors to remove (k) was chosen with the getK routine, but was ensured 

not to exceed 1/3 of the number of the IS. The normalized relative concentrations were obtained by 640 

subtracting the effect of the W components from the RQs. The IS values were inspected before and 

after normalization to ensure a removal of the signal drift over time and a reduction of the Coefficient 642 

of Variation (CV). Estimation of the Intraclass Correlation Coefficient (ICC) and PCA plots were also 

evaluated to inspect the performance of the normalization method. 644 

LCMS. The negative and positive modes from LCMS experiments were processed separately. 

Unidentified metabolite peaks and metabolites with more than 25% of missing data were removed. 646 

RQs were log2-transformed and missing values were imputed with KNN. RUV4 adjustment and 

inspection of the results were performed as described above with k=2 or k=1 for LCMS-neg and 648 

LCMS-pos data, respectively. 

Autoantibodies. We considered: continuous Median Fluorescence Intensity (MFI), discrete binned and 650 

binary (0=undetected, 1=detected) data (see 27). MFI values were normalized with the Probabilistic 

Quotient Normalization57, with a median reference profile, and then log2-transformed. 652 

16S rRNAseq. The ASV count table represents an analog of the traditional Operational Taxonomic Unit 

table. We inspected the taxa prevalence (the number of samples in which a taxon has nonzero counts) 654 

and the total abundance (sum of the counts in all samples) and the abundance distribution. Using 

phyloseq, we agglomerated the counts to the genus level, to reduce functional redundancy. The 656 
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genus-level data were filtered to remove taxa with missing phylum annotation, prevalence ≤2 and total 

abundance ≤10. We inspected the ordination of the samples using several distance metrics. We then 658 

converted the genus-level count to a DESeq2 dataset and used the Variance Stabilizing 

Transformation (VST), which normalizes with respect to the library size and gives a matrix of 660 

approximately homoscedastic values that can be used for downstream analyses. As a major source 

of batch effect was represented by the experimental plate, we verified that the VST conversion also 662 

reduced the library size effect by visualizing the sample ordination, using MDS with Bray-Curtis 

distance for the genus-level counts and Euclidean distance for the VST values. We also formally tested 664 

the reduction of the batch effect, by looking at the association between the first two axes of the sample 

ordination plots with the plate ID. The estimation of the α-diversity for each sample was done using 666 

the original unfiltered counts. 

INTEGRATION OF MULTIOMICS EXPERIMENTS 668 

A MultiAssayExperiment object was assembled with all the continuous clinical and omics data, namely 

RUV4-nomalized data for GCMS, LCMS-neg and LCMS-pos, log2MFI for autoantibodies, NPX values 670 

for PEA assays and VST-transformed values for 16S counts. Data filtering to remove unwanted 

features included: removal of internal standards from GCMS and LCMS; removal of proteins NPX 672 

values < LOD (i.e. missing data) in more than 25% of the samples; removal of FS, CCL22 and BDNF 

(technical issues, Olink communication); removal of autoantibodies with background fluorescence in 674 

all samples (scored reactivity values ≤0.5); removal of bacterial taxa with a prevalence ≤30%. We used 

the filtered object for all the downstream analyses. The resulting dataset included 136 GCMS 676 

metabolites, 104 LCMS-neg metabolites, 163 LCMS-pos metabolites, 174 autoantibodies, 501 

proteins and 85 bacterial taxa (Supplementary table 2). 678 

VARIANCE PARTITION ANALYSIS 

For each omics type, between- and within-individual variation was inspected with a distance-based 680 

method and with variance partitioning analysis. For the distance method, Euclidean distance between 

all pairs of samples was calculated. Then, the within-individual distance was calculated as the median 682 
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value of the distance values of the sample pairs from the same individual. This value was plotted 

together with the distribution of the remaining distance values, i.e. the distances between one 684 

individual and the rest of the individuals. For the variance partitioning method, a linear mixed model 

was fitted with lme4 R library, independently to each feature with nonzero variance. We included the 686 

individual as a random intercept and age, sex and time point (0-4) as fixed effects. The fixed effect 

variance, random intercept variance and residual variance components were extracted and the relative 688 

fraction calculated. The random intercept variance represented the between-individual variance, while 

we interpreted the residual variance as the within-individual variance not accounted by the fixed 690 

effects. 

