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In the mammalian brain, allocentric representations support efficient self-location and flex-
ible navigation. A number of distinct populations of these spatial responses have been iden-
tified but no unified function has been shown to account for their emergence. Here we
developed a network, trained with a simple predictive objective, that was capable of map-
ping egocentric information into an allocentric spatial reference frame. The prediction of
visual inputs was sufficient to drive the appearance of spatial representations resembling
those observed in rodents: head direction, boundary vector, and place cells, along with the
recently discovered egocentric boundary cells, suggesting predictive coding as a principle
for their emergence in animals. The network learned a solution for head direction track-
ing convergent with known biological connectivity, while suggesting a possible mechanism
of boundary cell remapping. Moreover, like mammalian representations, responses were
robust to environmental manipulations, including exposure to novel settings, and could be
replayed in the absence of perceptual input, providing the means for offline learning. In
contrast to existing reinforcement learning approaches, agents equipped with this network
were able to flexibly reuse learnt behaviours - adapting rapidly to unfamiliar environments.
Thus, our results indicate that these representations, derived from a simple egocentric pre-
dictive framework, form an efficient basis-set for cognitive mapping.

Introduction Animals navigate easily and efficiently through the world1. Yet artificial agents
struggle with even simple spatial tasks requiring self-localisation and goal directed behaviours.
In mammals, the neural circuits supporting spatial memory have been studied extensively. Empir-
ical work has generated a detailed knowledge about populations of spatially modulated neurons –
place2, grid3, and head direction4 cells represent body position and direction of facing, while bor-
der responsive neurons encode immediate environmental topography5, 6. Current thinking sees
these networks as components of a cognitive map thought to provide an efficient spatial basis,
allowing the structure of novel environments to be learnt rapidly and subsequently supporting
flexible navigation, such as short-cuts, detours, and novel routes to remembered goals2, 7.

Surprisingly, there are significant gaps in our understanding. In particular, it is unclear how
these populations interact to support spatial behaviour and how they are themselves derived and
updated by incoming sensory information. Fundamentally, we lack a unifying computational
account for the emergence of allocentric (world centred) representations from egocentric (self
centred) sensory experience8, 9. This poses a problem for neuroscientists, who seek simplifying
normative accounts of the brain, and for AI practitioners who aim to build systems with naviga-
tional abilities that match those of animals.

Historically, theoretical approaches to this problem largely presented hand-coded designs fo-
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cused on a single layer of the biological network10, 11. A smaller number of models have presented
a more extensive description of hippocampal networks12, including the process by which repre-
sentations might be learnt13. Notably a potential architecture for ego–allocentric transformation14

successfully anticipated the existence of egocentric border responsive neurons15–17. Still, in al-
most all cases existing models are the product of extensive human oversight.

Here we show that a deep learning model trained to predict visual experience from self-motion
is sufficient to explain the hierarchy of egocentric to allocentric representations found in mam-
mals, bridging the gap from visual experience to place cells. In particular, we identify head-
direction cells, border cells with both ego and allocentric responses, and place cells. Critically,
we do so without the need for any allocentric inputs. Like their biological counterparts, the firing
fields of these units are shaped by the surrounding cues - particularly environmental boundaries
- but their characteristics are retained across different environments.

Thus, when embodied in artificial agents, this redeployment of existing responses supports
rapid adaptation to novel environments, enabling effective navigation to remembered goals with
limited experience of the test enclosure –demonstrating the flexible transfer of skills at which
animals excel but artificial systems have struggled. Finally, artificial agents with these repre-
sentations are able to coherently replay hypothetical rollouts of the future, providing a potential
basis for model-based planning and offline learning18.

Spatial Memory Pipeline The hippocampal formation has been characterised as a predictor-
comparator, comparing incoming perceptual stimuli with predictions derived from memory19–21.
With this in mind we trained a deep neural network to predict the forthcoming visual experi-
ence of an agent exploring virtual environments. Specifically, we developed a model composed
of a modular recurrent neural network (RNN) with an external memory– the ’Spatial Memory
Pipeline’ (see supplementary text, Extended Data Fig 1). At each time-step visual inputs entering
the pipeline were compressed using a convolutional neural network and compared to previous
embeddings stored in the slots of a memory store, the best matching being most strongly reacti-
vated. The remainder of the pipeline was trained to predict which visual memory slot would be
reactivated next (Fig 1A). Predictions were generated solely on the basis of self-motion informa-
tion, provided differentially to RNN modules as angular and linear velocity, in addition to visual
corrections from previous steps. There was no direct pathway from detailed visual features to lat-
ter parts of the pipeline – visual information being communicated only by the activation of slots
in the memory stores (Fig 1B). Thus the Spatial Memory Pipeline forms a predictive code22, 23,
anticipating which future visual slot will be activated, based solely on self-motion.

Emergence of allocentric representations In our first unsupervised-learning experiment, the
Spatial Memory Pipeline was trained in a simulated square environment (2.2 by 2.2 meters) re-
sembling those used in rodent studies – plain white walls with visible distal cues (Fig 1C, D),
using a rat-like motion model24. After training, the network was able to accurately predict the re-
activation of visual memories (80% loss reduction with respect to uniform distribution, Fig 1E),
effectively integrating self-motion information to anticipate the visual scene. To understand how
the network performed this task we inspected the activity profile of units in the modular RNNs.
These units exhibited a range of spatially stable allocentric responses strongly resembling those
found in the mammalian hippocampal spatial memory system, including head-direction (HD)
cells, boundary vector cells (BVCs), and place cells, as well as egocentric boundary vector cells
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Figure 1: A, B) Computational diagrams for the Spatial Memory Pipeline. A) In the prediction
step, a set of RNNs anticipate the reactivation of past visual memories by integrating egocentric
velocities –AE denotes autoencoder. B) In the correction step, the reactivated visual memories
correct the RNNs’ state to reduce accumulated errors. C) External view of white square enclo-
sure with distal cues. D) Agent’s view from the middle of the enclosure (left) and close to a wall
(right). E) Prediction loss along training. The model reduces the uncertainty in visual reactiva-
tions by 80% with respect to a uniform distribution. F) Average decoding error of position and
head direction from visual slot activations and spatial memory pipeline RNNs, black bars show
one standard error of the mean.
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(egoBVCs) (Fig 2, see Methods). Indeed, in the trained network, the agent’s position and di-
rection of facing could be accurately decoded from the RNN activations (Fig 1F, see Supple-
mentary Methods). Most strikingly, these representations were complementary to one another –
each RNN module developed distinct response patterns, dependent on the form of self-motion
input it received (Fig 2A-D). Similar results were observed in environments with different ge-
ometries (see supplementary text, Extended Data Fig 2).

