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Abstract 

The classical twin model can be reparametrized as an equivalent multilevel model. The 

multilevel parameterization has underexplored advantages, such as the possibility to include 

higher-level clustering variables in which lower levels are nested. When this higher-level 

clustering is not modeled, its variance is captured by the common environmental variance 

component. In this paper we illustrate the application of a 3-level multilevel model to twin 

data by analyzing the regional clustering of 7-year-old children’s height in the Netherlands. 

Our findings show that 1.8%, of the phenotypic variance in children’s height is attributable to 

regional clustering, which is 7% of the variance explained by between-family or common 

environmental components. Since regional clustering may represent ancestry, we also 

investigate the effect of region after correcting for genetic principal components, in a 

subsample of participants with genome-wide SNP data. After correction, region did no 

longer explain variation in height. Our results suggest that the phenotypic variance explained 

by region actually represent ancestry effects on height. 
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Introduction 

The classical twin model (CTM) is often approached from a structural equation modeling 

(SEM) framework (Bentler and Stein, 1992; Boomsma and Molenaar, 1986; Heath et al., 

1989; Neale & Cardon, 1992; Rijsdijk and Sham, 2002). In this framework, it is a one-level 

model with family as level one sampling unit. The analysis of twin data can, however, also be 

approached from a multilevel model (MLM) perspective. MLMs were developed specifically 

for the analysis of clustered data (Goldstein, 2011; Laird and Ware, 1982; Longford, 1993; 

Paterson and Goldstein, 1991). Classical examples are children (level 1 units), who are 

clustered in classes (level 2) within schools (level 3; Sellström and Bremberg, 2006). Other 

examples are fMRI measures (level 1) that are clustered in individuals (level 2), who are 

clustered in scanner type (level 3; Chen et al., 2012), or biomarker data (level 1) that are 

clustered in measurement batches (level 2; Scharpf et al., 2011). The classical twin design is 

based on data that also have natural clustering, namely, twins are clustered within pairs. For 

this reason, the CTM can be accommodated in the MLM framework (Guo and Wang, 2002; 

McArdle and Prescott, 2005; Rabe-Hesketh et al., 2008; Van den Oord, 2001;). Hunter (this 

issue) provides a detailed account of the CTM in the MLM framework with example code 

and several extensions. While the MLM specification of the CTM is equivalent to the SEM 

approach, it also has some interesting, yet underexplored, advantages. In this paper we aim 

to elaborate on these advantages, and to provide an empirical illustration of a multilevel 

twin model, where we study the clustering of children’s height in geographical regions in the 

Netherlands, and consider the role therein of genetic ancestry. 

In the SEM approach to the CTM, the covariance structure of twin-pairs is modelled 

to decompose phenotypic variance into multiple components that represent genetic and 

non-genetic influences. Given the biometrical underpinning of the twin model (Eaves et al. 
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1978; Falconer and MacKay, 1996; Fisher, 1918), the phenotypic variance can be 

decomposed into additive genetic variance (A), non-additive or dominance genetic variance 

(D) or common environmental variance (C), and unique environmental (E) variance 

components. Variance decomposition is based on the premise that monozygotic (MZ) twins 

share 100% of their DNA and dizygotic (DZ) twins share on average 50% of their segregating 

genes. Hence, additive and non-additive genetic variance is fully shared by MZ twins, 

whereas additive and non-additive variance components are shared for 50 and 25% by DZ 

twins. In the CTM, all influences that are not captured by segregating autosomal genetic 

variants are labeled as “environment”. These influences can be distinguished into common 

environment (shared by twins from the same family) and unique environment (creating 

variation among members from the same family) and are also referred to as between and 

within family influences. The full ACDE model is not identified when analyzing one 

phenotype per twin, and therefore only three of the four components can be simultaneously 

estimated. In this SEM approach to modeling twin data, the variance decomposition is based 

on the bivariate data observed in twin pairs (i.e., one phenotype for twin 1, and one for twin 

2, which are both level 1 units).  

