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Abstract  
 
With the recent increase in RNA sequencing efforts using large cohorts of individuals, 
studying allele-specific gene expression is becoming increasingly important. Here, we report 
that, despite not containing explicit variant information, a list of allele-specific gene names of 
an individual is enough to recover key variants and link the individual back to their genome 
or phenotype. This creates a privacy conundrum. 
 
 
Owing to the surge in functional genomics data over the past decade, numerous reports have 
focused on identifying genomic privacy issues related to molecular endophenotype data, such 
as gene expression levels 1,2. These studies exploit the known and publicly available 
relationship between genotype and endophenotypes such as expression quantitative trait loci 
(eQTLs). That is, given a matrix of gene expression values collected from a cohort of individuals 
and a list of eQTLs, one can link a genome from a known individual to the gene expression 
matrix and uncover potentially stigmatizing phenotypes such as HIV status 1. 
 
The increase in phased personal genomes and functional genomics data allows researchers to 
investigate the allele-specific activity of the genome. With the surge in large-scale RNA 
sequencing and genotype efforts such as the Genotype-Tissues Expression (GTEx) project 3,4, 
more studies have begun focusing on allele-specific expression (ASE) in the human genome 4–7. 
ASE is a characteristic of expressing only one copy of a gene (maternal or paternal allele) and 
may lead to phenotypic variation. Between 10 and 22% of human genes show allele-specific 
regulation of gene expression 8. ASE can be created in part by underlying biological processes 
such as imprinting. However, most observed cases are not necessarily due to an underlying 
biological phenomena. There is increasing evidence that ASE could be linked to the 
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predisposition to diseases such as autism spectrum disorder 9, colorectal cancer 10 and, 
tumorigenesis in general 11.  
 
Due to their clinical importance and direct relationship to the phenotype of the organism, there is 
an incentive to broadly share a list of allele-specific genes, or allele-specific gene expression 
matrices, of study participants. Moreover, ASE information is often shared with the 
accompanying phenotype. Many assume that haplotype-level gene expression data do not 
contain any identifying information and are safe to share even if the data are derived from 
individuals who did not provide broad consent 4.  
 
Here, we demonstrate that privacy breaches are possible solely by using a list of allele-specific 
gene names of an individual. As an example, we show these breaches using ASE data from 
individuals of the 1,000 Genomes Project, in which the full genomes of the individuals are 
broadly shared.  
 
Genomic privacy attacks in the form of linking two datasets together can be categorized 
differently based on whether the genomic variants observed from the linked datasets are noisy 
or perfect 12. However, the privacy attacks we describe here differ in nature from previous 
linkage attacks 1,2,12,13, as the genomic variants cannot directly be observed from the ASE data 
(Figure S1). Two privacy attacks can be performed using an ASE gene name list: (1) 
Recovering the genome of an individual; and (2) inferring the phenotype of an individual. 
 
In the first attack, the adversary obtains a list of ASE gene names of a known individual 
(perhaps through electronic health records or a friendly conversation). The goal is to link these 
gene names to an anonymized publicly available genome dataset to recover the genome of the 
known individual (Figure 1A). 
 
In the second attack, a research study (e.g., GTEx, PsychENCODE) releases a publicly 
available anonymized database. This database contains the allele-specific expression of all 
genes for a number of individuals. It also contains the sensitive phenotypes of these individuals. 
The adversary compiles a database of genomes from known individuals (e.g., those who 
participated in a research study), by using genetic genealogy databases such as GEDmatch. 
The goal of the adversary is to uncover the phenotypes of these known individuals of interest. 
The allele-specific gene expression database can be summarized as a list of ASE gene names 
for each individual in the database by comparing the gene expression between alleles. The 
adversary uses the genomes to mine the ASE gene name lists and finally links the genomes of 
known individuals to the phenotypes of the anonymized individuals (Figure 1B). 
 
As mentioned before, there is no explicit genotype information in a gene name. However, if a 
gene is determined to be allele-specific for an individual, then an accessible heterozygous 
single-nucleotide polymorphism (SNP) must be present somewhere on the gene body such that 
researchers were able to phase the gene expression into alleles. By using this information, we 
overlapped the exon locations of the reported ASE genes with heterozygous SNPs in a 
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database of genomes. This allowed us to generate a candidate SNP/genotype list for each ASE 
gene (Figure 1A, see Online Methods for details). Next, we used a linking approach 12,14 that 
weights the SNPs according to their frequency in the database. This approach scored every 
individual in the database based on the similarity between the genome and the candidate 
genotypes either by using a best matching linking score approach 12 or by using a probability 
distribution through entropy calculations 14.  
 