The majority of units in the first RNN module (RNN-1), which received only angular velocities
and corrections from the visual memories, exhibited activity that was modulated by the agent’s
direction of facing (Fig 2A). These responses were strikingly similar to those of head-direction
cells4, 25 – individual units having a single preferred firing direction invariant across spatial loca-
tions (Fig 2B). In total 91% (29/32) of units were classified as HD cells (resultant vector length
>0.58, 99th percentile of shuffled data, see Methods) with unimodal responses (average tuning
width 76.2o) distributed uniformly in the unit circle (Fig 2H, uniform distribution was selected
under Bayes Information Criteria (BIC) over mixtures of Von Mises, see Supplementary Meth-
ods).

The second module (RNN-2) received angular velocity and speed. Here units exhibited more
complex patterns of activity (mean resultant vector = 0.02, 0/128 units classified as HD cells),
encoding distances to boundaries at a particular heading (Fig 2C). Thus, they appeared to be
similar to egocentric BVCs15–17 which are theorised to play a central role in transforming between
ego and allocentric reference frames14, 26. To quantify this impression we adopted an egoBVC
metric applied previously17 (see Methods). In this way 58 of 128 units (45.3%) were identified
as egoBVCs (ego-boundary score >0.07, 99th percentile of bin-shuffled distribution, Fig 2I),
with the remaining cells displaying mixed patterns of head-direction and egocentric distance to a
wall. Rodent egoBVCs exhibit a uniform distribution of preferred firing directions - albeit with a
slight tendency to cluster to the animal’s left and right side - while preferred distances have been
reported up to 50cm, with shorter range responses being more numerous17. Analysis of the model
egoBVCs (Extended Data Fig 3A-C) revealed a similar pattern of distances, but a cluster of cells
responded to a wall directly in front - plausibly reflecting the monocular input and narrower field
of view available to the model (60o vs >180o in rodents) 27 .

In contrast to the first two RNNs, the third (RNN-3) received no self-motion inputs, thus be-
ing dependent upon temporal coherence13, and corrections from mispredictions as its sole input
and learning signal. Units in this layer were not modulated by heading direction (mean resul-
tant vector = 0.11, 0/128 units classified as HD cells), but were characterised by spatially stable
responses (Fig 2F) often extending parallel to particular walls of the environment (Fig 2D). As
such, the activity profile of this module was reminiscent of boundary vector cells (BVCs), which
form an allocentric representation of space defined by environmental boundaries5, 6, 28, 29. To as-
sess the units’ activity we applied a similar approach to that used for RNN-2 – calculating the
resultant vector of the units’ activity projected into allocentric boundary space (see Methods).
Applying this measure to RNN-3 confirmed that 80.5% (103/128) of units were classified as
BVCs (BVC score >0.11, 99th percentile of shuffled distribution) – 64% (82/128) met the crite-
ria for egoBVCs, but 70 of those 82 had a higher BVC score than egoBVC score (Fig 2I). The
same approach applied to RNN-2 identified 0 of 128 units as BVCs. Analysis of the preferred fir-
ing directions and distances of the model BVCs revealed a uniform distribution of directions (Ex-
tended Data Fig 3E).
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Figure 2: Representations in a spatial memory pipeline trained in the square enclosure shown in
Fig 1C. A) Polar plot of average activity by heading direction of five units classified as HD cells.
B) Spatial ratemaps of the units shown in A. Central plot shows average activation for each lo-
cation across all head directions. The eight plots around each central plot show location-specific
activity restricted to times when the heading direction of the agent was in the the corresponding
45◦ range (e.g. plot located above the central plot shows average activity when the agent was
facing in the north direction). C) Spatial ratemaps of five units classified as egoBVCs. D) Spatial
ratemaps of five units classified as BVCs. E) Spatial ratemaps of five memory slots reactivated
by RNN-3 resembling hippocampal place-cell activity. F) Spatial stability of units in each RNN.
G) Resultant vector length of units in each RNN. H) Resultant vector of each unit in RNN-
1. I) Comparison of egocentric versus allocentric scores for units in each RNN. Dashed lines
indicate cell-type classification thresholds.
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In the brain, BVCs are hypothesised to be a core contributor to the spatial activity of place
cells28. Consistent with this, BVC-like responses are found in mEC, afferent to hippocampus, as
well as within the hippocampus proper5, 6, 29. In our model, the allocentric representation of RNN-
3 were memorised as a second set of targets - being reactivated at each time step by comparison
to the current state of the RNN-3. The activity of these memory slots strongly resembled place
cells with sparse, spatially localised responses (average spatial field size of 0.21 m2 SD:0.26 to a
total environment area of 4.84 m2) that were stable across trajectories, and independent of head
direction (see Fig 2E and Extended Data Fig 4).

Responses to geometric transformations Simple manipulations of the test environment, such
as rotating distal cues or stretching the enclosure, produced commensurate changes in the re-
ceptive fields of spatially modulated cells without retraining the model (Extended Data Fig 5,
Extended Data Fig 6, and Supplemental Results). Providing a direct parallel with the responses
of rodent spatial neurons after environmental transformations30, 31. Similarly, an extra barrier in-
serted into a familiar environment becomes a target for BVC and egoBVC responses (Extended
Data Fig 7, and Supplementary Results), causing some place fields to duplicate and others to be
suppressed5, 6, 29.

Learned attractor dynamics in the head-direction system In the mammalian brain, head-
direction tuning is widely believed to originate from a neural ring attractor which constrains
activity to lie on a 1D manifold - when appropriately connected with neurons responsive to an-
gular velocity, this provides a mechanism to integrate head turns32. In our model, when RNN-1
was instantiated separately and provided only with angular velocities (see Methods), it displayed
a single activity bump that closely tracked the apparent head direction for several hundred steps,
effectively integrating angular velocity over periods that greatly exceeded the duration of train-
ing trajectories (Fig 3A). Projecting the observed activity vectors onto their first two principal
components revealed that they resided close to a 1-D circular manifold (Fig 3B), a characteristic
associated with linear continuous attractor systems. Indeed, with zero angular velocity inputs,
random initialisations of the network state quickly converged to a set of point attractors (Fig 3C-
D, see Methods).

In contrast, positive or negative angular velocities drove the state to periodic orbits along
1D cyclic attractors (Fig 3E-F). In the mammalian head direction system these dynamics4 are
hypothesised to be supported by a double ring network with each ring having counter rotated
tuning - a similar solution has been observed in the fly33. A strikingly similar connectivity can
be learned by simple RNN formulations34 (Extended Data Fig 8, Supplementary Results).