In the MLM framework the phenotypic variance can be decomposed into a within-

pair (level 1) and a between-pair (or family; level 2) components. This requires 

reparameterization of the model into level 1 and level 2 variance components. Because the E 

component captures variance that is not shared by twins, this component is an individual 

level 1 variance component. The C component is by definition shared by twins, regardless of 

zygosity, and is a family level 2 variance component. The A component, however, is more 

complicated, as it is a level 2 component in MZ twin pairs, but both a level 1 and a level 2 

component in DZ twin pairs. To account for this, the A-component is divided into two 
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orthogonal components, unique additive (AU) and common additive (AC). Here, AU is a first-

level component representing the A variance at the individual level (within pairs or within 

families), while AC is a second-level component (between pairs or between families), 

representing the A variance at the twin-pair level. These definitions are consistent with the 

classical notations in which AC refers to within family genetic variance known as A1 

(Boomsma and Molenaar, 1986; Martin and Eaves 1977), or the average breeding value 

variance (Barton et al., 2017), while AU refers to the between family genetic variance known 

as A2 (Boomsma and Molenaar, 1986; Martin & Eaves 1977),  or the segregating genetic 

variance (Barton et al., 2017). In MZs, the AU variance component is 0, since all the variance 

explained by A is shared by both twins from a pair. For DZ twins, the variance of both AC and 

AU are constrained to equal 0.5, since on average 50% of the A variance is shared by the 

individuals and 50% of the A variance is unique for the individual. 

An important, but yet underexplored, advantage of the MLM approach, is the 

possibility to include higher-level variables in which lower-levels are nested. By including 

these higher-level variables, we can identify variance components which are attributable to 

higher-level clustering. Such clusters may be a consequence of data acquisition or design, 

e.g., clustering of biomarker data that are measured in batches, or clustering of brain 

imaging data by fMRI scanner type. They may also occur naturally, for example, families in 

regions, neighborhoods or schools. If the higher-level variable is not included in the variance 

decomposition models, the variance that it explains will be captured as part of the C-

component, since both twins, regardless of zygosity, share the higher-level variable (i.e., the 

twin pair is nested in the higher-level variable). 

Within the SEM framework, higher-level variables can be included in the model as a 

fixed effect on the individual level (i.e., covariate) by means of (linear) regression. For 
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covariates (a.k.a. factors in the ANOVA sense) that do not have a linear relation with the 

outcome variables, this approach requires the variable to be dummy coded, which may be 

impractical, for example when the number of assays for a biomarker or the number of 

schools that twins are enrolled in, is large. In the MLM framework, however, the higher-level 

variable is treated as a random rather than a fixed effect, and this reduces the number of 

parameters to one single variance component, albeit subject to assumptions That is, given a 

factor with L categories, the fixed effects approach requires L-1 parameters, while the 

random effects approach requires one parameter (a variance component). In addition, the 

MLM approach is more suitable to deal with unequal group sizes (Gelman, 2005). Finally, an 

MLM approach allows us to evaluate the contribution of the higher-level component to the 

C-component, as estimated in the standard twin model. This can be achieved by comparing 

the C-component estimate of the two-level model (i.e., the standard twin mode) to the 

estimate of the three-level model.  

In this paper, we illustrate the use of multilevel twin models by investigating the 

regional clustering of children’s height with twin data from the Netherlands Twin Register 

(Boomsma et al., 1992; Ligthart et al., 2019). Height serves as an indicator of the general 

development of a country, and is known to decrease in times of scarcity and increase in 

times of prosperity (Baten & Blum, 2014; Baten & Komlos, 1998). Also, children’s height is an 

indicator of overall development, where height is associated with cognitive development 

and school achievement (Karp et al., 1992; Spears, 2012). In 7-year-old children, 

resemblance between family members for height is explained by additive genetic 

(approximately 60%) and common environmental (approximately 20%) factors (Jelenkovic et 

al., 2016; Silventoinen et al., 2004; Silventoinen et al., 2007).  
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In the Netherlands there are well-established associations between height and 

geographical region (Abdellaoui et al. 2013), which makes this a clustering variable of 

interest. Geographical region will represent genetic and environmental differences between 

inhabitants. Location is associated with genetic differences (e.g. Colodro-Conde et al. 2018) 

and differences in social and cultural traditions, diet, socio-economic status, and living 

circumstances (e.g., rural vs urban).  By analyzing height and geographical region data in a 

three-level MLM, we can uncover whether variation in children’s height is associated with 

geographic region, and identify the proportion of the common environmental or between-

family variance that can be explained by these regional effects.  