We used lists of allele-specific gene names from 382 individuals 6 and attempted to link them to 
a database of 2,504 individuals 15. We were able to link 55% of the individuals to the database 
using only a list of allele-specific gene names per individual (Figure 2a). This number increased 
to 80% when we relaxed our criteria from the best-matching individual to any individual in the 
top 20 best matches (Figure 2b). 
 
Next, we found that highly polymorphic human leukocyte antigen (HLA) genes were in the 
majority of the individuals’ gene lists (Figure 3a). We first used only HLA genes for the linking 
and found that we could link only 2.9% of the individuals to the database. We then removed the 
HLA genes from the original ASE gene list of each individual and found that the percentage of 
correctly linked individuals increased from 55% to 66%. Lastly, we removed the top 20 genes 
that were common to the individuals in the database from the gene list. This further increased 
the percentage of linked individuals to 68% (Figure 3b). 
 
Our last test was to calculate the improvement in linking when we used auxiliary data. 
Knowledge of the biological sex of the individuals increased the percentage of correctly linked 
individuals to 60%. Adding only the ancestry information of the study participants also increased 
the percentage of correctly linked individuals to 60%. Although, knowledge of both ancestry and 
biological sex increased the percentage of correctly linked individuals by only ~1%  (Figure 3c), 
the percentage of correctly linked individuals with high statistical significance increased by 
~10% (Figure S2). We did not find a significant difference in the number of genes used per 
individual in the correctly linked and mislinked categories; however, when we weighted the 
number of genes by their length, we found that correctly linked individuals had longer ASE 
genes (Figure S3 a,b). We also did not find a significant difference in the number of candidate 
SNPs per individual between the correctly linked and mislinked categories (Figure S3 c). 
 
This study shows that although ASE does not explicitly reveal the location of the SNPs of an 
individual, by using simple and straightforward biological knowledge can enable ASE genes to 
be linked to the genomes and/or phenotypes of study individuals. We showed the feasibility of 
this breach with data from individuals who provided broad consent. However, we envision that 
the same publicly available data could be used to infer private genetic variants of individuals 
who do not wish to release their genomes broadly. Furthermore, these inferred SNPs can lead 
to imputation of other genetic markers through linkage disequilibrium, which, in turn, might lead 
to even bigger privacy issues.  
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As is the case with other molecular phenotype and functional genomics data, preventing the 
public release of ASE genes can hamper biomedical discoveries and clinical studies. 
Researchers could perform risk assessments of releasing gene names based on their 
polymorphism and length. Based on this assessment, some genes could be omitted from the 
list. However, this approach might reduce the utility of the released data. We believe that the 
best approach to mediate genomic privacy issues related to hidden information in 
summary-level functional genomics data is three-pronged: (1) develop clear and detailed 
informed consent policies, (2) educate participants on the risks and benefits of the study, and 
(3) establish laws and legislation to prevent bad actors from using genetic information to harm 
individuals, as noted by earlier genomic privacy studies 16. 
 
Data and software availability: The code used in this study can be found at 
https://github.com/gersteinlab/privaseq4. 1000 Genomes vcf files are downloaded from 
ftp sites in https://www.internationalgenome.org . The processing steps and example 
files can be found in the data folder of the github page.   A gene list for each individual is 
taken from http://alleledb.gersteinlab.org  and can be found in the data folder of the 
github page. The locations of the exons for these genes are also provided in the data 
folder of the github page. 
 
 
Figure Legends: 
 
Figure 1: Schematic representation of using allele-specific genes to de-anonymize individuals. 

a) Schematic of going from a list of genes to a list of SNPs. b) De-anonymizing a list of 
anonymous ASE genes using publicly available genomes from known individuals and inferring 

private phenotypes. b) Recovering the anonymized genome of a known individual by using their 
ASE gene list. 

 
Figure 2. Linking attack accuracy. a) The number of individuals that can be linked to their 
genomes with different statistical techniques. b) The percentage of individuals that can be linked 
to their genomes when we relax the criteria from best match to top k ranked. 
 
Figure 3. Impact of auxiliary information on linking ability. a) The top 20 genes that are found on 

the ASE gene list of correctly identified and misidentified individuals. b) The percentage of 
correctly linked individuals when we used different combinations of ASE genes. c) The 

percentage of correctly linked individuals when we used biological sex and/or ancestry as 
auxilary information. 
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Methods 
 

Compiling a list of candidate SNPs from the ASE gene list 
 
We first overlapped the gene names with the genes in the GENCODE comprehensive gene 
annotation file (release 19, GRCh37.p13) to pinpoint the location of the exons of these genes. 
For each gene, we found all the SNPs that overlapped with its exons by using a vcf file from 
2,504 individuals (1,000 Genomes database). We first calculated the heterozygous genotyping 
frequency of these SNPs as . We then removedf (genotype )   SNP i

= 1 =  total # of  individuals
# of  individuals with genotype =1SNP i

  
the SNPs that had 0.1< < 0.5 from the overlap list. We added the remainingf (genotype ) SNP i

= 1  
SNPs to the candidate SNP list. We repeated this procedure for all of the genes in the list to 
obtain one final candidate SNP list.  
 