Angular velocity integration alone is not sufficient to maintain a stable representation of head
direction – visual cues are required to reset the activity of units and correct for drift. To in-
vestigate how our model incorporates visual information in its representation of heading, we
simulated the input of visual corrections (512 images from the training environment) and zero
angular velocity (see Methods). The majority of images (352/512) resulted in network dynamics
with a single attractor point per image, regardless of the initial network state (Fig 3G). These
images typically display unambiguous distal cues (Fig 3H). The remaining images (160/512)
did not result in a single attractor point, possibly reflecting the geometrical symmetries of the
environment. Interestingly, upon visual examination, these images usually lack distal cues and
correspond to views of walls and corners (Fig 3I).
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Figure 3: Head-direction cell dynamics. A) Activation of each unit over 1000 steps of blind
integration. Top: True integrated angle. Bottom: Activation of HD-units in RNN-1 through
time (units ordered by the phase of their resultant vectors). For the first 250 steps the angu-
lar velocity was set to π/20 rad/step, the following 250 steps 0 rad/step, the remaining 500
steps −π/40 rad/step. B) Projection of the 1000 activity vectors shown in A onto their first
two principal components. C) Euclidean distance between successive states in 1000 trajectories
with zero angular velocity and random initialisation (see Methods). Thick blue shows the aver-
age over one-thousand different initialisations, the thin lines show the 5-th and 95-th percentiles.
D) Grey shows the projection of the random initial states used in the simulations of panel C onto
the space of panel B. Green shows the state after 10 steps of dynamics with zero angular velocity.
Black crosses show the states after 1000 steps. All the trajectories converged to a discrete set of
attractor states. E) Projection on the space of panel B of two 50-step trajectories with constant
angular velocity input, one positive and one negative, each starting from a random initialisation.
F) Autocovariance of states as a function of time lag computed over 1000 randomly initialised
200-step trajectories with positive and negative velocities. G) Histogram of steps to convergence
to a single attractor state for 512 correction images. Insets show examples with quick conver-
gence (blue) and some that do not converge to a single state (red). H) Several example state
trajectories, initialised from the attractor states in panel D (different colours), providing visual
inputs with unambiguous cues (top) for 200 steps. Black crosses show the final states. I) Same
as H with ambiguous visual input of a wall.
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Spatial characteristics are preserved across environments Next, we sought to establish how
stable the different representations in our model were between environments that changed both in
terms of their geometry and visual composition. To this end the network was trained concurrently
in three environments inspired by empirical studies – a square, a circle, and a trapezoid, all with
distinct distal cues, floor and wall textures (Fig 4A, Extended Data Fig 9). The same RNNs
were used throughout but different external memory stores were provided for each environment.
Despite the different training environments we again found similar proportions of head direction,
egoBVC, BVC, and place cells in the network (see Supplementary Results). Indeed, although
the three environments were visually and geometrically distinct, the classification of units did
not materially change between them: 84% (27/32) RNN-1 units were classified as HD cells,
78% (100/128) of RNN-2 units as egoBVCs, and 61% (78/128) of RNN-3 units as BVCs, in all
environments simultaneously.

Predicted mechanism of BVC activity A full understanding of the spatial circuits in the mam-
malian brain will require resolving the functional dependence between different representations.
In our model the relationship between the HD and BVC systems is determined by their joint
association to visual memories (Extended Data Fig 10) - thus they rotate coherently to follow
changes in the angular location of a familiar distal cue35 (Extended Data Fig 5). Conversely, in
different enclosures with non-overlapping sets of visual memories, groups of BVCs may rotate
and flip relative to the HD-system while retaining their internal coherence5. The fast association
to memories allows rapid redeployment of the representations in novel settings (see next sec-
tion). This mechanism of HD and BVC dependence contrasts with the hypothesis that postulates
BVC activity as the result of direct conjunction of HD and egoBVC activations28. Hence, new
experimental studies on animals jointly recording the HD and BVC systems across enclosures
that elicit global remapping will be required to ascertain the mechanisms that give rise to BVCs
in several neocortical areas.

Representation re-use allows transfer of behaviour In animals, allocentric representations
such as head-direction cells and BVCs are rapidly redeployed in novel settings - likely as a result
of being constrained to low-dimensional manifolds which decouple the integration of self-motion
from high-dimensional perceptual experience5, 36. We hypothesised that this self-consistency is
an adaptive characteristic allowing spatial behaviour learned in one environment to be quickly
transferred to novel environments.

To test this proposal we incorporated the Spatial Memory Pipeline into a deep reinforcement
learning agent37 trained to find an invisible goal in a 4-room enclosure (Fig 4B), a task inspired
by the classic Morris water maze38. This task captured two forms of localisation: locally within
a room (where in the room?), and globally among all rooms (which room?). When the agent
reached the goal, it received a reward and was teleported to a random location in the enclosure -
to maximise reward it had to reach the goal as many times as possible within each episode. Three
visually distinct enclosures were used simultaneously for training (Fig 4C). Separate memory
stores were used for each enclosure but RNNs were shared.

Once trained, the agent reached a high degree of proficiency in the task, routinely following
the shortest path to the goal (better than human performance). Inspection of the memory pipeline
confirmed that the RNNs contained head-direction cells, egoBVCs, and BVCs with response
characteristics that were consistent across the three visually distinct environments (Extended
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Figure 4: A) Stability of spatial representations across three environments, one per row. Left to
right: view of the enclosure; allocentric orientation tuning of four units classified as HD cells;
spatial ratemap of three units classified as egoBVCs; and spatial ratemap of three units classified
as BVCs. B) Reinforcement learning task in a 4-room enclosure. Spawning points marked with
an S. The initial trajectory to the reward is dotted, later trajectories solid. C) Floor and wall
textures of the three training enclosures and one transfer enclosure. D) Comparison of learning
curves of spatial memory pipeline (red) and RL baseline agents (black). Solid, mean reward of
25 agents training in 3 environments. Dashed, mean reward of one transfer attempt for each
agent to 5 transfer environments. Dotted line indicates human performance. Surrounding light
area covers one SE of the mean across the 25 original training agents (see Methods). E) Artificial
pre-play in a T-maze. From left to right: schematic of artificial trajectory; place-cell activations;
HD-cell activations; and value prediction along the trajectory. Dashed line marks the time when
the trajectory crosses from the trunk to the left arm of the T. Place cells are sorted along the
horizontal axis in three groups according to the position of their centroid of activity: along the
stem, the left arm and the right arm of the T (see Methods). HD-cells are sorted according to
preferred angle. Visual inputs were provided only for the first 20 steps of the trajectory. F) Same
as E with trajectory turning right instead of left.
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Data Fig 12). To test our claim that these allocentric representations provide efficient bases for
transfer, the weights of the RNNs were frozen and the trained agent was placed into a fourth,
visually distinct 4-room enclosure (Fig 4C). The agent was able to quickly transfer the learned
behaviour (Fig 4D). In contrast, if generic recurrent networks were used instead of the Spatial
Memory Pipeline, the agent was still able to learn the initial task, but failed to transfer to visually
novel environments (Fig 4D, Extended Data Fig 11). Thus, our RNNs spatial responses support
rapid generalisation to novel settings, an ability that is commonly observed in mammals but has
been an elusive target for artificial agents.