In a subsample of 7-year-old participants, we next investigate the extent to which 

regional clustering may be due to genetic ancestry by including the first three genetic 

principal components (PCs; Hotelling, 1933).  The genetic PCs are obtained through principal 

component analysis of the covariance matrix of the genotype (Single Nucleotide 

Polymorphism (SNP) data (Reich et al., 2008). In the Netherlands, the first genetic PC is 

associated with a north-south height gradient (Abdellaoui et al., 2013; Boomsma et al., 

2014). This gradient represents social, geographical and historical divisions between the 

north and the south. Southern regions were conquered by the Roman empire, adopted 

Catholicism, and were geographically separated from the northern regions by the waterline 

of the five large rivers in the Netherlands (Schalekamp, 2009). The second PC is associated 

with the east-west division of the Netherlands and reflects differences between rural and 

urban environments, since the east of the Netherlands is characterized by less populous and 

rural areas, while the west includes the Randstad, which is the largest urban metropole of 

the country. The third PC is associated with the more central regions of the country 
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(Abdelloui et al. 2013). By adding the PCs to our models, we assessed the role of genetic 

ancestry of individuals between regions.  

The outline of this paper is as follows. We first considered regional clustering of 

children’s height in a large data set of MZ and DZ twins (N = 7436). Next, we considered the 

model within a subgroup of children who were genotyped on genome-wide SNP arrays (N = 

1375). Subsequently, we determined whether the region effects represent genetic ancestry. 

To this end, we analyze the relationship between the three PCs and height in 7-year-old 

children, and include the genetic PCs that show an association as an individual level (level 1) 

covariate in the model.  
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Methods 

Participants and procedure  

The data were obtained from the Netherlands Twin Register (NTR), which has collected data 

on multiple-births and their family members since 1987 (Ligthart et al., 2019). In the 

longitudinal NTR surveys of phenotypes in children, parents were asked to complete 

questionnaires on their children’s health, growth and behavior with intervals of 

approximately two years.  

  For the present study, we included data on 6- and 7-year-old twin children (range 6 

years and 0 months – 7 years and 11 months). The analyzed sample included 7,346 twin 

children (50.3% girls), in 3724 families. The twins were 7.4 (SD 0.3) years old on average, 

when their mothers reported their height. Of these children, 1,375 (18.7% of total) were 

genotyped. Genotyping largely took place independent of phenotype criteria. The 1,375 

genotyped individuals were from 714 families, 52.4% of this subsample were girls and the 

average age was 7.4 (SD 0.3). In this study, we included participants with both height and 

postal code information at age 7. Mothers were asked to report the four digits of the current 

postal code in the questionnaire at age 7 since 2002. This study includes data collected 

between 2002 and 2015, with children from birth cohorts 1995 through 2007. Postal code 

data were missing for approximately 1% of the surveys that were sent out after 2002, this 

may reflect participants whose parents had for example moved abroad. Approximately 20% 

of the parents did not report their children's height at age 7. A flowchart outlining the 

sample size after every step of exclusion is displayed in Figure 1. Only twins were included in 

the initial sample; singletons or triplets were excluded.  Children with severe handicaps were 

excluded, as were multiple twin pairs per family, twins born before 34 weeks of gestation, 

and twins outside the 6-8 age range. Zygosity was determined by DNA polymorphisms or by 
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a parent-reported zygosity questionnaire on twin similarity. The zygosity determination by 

questionnaire has an accuracy of over 95% (Ligthart et al., 2019). Table I displays the 

descriptive statistics of the phenotypic data by zygosity for the total and for the genotyped 

sample. 