Linking attacks 
 
Let us assume that we have n total SNPs that can be observed in humans (e.g., all of the SNPs 
observed in the 1,000 Genomes Project). We can represent an individual’s genome as a set 

, where is the genotype of the ith SNP. Candidate SNPs obtained using ASEg , , .., }S  = { 1 g2 . gn gi  
genes become a subset of S, whose genotypes are assumed to be heterozygous ( ), i.e.,gi = 1  

, where  means SNP i is not in the candidate list, hence itsg , , .., }Scan = { 1 = x g2 = 1 . gn = x gi = x  
genotype is unknown.  
 

Scenario 1 
Let us assume we have an ASE gene list of a known individual. This means we can compile a 
list of heterozygous SNPs for this known individual. In this case, g , , .., }Scan = { 1 = x g2 = 1 . gn = x  
is the set of candidate genotypes for the known individual. The goal is to recover the genotypes 
for all of the SNPs in the set. Let us assume we have access to a database of anonymized 
genomes. Each anonymized genome j in the database can be represented as 

, where each genotype is known.g , , .., }Sj
D = { 1 g2 . gn gi   

 
Best match approach: For each individual j in the database, we find the intersection Scan ⋂ Sj

D  

and calculate a linking score , where  is the ratio of(i, an)L c = ∑
t= S ⋂S| can j

D|

t=0

1
log  f (g =1)2 t

(g )f t = 1  
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individuals whose tth SNP has the heterozygous genotype ( ) to the total number ofgt = 1  
individuals in D [previously defined in 12]. To recover the genome for the known individual, we 
then rank all the  scores for all genomes in D in decreasing order. We denote the(i, an)L c  
genome with the highest score as the genome of the known individual with candidate SNPs. To 
assess the statistical robustness of this prediction, we used our previously defined gap 
measure, which is the ratio between the highest and second highest  scores. We further(i, an)L c  
calculate the statistical significance of gap by generating random candidate SNPs (as many as 
the original candidate SNPs), perform the above attack one thousand times, and compare the 
real gap value against the distribution of random gap values. 
 
Entropy approach: The goal of this approach is to assign a probability of correctly linking the 
ASE list to each genome in D, which allows us to have a distribution. This approach is adopted 
from Narayanan and Schamtikov, 2012. We calculate the probability of linking the candidate 

SNP list to a genome i in D as , where c is a constant to satisfy (i, an) .eπ c = c σ
L(i,can) (i, an)∑

 

i
π c = 1

, L(i,can) is the linking score described above, and σ is the standard deviation of the linking 
scores (Figure S4). 
 

Scenario 2 
The mathematical formulation of scenario 2 is the same as the first scenario. The only difference 
is that we have the genome of the known individual and we try to link this known genome to an 
anonymized ASE gene list, which is connected to a potentially private phenotype. 
 

Identification of the top 20 common genes 
After linking 382 ASE gene lists to a genome in D, we calculated the accuracy of the linking. We 
then separated the gene lists into two categories: (1) lists that led to correct re-identification and 
(2) lists that led to misidentification. We identified the genes that were shared across many ASE 
gene lists in both categories. Among the top 20 shared genes, we found that HLA genes were in 
the lists of >90% of both correctly re-identified and misidentified individuals. We then selectively 
removed different groups of genes (HLA, and genes at the intersection of both groups) and 
performed the linking attacks. 
 

Usage of auxiliary data 
We added one or two more features to our sets  (the genotypes of genome j in database D)Sj

D  
and (the candidate SNP genotype list) such that our new list does not only have genotypesScan  
but also includes biological sex and/or ancestry features. 
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 andg , , .., , sex M /F , ancestry UR/AFR/AMR/EAS/SAS}S′can = { 1 = x g2 = 1 . gn = x  =   = E  
} are our new sets and we look for the  intersection tog , , .., , sex, ancestryS′j

D = { 1 g2 . gn   S′can ⋂ S′j
D  

calculate the linking scores. Here, M and F are used for biologically male and female 
individuals, respectively. EUR, AFR, AMR, EAS, and SAS correspond to European, African, 
Admixed American, East Asian, and South Asian ancestries, respectively. 
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