Artificial replay During rest and pauses in behaviour, spatially modulated neurons – including
place cells and head-direction cells – can decouple their activity from an animal’s self-location
and recapitulate trajectories through an environment39. Replay is transient but rapid and has
been proposed as a mechanism relevant to navigational planning, imagination, and system-level
consolidation39–41. To understand if our model was able to generate replay-like sequences we
trained the same agent in a virtual T-maze. After training, starting from the base of the T, we let
the agent run without visual reactivations (save for the first few steps of each trajectory, neces-
sary for initial localisation). Despite the absence of perceptual input, we found that sequences
of activity in the RNNs and memory slots were coherently reactivated, strongly resembling spa-
tial trajectories along the track. Distinct sets of place cells were active for right and left turns
(Fig 4E-F), and distinct sequences of visual memory slots were predicted. These sequences can
be utilised to imagine42 the future course of action –effectively generating predictions regarding
future experiences (see Methods, Movie S1 and S2).

Discussion The Spatial Memory Pipeline described by our model develops an array of sensory-
derived allocentric spatial representations strongly resembling those found in the mammalian
brain. These representations are learnt solely using a predictive coding principle from egocentric
visual perception and self-motion inputs - the network does not have access to allocentric infor-
mation. Thus the model differs markedly from prior work in which brain-inspired agents have
been limited by the need for allocentric input during training43–46. Equally, being trained ‘end to
end’ it contrasts with simultaneous localisation and mapping approaches which use handcrafted
algorithms to extract pose estimates from select visual key-frames47, 48. The forms of egocentric
representation used here are, however, known to contribute to the activity of spatially modulated
neurons in the hippocampal region49, 50 while the predictive framework agrees with empirical and
theoretical work linking the hippocampus with anticipation of the future7, 51, 52. Our core contri-
bution then is the provision of a normative model linking most of the known mammalian spatial
representations to a simple objective function based on perceptual experience. This stands in
marked contrast to recent studies that have focused on the derivation of place cells from ide-
alised grid cells and vice versa43, 44, 53, 54 - to this existing work we add an understanding of how
place cells result from interactions with the sensory world.

The spatial cell-types that we identified were segregated between different modules, being
defined by the forms of information available to each of them: angular velocity and visual cor-
rections for head-direction cells, angular velocity, speed, and visual corrections for egoBVCs,
and only visual corrections for BVCs. Reactivation of memories by BVCs resembled place cell
activity. This framework implicitly captures several properties of the mammalian spatial system
- distinct functional populations combining to form a sparse, spatially precise representation of
self-location similar to that seen in the hippocampus. Like their biological counterparts, spatial
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responses in the RNNs were robust to environmental manipulations, responding predictably to
the changes made to local cues and retaining their fundamental firing correlates between en-
tirely different enclosures. In contrast, activity in the memory stores was, by design, entirely
distinct between environments, emulating hippocampal remapping, a phenomenon that occurs in
response to significant manipulations of environmental cues55, 56.

In the absence of visual input, activity in the RNNs and the place cell-like memory slots were
reactivated solely on the basis of the network’s internal dynamics, resembling the sweeps of
spatial activity that occur during replay. These representations constitute a flexible and efficient
spatial basis, available to be quickly redeployed in a novel setting - sufficient to support rapid
transfer learning in a reinforcement learning agent.

In the case of head-direction cells in the first RNN, the activity of units resulted from learnt
attractor dynamics – both in the integration of velocities and in the anchoring to visual cues. Low
dimensional manifolds of this form are widely accepted to provide the preeminent account of the
biological head-direction system36, 57, even being instantiated topographically in flies58, 59.

In conclusion, we show that an artificial network replicates both the form and function of
a biological network central to self-localisation and navigation. A simple training objective is
sufficient, in this case, to approximate the development of neural circuits that have been shaped
by both selective pressure applied over evolutionary time as well as by direct experience during
an animal’s life.
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Methods

The Spatial Memory Pipeline The Spatial Memory Pipeline consists of two submodules where
learning occurs independently. The first level is a visual feature extraction network that reduces
the dimensionality of visual inputs. Following visual feature extraction, there is a level of in-
tegration through time that encodes estimates of the agent’s location by integrating egocentric
velocities. We refer to this integration level as Memory-Map. It is composed of a fast-binding
slot-based associative memory that plays the role of an idealised hippocampus, and a set of re-
current neural networks that receive as inputs egocentric velocity signals and play the role of an
artificial neocortex.

Visual-feature extraction The first level in the Spatial Memory Pipeline hierarchy employs
a convolutional autoencoder60 to reduce the dimensionality of the raw visual input (Extended
Data Fig 1A). The autoencoder is composed of an encoder network that transforms the raw
visual input, y(raw) into a low-dimensional visual encoding vector, y(enc), that summarises the
structure of the input. To learn such compressed code, y(enc) is passed trough a decoder that
produces a reconstruction of the original input, ŷ(raw). All of the encoder and decoder parameters
are optimised to minimise the reconstruction error |y(raw) − ŷ(raw)|2. Table 3 summarises the
autoencoder configuration, see Supplementary Methods for more details.

For most of our experiments only the encoder network was used to transform raw images
into visual encodings serving as inputs to a Memory-map downstream. However, in the replay
experiments the decoder network was also used to recreate images from memorised encodings.

Memory-maps A Memory-map module consists of two components: a set ofR recurrent neural
networks, {Fr}r∈1...R, that integrate egocentric velocities, and a slot-based associative memory,
M, that binds upstream inputs, y, to RNN state values:

M≡
{
(m(y)

s ,m
(x)
1,s . . .m

(x)
R,s)

}
s∈1...S

, (1)

where the variable s indexes the different memory slots, while the super-index denotes the type
of information (y for upstream inputs, and x for the state of RNNs).

At each time step, t, the current upstream input, yt, reactivates the memory slots with the
most similar contents (Extended Data Fig 1B). We formalise this concept using a categorical
distribution over memory slots:

Preact(s | yt,M) ∝ eβy
>
t m

(y)
s , (2)

where β is a positive scalar that is automatically adjusted to match an entropy target, Hreact

–enforcing sparse activity (see Supplementary Methods).

At every time step, the states corresponding to each of the predictive RNNs, {xr}r∈1...R where
xr ∈ RNr , are updated using the current egocentric velocities, vr,t:

x̂r,t = Fr (xr,t−1,vr,t) . (3)

The type of velocity inputs used for each RNN is reported in Tables 4 and 5. For instance, in
most of our experiments the first RNN takes as input the sin and cos of the angular velocity, ω,
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whereas the second RNN takes the same inputs as the first RNN and also the linear speed, s.
Finally, the third RNN receives no velocity inputs and relies only of temporal correlations.

These RNN states also induce a predictive categorical distribution over memory slots (Ex-
tended Data Fig 1B):

Ppred(s | M, x̂1,t . . . x̂R,t) ∝
R∏
r=1

eπrx̂
>
r,tm

(x)
r,s , (4)

where πr are positive scalar parameters that determine the relative importance of each RNN in
the predictive distribution and its entropy.

Model parameters are optimised to minimise the cross-entropy from this predictive distribution
to the distribution of visually driven reactivations:

L =
S∑
s=1

Preact(s | yt,M) logPpred(s | M, x̂1,t . . . x̂R,t) . (5)

Thus, the model is trained so Ppred anticipates the distribution of memory reactivations Preact.