 

  Please insert Table 1 and Figure 1 about here 

 

Measures  

Height 

Height in centimeters was reported by mothers. In the questionnaire, mothers reported the 

height of the child as well as the date of the measurement. Maternal report of height 

correlates .96 with height measured in the laboratory (Estourgie-van Burk et al., 2006). 

Mothers reported the age of their children at the moment of completing the survey and the 

date of the height measurement. For 5% of the children, the date at the time of height 

measurement was not available. Therefore, in this 5%, we took the age at the time of 

questionnaire completion. The correlation between age at questionnaire completion and 

age at height measurement is 0.95, and the mean difference in age is 0.01 years. 

 

Region 

At the time of reporting height, parents also reported the four digits of the postal code of 

their current address. In the Netherlands, postal codes map to geographical locations. The 

postal code consists of four digits and two letters, where the first two digits map to region 

and the second two digits and letters map to city, neighborhood within the city, and street. 

In our analyses, region is specified by the first two digits of the postal code, resulting in 90 
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regions which are displayed in Figure 2. They cover on average 462 km2 and have a mean 

population of around 192,000 (total for the country is 41,543 km², including ~19% water). 

Most regions encompass several municipalities. In the total sample, the number of children 

per postal code unit ranged from 10 to 194 (M= 81.6, SD = 38.4). In the genotyped sample, 

the number of children per postal code unit ranged from 1 to 43 (M= 15.6, SD = 8.6).  

 

  Please insert Figure 2 about here. 

 

Principal components 

Genotype data in 1375 individuals were collected by the following genotype platforms: 

Affymetrix 6, Axiom and Perlegen, Illumina 1M, 660 and GSA-NTR. The SNP data obtained on 

the 6 platforms were pruned in Plink to be independent, with additional filters to ensure 

Minor Allele Frequency (MAF) > 0.01, Hardy-Weinberg Equilibrium (HWE) p >  0.0001 and 

call rate over 95%. Subsequently, long range Linkage Disequilibrium (LD) regions were 

excluded as described in Abdellaoui et al. (2013), because elevated levels of LD result in 

overrepresentation of these loci in the PCs, disguising genome-wide patterns that reflect 

ancestry. For each platform, the NTR data were merged with the data of the individuals from 

the 1000 Genomes reference panel for the same SNPs, and Principal Components were 

calculated using SMARTPCA (Prince et al., 2006), where the 1000 genomes populations were 

projected onto the NTR participants (Abdellaoui et al., 2013). Population outliers were 

identified using pairwise PC plots and excluded, rendering the final clustering homogeneous. 

The NTR platform genotype data of this cluster were aligned to the GoNL reference panel 

V4, merged into a single dataset, and then imputed using MachAdmix. From the imputed 

data, SNPs were selected that satisfied R2 ³ 0.90, and that were genotyped on at least one 
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platform. These SNPs were subsequently filtered on MAF < 0.025, HWE p < 0.0001, call rate 

³ 98%, and the absence of Mendelian errors. Again, the long-range LD regions were 

removed from these SNP data. With this selection of SNPs, 20 new PCs were calculated with 

SMARTPCA (Prince et al., 2006), to indicate the residual Dutch genetic stratification.  

 

Models  

The Classical Twin Model 

In the classical twin model, the phenotypic variance can be decomposed into three 

components: Additive genetic (A), Common environmental (C) and unique Environment (E) 

component, which includes measurement error. As in most earlier publications, we will not 

consider genetic dominance variance for height (but see Joshi et al., 2015). 

 The variance component model, with subscript i for individuals, is:  

 

𝑦" = 	µ +	𝐴" + 𝐶" + 𝐸"	, 

 

where µ is the intercept (phenotype mean), and Ai ~ N(0, s2
A) is the additive genetic 

deviation, Ci ~ N(0, s2
C) is the common environmental deviation, and Ei ~ N(0, s2

E) is the 

unique environmental deviation.  