MULTI-OMICS FACTOR ANALYSIS 692 

Multi-Omics Factor Analysis v2 (MOFA+) provides a set of factors that capture biological and technical 

sources of variability11,12. It infers the axes of heterogeneity that are shared across multiple modalities 694 

and those specific to individual data modalities. We used the “intercept_factor” branch of the code 

repository (https://github.com/bioFAM/MOFA2/tree/intercept_factor). For training, we selected the 696 

samples that had a measurement in all the omics layers (n=359). We considered a Gaussian likelihood 

for the continuous measurements for all the layers, except for autoantibodies, which were considered 698 

in their binary form (0=undetected, 1=detected) with Bernoulli likelihood. Data were not scaled. We 

trained 10 alternative models in Python with a random seed, starting from 20 factors and the following 700 

options: iter=”10000”, convergence_mode=”medium”, dropR2=”0.02”. The model with the best value 

of the Evidence Lower Bound (ELBO) was selected. We checked the robustness of the learned factors 702 

by inspecting the Pearson correlation between the factors obtained by all the runs (Supplementary 

Figure 6). We then computed the fraction of the total variance explained by each factor and the fraction 704 

of variance explained by each factor in each layer. We inspected the factor loadings to understand the 

contribution of the original features. A feature with a higher absolute loading has a higher weight on 706 

the factor, but because the loadings are not directly comparable, their scaled values were used for 

visualization. The sign of the loading defines a direct (positive) or inverse (negative) proportionality with 708 
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the corresponding factor, and features with similar loadings contribute similarly to the factor. We 

inspected the factor values and to visualize and cluster the samples on the reduced space. 710 

ASSOCIATION BETWEEN FACTORS AND PHENOTYPIC VARIABLES 

In order to test the association between the MOFA+ factors and the sample characteristics, we 712 

gathered a collection of phenotypic information including: clinical variables; questionnaire data (family 

history, exercise and physical activity, functional capacity and health, mental health, diet, smoking, 714 

alcohol use and sleep habits); Healthy Food Intake Index; KardioKompassi risk; sleep apnea score; 

stress scores; fitness tests; sleep and activity summaries from the wearables. For each combination 716 

of factor and phenotypic variables, we fitted a linear model with the factor values as outcome and the 

phenotypic variable as predictor. Reported R2 values were derived from these models. For the 718 

categorical variables, the predictor was considered an ordered factor if the factor levels corresponded 

to ordered levels and the variable could be considered as a qualitative or semi-quantitative ordinal 720 

variable. A False Discovery Rate (FDR) was calculated using the Benjamini-Hochberg method. The 

candidate associations for further screening were obtained at FDR<0.05, while the associations 722 

reported in Figure 3 satisfy a FDR<0.001 threshold, in order to better control for false positives arising 

from the multiple hypotheses tested. The selected associations were refined with linear mixed models 724 

as implemented in lme4 library. We modelled the LF values with the individual as a random intercept 

and age and sex as fixed effect. We refer to these models as the covariate-adjusted models. P-values 726 

for these models were obtained with the “Type II ANOVA” as implemented in the Anova function in 

the car library, with a Kenward-Roger F test. 728 

POPULATION STRATIFICATION 

The DHR and the 1000 Genome phase 3 genotypes were merged. Analyses were done with PLINK 730 

v1.9. Only autosomal biallelic SNPs with genotyping rate >95% and MAF>5%. were considered. A set 

SNPs in approximate Linkage Disequilibrium was obtained with the option --indep-pairwise 50 5 0.2 732 

and PCA was performed. To predict the ethnicity, a Linear Discriminant Analysis model (lda in MASS) 

was trained in R with the PCA scores of the 1000 Genomes only and tested on the DHR samples. 734 
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GWAS SUMMARY SCORES 

We considered 146 traits from the GWAS catalog v1.0.1 (https://www.ebi.ac.uk/gwas/) for selected 736 

ontology categories: body measurement, cardiovascular disease, cardiovascular measurement, 

hematological measurement, inflammatory measurement, lipid or lipoprotein measurement, liver 738 

enzyme measurement, metabolic disorder and other (fasting blood glucose, vitamin D levels and 

thyroid stimulating hormone). For each trait, only the studies meeting the following criteria were 740 

considered: at least one SNP with p-value<1E-08, sample size >5000, at least 10 SNPs reported. The 

study with the largest sample size was considered for the traits with multiple associated studies. For 742 

each biallelic SNPs, the reported effect size of the risk allele was considered as a weight. Summary 

scores were computed by multiplying the imputed genotype dosage of each risk allele times its 744 

respective weight and summing across all SNPs. 