Note that at time t, Ppred has not yet received any information from the current upstream
visual input, yt, forcing the RNNs to use previous egocentric velocity inputs to produce good
predictions.

However, in order for the RNN representations to be allocentrically grounded, and to correct
for the accumulation of integration errors, the RNNs must incorporate positional and directional
information from upstream visual inputs as well. This correction step should not be performed at
every time step, or the integration of velocities would be unnecessary; in our experiments, it was
performed at random timesteps with probability Pcorrection = 0.1. The incorporation of visual
information is implemented by calculating a correction code for each RNN:

x̃r,t =
S∑
s=1

ws,tm
(x)
r,s ,where ws,t =

eγy
>
t m

(y)
s∑S

s′=1 e
γy>t m

(y)

s′
, (6)

where γ is a positive scalar parameter that determines the entropy of the distribution of weights
(Extended Data Fig 1C). Each x̃r,t can be thought of as the result of a weighted reactivation of
the RNN memory embeddings by the current visual input, yt.

In steps when corrections are provided, these correction codes are input to correction RNN
cells, Gr, that combine the predictive state with the correction code (Extended Data Fig 1C):

xr,t = Gr (x̂r,t, x̃r,t) . (7)

While in steps when no correction is available, the input to the next time step is simply the
predicted state (Extended Data Fig 1D):

xr,t = x̂r,t . (8)

Model parameters Θ =
{
γ,

{
Fr, Gr,m

(x)
r,· , πr

}
r∈1...R

}
are trained by gradient descent on the

prediction loss of equation (5).
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Note that the contents of the memory store corresponding to the upstream inputs, m
(y)
· , are

not part of the optimised parameters, Θ, as they are used to calculate the target distribution.
Therefore, in order to fill the slots ofMwith memories of upstream inputs, at every timestep with
small probability, Pstorage, a slot s is chosen at random and assigned (m

(y)
s ,m

(x)
1,s . . .m

(x)
R,s) :=

(yt,x1,t . . .xR,t).

Due to the sparse activation of memory slots there is low interference between memories,
i.e. modifying a m

(x)
r,· only has a local effect. For this reason these associative memory embed-

dings can be optimised at a higher learning rate (see Table 2), resulting in fast binding of new
memories once the RNN dynamics have been learned.

Further integration levels Extra downstream levels of temporal integration are possible. For
the reinforcement learning experiments we added a second Memory-Map whose memories are
reactivated by an RNN in the first level. As we saw in the main text, the activity of these memories
resembles hippocampal place cells. Therefore, we expect the representations learned by RNN in
this second Memory-Map to be useful for flexible navigation strategies43.

Architecture used in our experiments The experimental results in this paper used the archi-
tecture described in Tables 3-5.

Visual autoencoders The visual-encoding vectors y(enc) were obtained by inputting RGB im-
ages, y(raw), of the environment to an encoder network with 4 convolutional layers with bias
and ReLU output nonlinearities, chained to a flat output layer (Extended Data Fig 1A). The
architecture parameters are summarised in Table 3. The encoders used for the reinforcement
learning experiments had greater capacity than the encoders used for the unsupervised-learning
experiments, since they were trained to encode a variety of environments, as explained below.

In our experiments, the visual autoencoders were not affected by the prediction loss in equa-
tion (5). Therefore, the autoencoders were trained beforehand, separately from the rest of the
model. During the autoencoder training, images were passed through the convolutional layers
and flat output layer to produce the vector of visual encodings, y(enc). This vector was then
passed through a decoder network of de-convolutional layers (with transposed architecture from
the encoder but independent parameters) to produce a reconstruction, ŷ(raw), of the input im-
age (Extended Data Fig 1A). All parameters in the autoencoder were optimised to minimise the
mean square distance between the input and reconstructed images.

For all experiments, the autoencoders were trained by minibatch gradient descent using an
Adam optimiser with learning rate 10−4.

For unsupervised experiments, training minibatches consisted of 50 images taken at random
from the same trajectories used to train the spatial memory pipeline. Training was complete
after 200,000 minibatches. We trained a separate autoencoder for each environment (square,
circular, and trapezoid cages). Note that the manipulated environments in Extended Data Fig 5,
Extended Data Fig 7, and Extended Data Fig 6, used the same autoencoder as their original,
non-manipulated square environment.

For reinforcement learning experiments the training minibatches consisted of 216 images
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mixed at random from trajectories generated in the training and testing environments using a
rat-like motion model (see below). Training was complete after 200,000 minibatches.

The replay experiments used the same autoencoder architecture and training procedure as the
reinforcement learning experiments, except minibatches had only 64 images and training took
125,000 minibatches.

Rat-like motion model The rat-like motion model used to generate trajectories for unsupervised
experiments (and for training the visual autoencoders for reinforcement learning and replay ex-
periments, see above) was based on published work24, with parameters specified in Table 1. At
each time step a linear velocity was generated from a Rayleigh distribution and a rotational ve-
locity from a Gaussian distribution. However, if the trajectory was closer than 3 cm to a wall
at an angle narrower than 90o, a deterministic rotation was added that turned it to continue to
move parallel to the wall, and the linear velocity was reduced by a factor of 4. Additionally, the
trajectory switched between periods of movement (linear velocity Rayleigh parameter 0.13) and
periods of pure rotation (linear velocity Rayleigh parameter 0.0). The move and stop periods
lasted for an exponentially distributed number of steps with mean 50. The trajectories used to
train the spatial memory pipeline were sampled every 7 simulation steps. The angular and linear
velocity signals fed to the RNNs in unsupervised experiments were computed dividing the total
spatial displacement and angular rotation of the agent over each 7-simulation-step interval by the
simulation time of those 7 steps. The corresponding visual embedding came from the image of
the environment at the given position and orientation, with the camera 20 cm above and parallel
to the ground. Each trajectory consisted of 500 samples, corresponding to 3500 simulation steps.

Environment dimensions For the single-environment unsupervised-learning experiments a square
enclosure 2.2 m in side was used. The multi-environment experiments, additionally, included a
circular enclosure of radius 1.5 m, and an isosceles trapezoidal enclosure with altitude 4.4 m and
parallel sides 2.2 m and 0.75 m long. Single-environment experiments were also carried out in
the circular enclosure of 1.5 m radius (see Supplementary Results). The height of the walls in all
environments was 0.25 m.