Assuming A, C, and E are mutually independent, we have the following 

decomposition of phenotypic variance: 

 

𝑣𝑎𝑟(𝑦) = 	s/0 + s10 +	s20 	. 
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Alternatively, the variance component model can be written as a path model in which A, C 

and E are standardized to have unit variance (see Figure 3): 

 

𝑦" = 	µ + 	a ∗ A" + 	c ∗ C" + 	e ∗ E", 

Here, the variance decomposition is: 

 

𝑣𝑎𝑟(𝑦) = 	𝑎0 +	𝑐0 +	e0. 

 

In terms of the path coefficient model, the covariance between the twins equals 

σ>? = 	𝑎0 + 𝑐0, in MZ twins, and σ@? = 	
A
0
𝑎0 + 𝑐0 in DZ twins. 

 

    Please insert Figures 3 and 4 about here 

 

Multilevel Twin Model 

When specifying a CTM as an MLM, the variance components of the CTM are parametrized 

as within- and between family components. The additive genetic variance is separated into 

two parts: a part that is shared by the members of a twin pair on the second level, AC, and a 

part that is unique to each individual on the first level, AU1 and AU2). The path coefficients 

associated with the AC and AU are equal. The variance of the common genetic factor (r) and 

the unique genetic factor (1-r) depend on the zygosity of the twin pair: for MZ r = 1.00, while 

for DZ r = 0.50. The common environmental factor, representing between family influences, 

is a level two component. Unique environmental factors E represent within family, level one, 

influences. The means (intercepts) µ are specified on the first level and are assumed to be 

equal for first- and second-born twins and zygosity. The ACE model in multilevel 
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parametrization is illustrated in Figure 4. Here, we included age at the individual level, 

because it represents the age at reported height measure and could differ between twins.  

 

Multilevel Twin Model with third level clustering variable and individual level covariates 

Other clustering variables can be added to this model, as displayed in Figure 5. A higher-

order clustering variable can be added to the third level of this model in two steps. On the 

third level, the higher-order clustering variable is added with a variance of 1 and a path 

loading of 1 to a latent variable on the second level, which has a variance of 0 and a freely 

estimated path loading from Region (reg) to the observed phenotype. The same 3-level 

model which also includes PC1 as a fixed covariate is displayed in Figure 6.  

 

   Please insert figures 5 and 6 about here 

 

Analyses  

All analyses were performed in R (R Core Team, 2020) with the package OpenMx (Boker et 

al., 2011; Neale at al., 2016; Pritkin et al., 2017). Age at measurement was converted to z-

scores and scores on PCs were multiplied by 1000 to facilitate optimization. First, in the full 

sample, a variance decomposition of the variance in height was obtained in the regular CTM. 

We included the z-scores of age at measurement and sex as covariates. Then, we repeated 

the analysis in the multilevel model to illustrate the equivalence of the two approaches. 

Following this, we added region as a third level in the multilevel parametrization. We 

repeated these steps in the genotyped group to investigate the representativeness of this 

subsample. Finally, in the genotyped subset, we added the PC scores as individual level 

covariates in the 3- level model. 
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We tested the contribution of region to the variance of height by comparing the 

difference of fit in the 3-level model and the 2-level model without region with a log-

likelihood ratio test. Under certain regularity conditions (Steiger et al., 1985), the difference 

in fit between these models is distributed as chi-squared with one degree of freedom. 
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Results 

When we plotted the average height data by region, a north-south trend was distinguished, 

with the children in the northern regions somewhat taller than those in the southern part of 

the Netherlands (of the 12 provinces in the Netherlands, the northern province Drenthe had 

the highest mean height (M = 129.40) and the southern province Noord-Brabant had the 

lowest mean height (M = 127.01)).  Figure 7 displays the mean height of 7-year-olds per 

region. In the genotyped group, height correlated with PC1 (i.e., the PC showing a North-

South gradient) (r = 0.16), but not with other PCs (r = 0.01 for PC2, r = -0.01 for PC3). 