BETWEEN- AND WITHIN-INDIVIDUAL CROSS CORRELATION NETWORK 746 

We considered the continuous measurements for all the omics layers, together with a collection of 

measurements including: GWAS summary scores; gut microbiome alpha diversity; clinical variables; 748 

questionnaire data; Healthy Food Intake Index; KardioKompassi risk; sleep apnea score; stress scores; 

fitness tests; sleep and activity summaries. The resulting dataset was preprocessed by regressing out 750 

the effect of sex and then the effect of age for each variable, only if significantly associated. For the 

between-individual cross correlation network calculation, the observations were grouped by individual 752 

and averaged, obtaining 96 independent observations for each of the 1394 variables. Spearman 

correlation was calculated for each pair of variables, resulting in 731318 nonmissing estimated ρ 754 

coefficients, p-values and Benjamini-Hochberg adjusted p-values (FDR), for the pairs of features of 

different types (activity and sleep, autoantibody, clinical variables, fitness test, genetic, HFII, 756 

KardioKompassi, metabolite, microbial, protein, sleep apnea score, stress score). For the within-

individual cross-correlation network calculation, the GWAS scores and the autoantibody data were 758 

excluded, resulting in 1058 variables, 96 individuals and 5 time points. We used rmcorr library 58 to 

estimate the common within-individual association for grouped values measured at the five visits. 760 

rmcorr estimates a common regression slope representing the association shared among individuals 
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and provides the best linear fit for each individual using parallel regression lines with different 762 

intercepts. The repeated-measures correlation coefficient (rrm) is similar to the Pearson correlation 

coefficient and measures the strength of a linear association but, unlike Pearson correlation, it takes 764 

into account non-independence between the measures. Hence, we estimated 347640 nonmissing rrm, 

p-values and Benjamini-Hochberg adjusted p-values (FDR), for the pairs of features of different types 766 

and with at least 100 nonmissing pairs of values. For downstream analysis, we selected the 

associations satisfying the condition FDR<0.05 and coefficient>0.3 (ρ or rrm), and generated two 768 

annotated correlation networks. Communities were extracted with the Louvain method, resulting in 

modularity values of 0.70 and 0.69 for the between- and within-individuals correlation network 770 

respectively. 

 772 
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Figure 2: Overview of the measured features, longitudinal design and analysis workflow.
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Figure 2: A. Longitudinal analysis reveals the positive effect of data feedback and coaching on 
health. Generalized Estimating Equation (GEE) model prediction for the significantly changed 
variables (FDR<0.05), stratified by sex and out/within range status at baseline. For this 
analysis, the second visit represented a baseline because data feedback and coaching started 
at the 2nd and 3rd visits respectively (blue: within range, red: out of range). Bootstrapped 
confidence intervals are shown. B. Principal components plot of the individuals obtained using 
all the numerical clinical variables. The trajectories for two selected individuals along 
successive study visits are shown with arrows. The loadings for the first three PCs are shown 
in the bottom panels and the variables with relative contribution higher than average (red line) 
are named.
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Figure 3. A. Variance decomposition. Percentage of total variance explained (R2) for each data 
layer (up) or variance explained (R2) for each factor and data layer (bottom). A dot marks the 
out-of-bound value (>50%) for autoantibodies. B. Association with phenotype. The factor 
values were tested for their association with the phenotypic variables and the top associations 
(FDR<0.001) are shown. The edges are bundled according to their category and colored 
based on the originating factor.
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Figure 4. A. Factor11 is linked to obesity and insulin sensitivity. The top scaled protein 
weights for Factor11 are shown as well as their values (row z-score). The association between 
the factor values for each sample and the phenotypic variables is shown. A regression line 
with 95% confidence interval is shown when appropriate. An asterisk marks the proteins 
measured on  multiple PEA panels. B. Factor14 is influenced by hormones. A scatterplot of 
Factor9 and Factor14 values shows that samples can be separated based on the sex 
(Factor9) and the use of hormones (Factor14). Factor14 identifies a group of young women 
using contraceptives with ethinyl estradiol (red). The top metabolites and proteins with 
positive scaled weights on Factor14 are shown. The original feature values are shown as a 
heatmap (row z-score). The association between the factor values for each sample and the 
phenotypic variables is shown, as well as a regression line with 95% confidence interval. 
Points are coloured as in the top panel. Abbreviations: 11⍺-HC: 11alpha−hydrocortisone, 
11−DHC: 11−dehydrocorticosterone. C. Factor7 is associated to coffee consumption. The 
scaled positive weights are shown for the top metabolites, as well as their values. The 
association between the factor values with self-reported coffee consumption is shown. A 
two-group classification of the samples based on Factor7 values was obtained with 
gaussian-mixture modeling and shown with colored dots (red: lower coffee consumption, 
blue: higher coffee consumption).
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Figure 5. Cross-correlation network analysis aids the interpretation the relationship between 
data types. Only associations between features of different type were considered to calculate 
correlation networks at FDR<0.05. The size of the nodes is proportional to the node degree 
and the edge thickness is proportional to the magnitude of the correlation. The node color 
indicate different data types. The proteins appearing twice in the network were measured on  
multiple PEA panels. A. Selected between-individual subnetwork. B. Selected within-individual 
network modules.
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Figure 6. A case study: lifestyle change in one individual and the associated molecular 
changes. A. Clinical variables showing longitudinal changes. Reference values are shown 
(dashed line: lower normal value, dotted line: upper normal value) B. Daily summary of the 
activities recorder by the smart watch included: distance, time spent in intense, moderate or 
soft activities and number of steps. The shaded area correspond to the 10, 25, 75 and 90 
percentiles in the whole population. The study visits are marked with vertical dashed lines C. 
Selected lifestyle questions. The numbers correspond to orderer categories, where a higher 
number corresponds to higher frequency or more favorable outcome. D. Longitudinal values 
for selected MOFA+ factors (blue line) plotted together with the factor values for the remaining 
samples at each study visit (grey dots). E. Gut microbiome diversity (Shannon index). The 
vertical dashed line mark the date for the study visit, which could be different than the fecal 
sample collection date (dots). A red shaded area mark a period of antibiotic treatment.
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 774 