Sigmoid-LSTM and Sigmoid-Vanilla As our aim was to compare the activation of artificial
RNNs to firing rate data from biological neurons, we limited the activations of all RNNs to
positive values. In order to do this, we modified the commonly used LSTM and Vanilla-RNN cells
by substituting their tanh output non-linearity for a sigmoid. We called these cells Sigmoid-LSTM
and Sigmoid-Vanilla-RNN respectively. As it learns faster, we used Sigmoid-LSTM in all our
experiments; with the exception of the supplementary HD double ring analysis (see Methods),
where we used a Sigmoid-Vanilla-RNN for ease of analysis. In a Vanilla-RNN the mapping from
the current state to the next is extremely simple. Namely, the current vector of cell activations,
ht, depends on the previous activations, ht−1, and inputs, xt, through equation:

ht = σ (Wht−1 + Vxt + b) , (9)

where σ is the element-wise sigmoid function, and we refer to W as the weight matrix of
dynamics and V as the weight matrix of inputs.
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Sparse reactivation The inverse-temperature parameter in the reactivation of memory slots, β
in equation (2), is constantly regulated so the entropy of Preact matches the hyperparameterHreact

(0.5 nats in unsupervised-learning experiments, 1.0 nats in reinforcement learning and replay).
In order to do this, β was parameterised as β = eβlogit and after every trajectory, βlogit was
increased/decreased by 0.001 when the average entropy of Preact was lower/higher than Hreact.

Training details The training parameters for the unsupervised experiments are summarised
in Table 2. The training was implemented with the TensorFlow platform. We used back-
propagation through time (BPTT) with an unroll length of 50 trajectory steps; since trajectories
consisted of 500 steps, each trajectory produced 10 BPTT unrolls. Batch size was 32, each batch
consisting of unrolls from different trajectories.

The single-environment experiments used the Adam optimisation algorithm. Different learn-
ing rates were used for the memory slot contents and the rest of the network parameters: since
the target distribution over slots was very sparse, we could apply a larger learning rate for the
memory slot contents.

For reasons of ease of implementation, the multi-environment experiments used the RMSProp
optimisation algorithm. Each of the three environments trained in a separate process, updating
the shared parameters synchronously with Distributed TensorFlow. The shared parameters were
the weights and biases of the RNNs (both the Fr prediction RNNs and the Gr correction RNNs).
The memory contents M and the entropy-scaling variables γ and πr were separate for each
environment.

Similarly to previous work43, dropout was used in the RNN outputs when predicting the mem-
ory reactivations.

Assessment of attractor dynamics in the head-direction system For the evaluation of inte-
gration dynamics in Fig 3A the state of RNN-1 was initialised to m

(x)
1,1 , and angular integration

(equation 3) iterated for a thousand steps using the angular velocity π
20

rad/step for 250 steps,
0 rad/step for the following 250 steps, and − π

40
rad/step for the final 500 steps. Visual input

was not given to the model. Fig 3A shows the evolution of the RNN state, x1,t, ordering its units
by the phase of its resultant vector.

The principal-component space displayed in Fig 3B was calculated by taking the two principal
eigenvectors of the covariance matrix of unit activity in Fig 3A. Repeated activity vectors were
discarded from the calculation of the mean and covariance matrix.

For the assessment of fixed attractor points in Fig 3C-D, the state of each unit in RNN-1 was
independently initialised by drawing a sample from a Gaussian with four times the standard
deviation of its activations in Fig 3A. A thousand different random initialisations were used and
each run for 1000 steps of angular integration (equation 3) inputting 0 rad/step angular velocity.

For the assessment of periodic orbits in Fig 3E-F, the same one thousand initialisations were
used, but each was run for 200 steps of angular integration (equation 3) using either a clockwise
− π

20
rad/step or counter-clockwise π

20
rad/step angular velocity. The 50 first steps of two arbi-

trary trajectories with opposing velocities were shown in Fig 3E. Each of the two autocovariance
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curves in Fig 3F was calculated using all 1000 trajectories.

For the assessment of point-attractors under the influence of visual inputs in Fig 3G-I, we took
512 random images from the training dataset, and run the model for 200 steps of prediction and
correction. Each of these 200 steps consisted of a step of visual correction, equations 7 and 8,
followed by zero angular-velocity integration, equation 3. For every image we run 18 trajectories
initialised from each the fixed points found in Fig 3D. We considered that a single fixed-point
had been reached at a particular time step if the maximum distance among the 18 trajectories was
less than 0.1 in the PCA space. The bottom plots in Fig 3H-I show the trajectory of each of these
18 initialisations for thre examples of visual inputs.

Unsupervised learning in multiple environments We trained the Spatial Memory Pipeline si-
multaneously in three environments, sharing the RNN parameters across the environments but
keeping a separate memory store for each. The separation of memories simulates hippocampal
remapping, since there is no correspondence between the slots for the different environments.
The RNN units, on the other hand, behaved coherently across the environments, giving fur-
ther credence to their role as analogues of HD, egoBVC and BVC cells. Extended Data Fig 9
summarises the stability of these representations across the three environments (1, square; 2,
circle; 3, trapezoid). The relative preferred angles between HD units in RNN-1 were preserved
with great accuracy between environments (Fig 9A), i.e., the head direction system rotated as a
whole without change in functionality. In contrast, the relative directional tuning of BVC units
in RNN-3, although not entirely random (Kuiper test rejected the uniform distribution for the an-
gle differences, p-value< 0.01 for all environment pairs), displayed high variability across units
(Fig 9C). This means that BVC units in our model, under remapping, are not locked to the head
direction system, unlike the case without remapping (see rotation manipulations, Extended Data
Fig 5). The preferred angles of EgoBVC units in RNN-2 stayed the same in different environ-
ments (inter-environment angular differences clustered tightly around zero, Fig 9B), as expected
for a system of egocentric coordinates. Distance tuning of egoBVCs was very stable across en-
vironments (Fig 9D), while BVC distance tuning, although significantly preserved (mean across
units of the absolute difference between environments significantly smaller than the mean across
shuffled pairs, p-value< 10−4), again showed more variability (Fig 9E).

The experiment described in Fig 4A and Extended Data Fig 9 was typical, but not all ex-
periments resulted in the same distribution of representations across RNNs and environments.
Specifically, across 15 multi-environment experiments (using 5 different random seeds and 3 dif-
ferent RNN learning rates, 10−3, 3 · 10−4, and 10−4), 8 had HD cells purely in RNN-1, as in the
experiment shown, while the other 7 had a significant number of them in RNN-2 instead.

Environment for reinforcement learning experiments We assessed the performance of rein-
forcement learning agents in the DeepMind Laboratory platform 61. The layout of the 4-room
enclosures (Fig3C) consisted of four 5 x 5-tile rooms (1.25 x 1.25 m assuming an agent speed of
15 cm/s) linked by four 5 x 1 corridors. The enclosure was surrounded by a sky-box at infinity
- so as to provide directional but not distance information - textured with buildings, clouds and
trees, which provided distal cues. There were no special markings on the walls or floors of the
enclosure, making all rooms and corridors identical except for their relative orientation with re-
spect to the distal cues. At the start of each episode the agent (described below) was placed in a
random location and was required to explore in order to find an unmarked goal, paralleling the
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task of rodents in the classic Morris water maze. When the goal was reached, the agent received a
reward of 10 points and was teleported to a random location in the enclosure. The goal remained
fixed for the length of the episode, so a well-trained agent would first explore the enclosure in
order to discover the goal location and then, after each teleportation, orient itself to return to
the same goal as quickly as possible. The length of the episodes was 3000 agent steps (12000
environment frames, see below).