Therefore, we incorporated PC1 into subsequent analyses and omitted PC2 and PC3. 

 

  Please insert figure 7 about here 

 

The 2-level model fitted significantly worse than the 3-level model with region as level three 

clustering variable (D-2LL = 22.93, Ddf = 1, p <.001). So, region in the Netherlands associates 

with a statistically significant proportion (1.8%) of the variance in height in 7-year-olds. Table 

II displays the parameter estimates and the standardized variance components of the 

models. Comparing the parameter estimates of the models shows that the variance 

attributable to region in the 3-level model was captured by the C-component in the 2-level 

model. 

 

Results analyses genotyped sample 

In the genotyped group, region explained 1.6% of the variance, which almost equals the 

percentage reported above. The likelihood ratio test of this component was not significant: 

D-2LL = 0.85, Ddf = 1, p = .36. However, we ascribed this to a lack of power given the 
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appreciably smaller sample size (in terms of individuals, N = 7,346, vs. N = 1,375). The 

parameter estimates and standardized variance components are displayed in Table III. 

 

Results of analyses of genotyped sample with PC1 as covariate 

Table IV displays the parameter estimates and standardized variance components of the 

model with PC1 as an additional fixed covariate. In the genotyped group, the 2-level model 

with PC1 as a covariate fitted equally well as the 3-level model with PC1 as a covariate and 

with region as a third level variable (D-2LL < 0.001, D df = 1). In this model, the variance 

attributable to region is zero. So, when PC1 is included as a covariate, region in the 3-level 

model doesn’t explain any variance above and beyond what is already explained by the first 

PC in the 2-level model.  
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Discussion 

In this paper we specified a multilevel twin model in OpenMx and fitted it to data on 

children’s height. We added a higher-level variable, region in the Netherlands, in which the 

twin pairs were nested. Adding a third level variable enabled us to address an empirical 

question, namely whether part of the variance in children’s height can be explained by 

differences in geographical region.  

We found that 68% of the variance in 7-year-old children’s height is attributable to 

additive genetic factors. Common environmental factors accounted for 26%, and unshared 

environmental factors for 6% of the variance. We found that regional differences accounted 

for a significant 1.8% of the phenotypic variance. In a standard multilevel ACE-twin model, 

ignoring regional clustering, this variance was captured by the C-component. This is 

expected, because the so called common environmental component captures between-

family variance. At age 7, both MZ and DZ twins share region, so that the effect of region will 

manifest as C.  

In a subsample of children who were genotyped and for whom genetic PCs were 

obtained, we found a statistically significant correlation (r = 0.16) between height and the 

first genetic PC, representing the geographical north-south gradient in the Netherlands. This 

correlation is similar to previous results for height in a Dutch sample of adults (Abdellaoui et 

al., 2013). The correlations between the second and third PC and children’s height were 

negligible. After the inclusion of the first PC in the multilevel analyses, region no longer 

explained any variance.  

This last result indicates that the variance in children’s height that is explained by 

region is attributable to differences in genetic ancestry. That is, although unmodeled 

regional clustering manifests as C, it does not mean that the inflation of the common 
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environmental variance is due to genuine shared environmental factors like region. When 

we included the first PC, which reflects differences in allele frequencies between regions, no 

variance was explained by geographical region above and beyond what was already 

explained by the PC. This indicates that a proportion of the variance that is captured in the C-

component of the CTM is actually of a genetic nature.   

We note some limitations of our study. First, we did not explicitly model qualitative 

differences in genetic architecture between boys and girls. In the literature there is some 

evidence that the additive genetic correlation in opposite-sex twins is lower than 0.50, 

suggesting that partly different genes operate in 7-year-old boys and girls (Silventoinen et 

al., 2007). However, the twin correlations in our sample did not suggest the presence of 

qualitative sex differences (we observed correlations of .61 and .63 in the DZ male and DZ 

female, versus .58 and .68 in the DZ opposite sex male-female and DZ opposite sex female-

male twins, respectively).  