Supplementary Table 1 

 Unit Value at baseline (n=96) 
Age years (mean ± SE) 40.9 ± 0.9 
Sex counts (M/F) 30/66 
BMI kg/m2 (mean ± SE) 24.9 ± 0.5 
Alcohol consumption g/week (mean ± SE) 53.1 ± 5.4 
Current smokers1 % 162 
Education >12 years % 87 
Physical exercise ≥ 3 times/week % 56 

Married or cohabiting % 67 
Hypercholesterolemia 
(Cholesterol> 5 mmol/l) 

% 44 

Hypertriglyceridemia 
(Females: 20-30y, >1.5; 30-50y, >1.7; >50y, >2 
Males: 20-30y, >1.7; >30y, >2) 

% 4 

Overweight or obesity 
(BMI>25 kg/m2) 

% 38 

Elevated blood pressure 
(SBP > 130 mmHg) 

% 31 

Low vitamin D 
(25(OH)D<50 nmol/l) 

% 31 

Hyperglycemia 
(Fasting glucose>6 nmol/l) 

% 8 

Anemia 
(Hb<117 (F) or Hb<134 (M) g/l) 

% 2 

Self-reported obstructive sleep apnea % 2 

 776 

 

  778 

 
1 Participants who reported regular smoking were defined as current smokers. 

2 n=94 
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Supplementary table 2. List of all the included features and their annotation. 

(see separate Excel file) 780 
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Supplementary table 3. Results from the GEE model 782 

 Estimate Units CI P-value FDR Type 
# of 
OORB 

Hip 
circumference -0.667 cm -0.957 − -0.377 6.34E-06 8.87E-05 All 1 

25(OH)D 4.072 nmol/l 2.336 − 5.808 4.29E-06 8.87E-05 OORB 24 
Systolic blood 
pressure -3.078 mmHg -4.469 − -1.688 1.43E-05 1.33E-04 OORB 27 
Diastolic blood 
pressure -0.947 mmHg -1.443 − -0.451 1.81E-04 1.01E-03 OORB 22 

Pulse -3.214 bpm -4.876 − -1.551 1.52E-04 1.01E-03 OORB 9 
Total/HDL 
cholesterol ratio -0.405  -0.66 − -0.150 1.88E-03 8.77E-03 OORB 7 
LDL cholesterol -0.085 mmol/l -0.139 − -0.030 2.21E-03 8.83E-03 OORB 29 

ApoB/ApoA1 ratio -0.014  -0.024 − -0.005 3.89E-03 1.36E-02 OORB 35 

Cholesterol -0.084 mmol/l -0.145 − -0.024 5.83E-03 1.81E-02 OORB 36 
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Supplementary table 4. Associations between MOFA factor values and phenotypic 784 

variables. 

(see separate Excel file) 786 
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Supplementary table 5. Edge lists for the Between- and Within-Individual Networks. 788 

(see separate Excel file) 

  790 
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