The agent received observations in the form of camera input (96 x 72 pixels), rotation ve-
locity, and egocentric translation velocity (components parallel and perpendicular to the agent’s
orientation).

The agent could start at any position in the enclosure. The action space was discrete (six
actions) but afforded fine-grained motor control (that is, the agent could rotate in small incre-
ments, accelerate forwards or backwards, or effect rotational acceleration while moving for-
wards). Agent actions were repeated for 4 consecutive environment frames37; one actor step
consisted therefore of 4 environment steps.

The visual appearance of the environment was determined by the floor, wall and distal cues.
We used 8 different sets of textures, three of them for training and the other five to evaluate
transfer.

Reinforcement learning agent architecture We used importance-weighted actor-learner agent
(IMPALA) 37 to learn the task. IMPALA is an actor-critic setup to learn a policy distribution
π over the available actions and a baseline function V π. Our IMPALA setup consisted of 96
actors, repeatedly generating trajectories of experience, and one learner that used the trajectories
sent by actors to learn the policy. At the beginning of each episode actors updated their local
policy-network, value-network and Spatial Memory Pipeline parameters to the latest learner pa-
rameters and, at the end of each episode, sent the trajectory of observations, rewards, states, and
policy distributions to the learner. The learner continuously updated its policy, value and Spa-
tial Memory Pipeline parameters via back-propagation through time (BPTT) on batches of 64
100-step chunks of trajectories collected from different actors. Both the actor-critic parameters
and the Spatial Memory Pipeline parameters were optimised simultaneously, but with respect to
separate losses. The Spatial Memory Pipeline loss is just as described previously in the unsu-
pervised experiments, and determines the gradients for the Spatial Memory Pipeline parameters.
The actor-critic loss is composed of three terms: a policy gradient loss to maximise expected
advantage, a baseline value loss to predict the episode returns, and an entropy bonus to prevent
premature convergence. The possible policy lag between the actors and the learner was corrected
in the policy gradient and baseline losses with V-trace37. We used the Adam62, a stochastic gradi-
ent descent optimiser, for both the Spatial Memory Pipeline and the actor-critic loss. A schematic
of the agent network is displayed in Extended Data Fig 11A.

The inputs to the actor-critic network were the previous time-step reward and one-hot encoded
action, the current state of all the Spatial Memory Pipeline’s RNNs (current allocentric code),
and the the state of all the Spatial Memory Pipeline’s RNNs observed last time the goal was
reached (goal allocentric code, which was set to zero as long as the goal had not been reached
in the episode). These inputs were fed to a 256-unit LSTM whose output in turn went through a
policy MLP (one 256-unit hidden layer with ReLU activation) to produce the policy, and a value
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MLP (one 256-unit hidden layer with ReLU activation) to predict the value. Note that the actor-
critic network did not receive direct visual input to learn the task - only representations from the
Spatial Memory Pipeline.

The inputs to the Spatial Memory Pipeline, similarly to the unsupervised learning experiments,
consisted of egocentric velocities and vision. Because the DeepMind Laboratory agent has in-
ertia, it could shift sideways while moving, even though the action set did not allow strafing.
Therefore we provided as inputs not only the translation velocity in the heading direction of the
agent, but also the component perpendicular to it. These, together with the sine and cosine of
the rotational velocity of the agent, formed the 4-component velocity input vector (as opposed
to the 3-component vector used in unsupervised experiments, that lacked a sideways translation
component). The visual input was the embedding vector (length 128) of a convolutional au-
toencoder trained offline to reconstruct images of all the training and transfer environments, as
explained previously. Compared to the unsupervised experiments, the Spatial Memory Pipeline
for the reinforcement learning experiments used bigger RNN sizes, more memory slots and one
extra level of temporal integration, where memories were reactivated by RNN-3. The parameters
of the architecture are described in Tables 3-5.

In the training phase, each actor was assigned one of the 3 visually different training envi-
ronments. The Spatial Memory Pipeline had correspondingly three sets of memory stores, and
experiences coming from each environment were channelled automatically to the corresponding
bank. The RNN parameters, in contrast, were shared among all the environments. The agent
trained for a combined 2 billion actor steps, then it was tested on the transfer environments.

We evaluated the 5 transfer environments separately. In each transfer experiment all the IM-
PALA actors experienced only the transfer environment, and memory stores were initialised
blank. The memory store contents were overwritten at a quicker pace (probability 0.01 per step)
at the beginning of the transfer experiments, until full, then continued to be overwritten at the
normal rate (probability 0.0001 per step). The rest of the agent parameters started from their
values in the trained agent. During transfer the RNN parameters of the Spatial Memory Pipeline
were frozen; only the memory bank contents and the policy network parameters were trained.

Reinforcement learning baselines To support the hypothesis that it is the Spatial Memory
Pipeline representations that allow the agent to transfer the behaviour to a novel environment
with little training, we repeated the transfer experiments replacing the Spatial Memory Pipeline
with networks of comparable capacity: 1) a Spatial Memory Pipeline identical to the main exper-
iment pipeline, except the visual correction was performed at every time step (Pcorrection = 1.0);
this Spatial Memory Pipeline did not need to integrate velocities over multiple agent steps in
order to predict the slot activations, and consequently did not develop any useful spatial rep-
resentations. 2) A generic recurrent network (LSTM) (Extended Data Fig 11B) that integrated
visual and velocity inputs, trained with the agent policy loss. And 3) a two-layer network (Ex-
tended Data Fig 11C) where the first layer consisted of three LSTMs, each integrating the visual
and velocity inputs from one of the three training environments, and the second layer consisted of
a single LSTM integrating the batched outputs of the first-layer LSTMs; this network paralleled
the Spatial Memory Pipeline architecture, where each training environment had its own separate
memory stores.
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The three replacement networks, while able to learn the Morris water-maze task in the training
environments, failed to transfer their learned behaviour to visually novel environments (Extended
Data Fig 11D). After 50 million steps of transfer training in a novel environment, all the Spatial
Memory Pipeline agents had reached human performance. In contrast, the agents with generic
recurrent networks needed a similar number of training steps to transfer the learned policy as it
took to learn it in the first place (>250 million steps). The Spatial Memory Pipeline that was
purposefully trained with continuous vision (Pcorrection = 1.0) to disrupt the development of
spatial representations took much longer, demonstrating that it is not an architectural bias, but
the spatial representations learned that assist in the transfer of behaviour.

Replay experiments For artificial replay experiments we trained the same water maze task as
in the reinforcement learning experiments (see above) in a T-shaped enclosure in the DeepMind
Laboratory platform. The stem of the T was 3 x 12 tiles, the top line (consisting of the left
and right arms) 25 x 3 tiles. The enclosure was surrounded by a sky-box at infinity textured
with buildings. There was a marking at the end of each arm, different on the right and on the
left. During training, the goal position and the agent spawning positions could be anywhere in
the enclosure, so that the Spatial Memory Pipeline could learn to integrate trajectories across the
whole area. The length of the episodes was 7200 environment steps (1800 agent steps). The agent
architecture and hyperparameters were the same as in the reinforcement learning experiments.
Visual reactivations were provided on average every 10 steps (uniform probability of 0.1 in every
step), except at the beginning of each episode or after teleporting, when they were provided at
every step for 10 steps. The agent was trained until performance plateaued (mean episode reward
∼ 250, about 600 millions of steps of training).