Secondly, we surmise that the power to detect the region effect in the genotyped 

sample was low, given the sample size (N=1,375 in the genotyped sample).  However, the 

effect sizes in both samples were very similar, and in the full sample (N=7,346) the 

significance of the effect was well established. Therefore, we trust that the regional effect is 

real. 

A final limitation to note is that the current approach assumes that lower levels are 

fully nested in the higher-level. That is, members of a twin pair cannot differ on the 

clustering variable. It is therefore not possible to define a third-level clustering variable, 

when the variable of interest differs within a twin pair (e.g. adult twins who do not live in the 

same region). It is possible, however, to include variables in which both twins are not nested 

as a lower-level variance component. When the clustering variable is not specified as a 
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higher-level (i.e., nesting) variable, the effect of clustering can also be manifested as any of 

the other variance components (i.e., A/C/D/E) when unmodeled. Furthermore, missing data 

for higher-level clustering variable (here: region) is not allowed. The higher-level variable 

needs to have a sufficient number of units for the model to have enough power to detect 

the effect of the higher-level variable (e.g., postal codes in our region example; Goldstein, 

2011). 

The current study showed that when data are nested in a higher-level variable, adding 

this higher-level variable to a multilevel model for twin data provides opportunities to 

further disentangle the etiology of a trait. Clustering can be due to unwanted confounding, 

for example, batch effects. Applying a multilevel model to identify the nuisance variance that 

is explained by higher-level clustering would in this case serve as a correction. However, as is 

shown within this paper, the MLM can also be used to empirically study clustering. 
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Table I.  

The number of twins, the mean, standard deviation and the twin correlation per zygosity 

group for the total sample and the genotyped subsample. 

 

 MZm DZm MZf DZf DZmf DZfm 

Total sample       

N (individuals)  1283 1228 1338 1208 1163 1126 

Mean height  128.3 128.4 127.3 127.8 128.6 128.4 

SD height 6.1 5.8 5.8 5.8 5.7 6.2 

Twin correlation 0.95 0.61 0.94 0.63 0.58 0.68 

Genotyped 

subsample 

      

N (individuals) 350 167 251 221 136 150 

Mean 128.5 129.1 127.7 127.4 128.2 128.0 

SD 6.0 5.8 5.7 6.1 5.6 5.7 

Twin-correlation 0.97 0.71 0.95 0.68 0.57 0.69 
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Table II. 

Results of CTM and 2-level and 3-level MLM analyses for the full sample: path coefficient 

estimates with standard errors (SE) and standardized variance components of the 2-level 

and the 3-level models (with age and sex as covariates). N = 7346 twins in 3724 families.   

 

 parameter CTM 2-level model 3-level model  

Intercept Intercept (SE) 128.4 (0.11) 128.4 (0.11) 128.5 (0.14) 

Covariates  bsex (SE) -0.62 (0.13) -0.63 (0.12) -0.62 (0.12) 

 bage (SE) 1.40 (0.09) 1.42 (0.08) 1.42 (0.08) 

a, c, e, region path loadings a (SE) 4.74 (0.10) 4.70 (0.08) 4.70 (0.08) 

 c (SE) 2.87 (0.18) 2.90 (0.16) 2.80 (0.16) 

 e (SE) 1.39 (0.03) 1.39 (0.03) 1.39 (0.03)) 

 region (SE)   92.33 (2.13) 

 Total variance  

(a2 + c2 + e2 (+ region2))  

32.70 32.46 32.47 

 A (standardized) 0.688 0.681 0.681 

 C (standardized) 0.252 0.259 0.241 

 E (standardized) 0.059 0.060 0.060 

 REGION (standardized)   0.018 
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Table III.  

Results of CTM and 2-level and 3-level MLM analyses in the genotyped sample (N = 1375 

twins in 714 families.  Path coefficient estimates with standard errors (SE) and standardized 

variance components of the 2- and 3-level model (with age and sex as covariates).   

 

 parameter 2-level model 3-level model  

Intercept Intercept (SE) 128.4 (0.26) 128.5 (0.27) 

Covariates  bsex (SE) -0.62 (0.31) -0.63 (0.31) 

 bage (SE) 1.16 (0.18) 1.15 (0.18) 

a, c, e, region path loadings a (SE) 4.53 (0.20) 4.53 (0.20) 

 c (SE) 3.21 (0.34) 3.13 (0.16) 

 e (SE) 1.13 (0.04) 1.13 (0.04)) 

 Region (SE)  0.71 (2.13) 

 Total variance  

(a2 + c2 + e2 (+ region2))  

32.11 32.11 

 A (standardized) 0.640 0.640 

 C (standardized) 0.320 0.305 

 E (standardized) 0.040 0.040 

 REGION (standardized)  0.016 

 

  

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2020. ; https://doi.org/10.1101/2020.11.11.377820doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.11.377820
http://creativecommons.org/licenses/by-nd/4.0/


Table IV.  

Results of CTM and 2-level and 3-level MLM analyses for the genotyped sample with PC 

covariate (N = 1375 twins in 714 families). Path coefficient estimates with standard errors 

(SE) and standardized variance components of the 2- and 3-level ACER model, including PC1.   

 

 parameter 2-level model 3-level model  

Intercept Intercept (SE) 128.5 (0.26) 128.5 (0.26) 

Covariates  bsex (SE) -0.74 (0.31) -0.74 (0.31) 

 bage (SE) 1.16 (0.18) 1.17 (0.18) 

 bPC1 (SE) 0.11 (0.02) 0.11 (0.02) 

a, c, e, region path loadings a (SE) 4.55 (0.20) 4.55 (0.20) 

 c (SE) 3.03 (0.36) 3.03 (0.36) 

 e (SE) 1.13 (0.04) 1.13 (0.04)) 

 region (SE)  8.97 * 10-6 (0.76) 

 Total variance  

(a2 + c2 + e2 (+ region2))  

31.19 31.19 

 A (standardized) 0.664 0.664 

 C (standardized) 0.295 0.295 

 E (standardized) 0.041 0.041 

 REGION (standardized)  2.58 * 10-12 
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Figure 1.  

Flowchart containing sample size for the total sample (upper row) and the genotyped 

subsample (lower row) after every step of exclusion. 
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Figure 2. 

Map of the 90 regions in the Netherlands based on first two digits of the postal code. 

 

Note. This figure is reprinted from ‘Postcodekaart van Nederland’ by postcodebijadres, 

retrieved July 29, 2020, from https://postcodebijadres.nl/postcodes-nederland 
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Figure 3. 

The Classical Twin Model including three latent factors per person, representing Additive 

genetic, Common and unique Environmental influences. Two additional covariates, age and 

sex, are presented in a schematic way in grey. 
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Figure 4.  

Multilevel parametrization of the ACE model, where Y represents the phenotype, latent 

variables AU represent the unique additive genetic influences and E unique environment. µ is 

the intercept, sex and age are covariates, presented in a schematic way. On the family level, 

C is common environment and AC common genetic influences. The path coefficients, a, c, e, 

b1 and b2 represent regression coefficients. The r parameter represents variance (1 for MZ 

twins and 0.5 for DZ twins).   
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Figure 5.  

Multilevel parametrization of the ACE model with Region as a third level, which loads on the 

region variable REG F on the family level, on which the observed variable Y is regressed with 

its coefficient estimating the effect of region.  

. 

 

 

  

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2020. ; https://doi.org/10.1101/2020.11.11.377820doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.11.377820
http://creativecommons.org/licenses/by-nd/4.0/


 

Figure 6.  

Multilevel parametrization of the ACE model with Region as a third level, and including PC1 

as a covariate (we test PC1, PC2, and PC3, but depict only PC1 to avoid clutter, and because 

our final model included only PC1). 
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Figure 7.  

Mean height of 7-year old children in centimeters by region in the Netherlands.  
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