The trained agent was tested on episodes where the agent’s initial and teleporting positions
were always at the bottom of the T-stem (agent orientation random), and the goals always at the
end of either of the two arms. In the testing phase, visual reactivations were provided at every
step for the first 20 steps of a trajectory, to allow the agent to localise. After 20 steps no visual
reactivations were provided, and the agent followed the learned policy. The mean episode reward
obtained by the agent in the test episodes was ∼ 200.

For Fig 4E and F we chose one test episode with goal on the left arm and one with goal on
the right arm. We display trajectories after the agent had reached the goal for the first time in
the episode. For the the place-cell activity vs. time plots, place cell activity fields were computed
from the training experiments as described elsewhere in Methods. Place cells were split into
three blocks: first one corresponding to the vertical stem of the T-maze, the second to the left
stem, and third to the right stem. Place cells in the first block were ordered by increasing y-
coordinate (bottom to top) of their activity field centroids. The cells in the second block were
ordered by decreasing (right to left) x-coordinate of their activity field centroids, and the third
block by increasing x-coordinate (left to right) of their activity field centroids. During the testing
episodes, without vision, place cell activation was computed from the predictions of the second
integration level. All the place cells that were activated in either (left turn or right turn) trajectory
were shown in both figures. In the head-direction cell plots, RNN-1 cells categorised as head-
direction cells were sorted by their preferred direction of activation (see categorisation methods
above), and their activation colour-mapped. Finally, the value plot represents the value output of
the actor-critic agent.
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The visual reconstructions on the left-hand side of Movie S1 and S2 are shown only for com-
parison: they were calculated simply as the reconstructions, ŷ(raw), obtained by feeding ground-
truth visual inputs, y(raw), along the imagined trajectory into the autoencoder. The right-hand
side reconstructions, on the other hand, were obtained by feeding into the decoder the content
m

(y)
s∗ of the visual memory slot corresponding to the highest predicted probability, where:

s∗ = argmax
s

Ppred(s | M, x̂1,t . . . x̂R,t), (10)

and show the visual input predicted by the model.

60. Kramer, M. A. Nonlinear principal component analysis using autoassociative neural net-
works. AIChE journal 37, 233–243 (1991).

61. Beattie, C. et al. Deepmind lab (2016). 1612.03801.

62. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014).
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A) B)

C) D)

Extended Data Figure 1: Diagram of the spatial memory pipeline. A) Computational diagram
showing the encoder and decoder networks of the convolutional autencoder used during its train-
ing. B) Computational diagram showing how the loss is calculated at every time step for an ex-
ample model with three predictive RNNs. Preact is the target distribution and Ppred the predicted
distribution over memories. C) Computational diagram of the model dynamics for a time step
with visual correction (10% of steps). A correction code x̃ is calculated as a visually-dependent
weighted average of visual memory embeddings m

(x)
r,· . D) Computational diagram of the model

dynamics for a time step without visual correction (90% of steps).
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Extended Data Figure 2: Spatial representations in the spatial memory pipeline trained in a
circular open field environment with white walls. A) Polar plot of activity by heading direction
of five cells classified as HD cells. B) Spatial ratemaps of five cells shown in A. Central plot
shows average activation for each location across all head directions. The eight plots around
each central plot show location-specific activity restricted to times when the heading direction
of the agent was in the corresponding 45◦ range (e.g. plot located above the central plot shows
average activity when the agent is facing in the north direction). C) Spatial ratemaps of five cells
classified as egocentric-boundary cells (egoBVCs). D) Spatial ratemaps of five cells classified as
boundary-vector cells (BVCs). E) Spatial ratemaps of five memory slots reactivated by RNN-3.
F) Spatial stability of cells in each RNN (see Supplementary Methods). G) Resultant vector
length of cells in each RNN. H) Resultant vector of each cell in RNN-1. I) Comparison of cells
responses to egocentric versus allocentric boundaries in each RNN.
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Extended Data Figure 3: Detail of boundary cells in Fig 2. A) First row, ratemap of five cells
classified as egoBVCs. Second row, egocentric-boundary ratemap (see Supplementary Meth-
ods). Third row, allocentric-boundary ratemap (see Supplementary Methods). B) Histogram of
preferred egocentric direction to boundary of all units classified as egoBVCs. Inset, Bayes infor-
mation criterion numbers for a uniform distribution over angles (U) and mixtures of Von Mises
distributions with different numbers of components. A mixture of two Von Mises distributions
(shown in green), with a mode for boundaries in front agent, was selected (lowest BIC) (see Sup-
plementary Methods). C) Histogram of preferred distance to boundary of all units classified as
egoBVCs. The distribution over distances was well fit by an exponential distribution (shown in
green) with mean distance of 35 cm. D) First row, ratemap of five cells classified as (allocentric)
BVCs. Second row, egocentric-boundary ratemap. Third row, allocentric-boundary ratemap.
E) Histogram of preferred allocentric direction to boundary of all units classified as BVCs. Inset
shows Bayes information criterion numbers for a uniform distribution over angles (U) and mix-
tures of Von Mises distributions with different numbers of components. A uniform distribution
(shown in green) was selected (lowest BIC). F) Histogram of preferred distance to boundary
of all units classified as BVCs. The distribution over distances was well fit by an exponential
distribution (shown in green) with mean distance of 29 cm.
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Extended Data Figure 4: Reactivation of memory slots (containing past RNN-3 states) resembles
place-cell responses. A) Spatial ratemap of the reactivation of eight memory slots in the exper-
iment described in Fig 2. Activity resembles that of biological place cells in the hippocampus.
B) Spatial stability of memory slot reactivations (see Supplementary Methods). C) Resultant
vector of memory slot reactivations. D) Cumulative total activity of place cells (memory slot
reactivations) ordered by their total activity (blue). Place cells showed a high sparsity: 25% of
cells account for 75% of activity. Activity in the three RNNs shows almost no sparsity (cells
activated equally on average). E) Number of fields per place cell (see Supplementary Methods).
F) Area of each activity field in square meters (total environment area is 4.8m2). G) Eccentricity
of fields. A score of 1.0 indicates a perfectly round field; lower scores indicate elongation.
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Extended Data Figure 5: Effects of distal cue rotation (45o) on the representations of the model
shown in Fig 2. There was no training after the manipulation. A) Polar plots of five cells iden-
tified as HD cells. Top row, original environment. Second row, after manipulation. HD activity
followed the rotation of distal cues. B) Number of RNN units identified as HD cells before and
after the environment manipulation. C) Histogram of change in phase of the resultant vectors
of all HD cells. D) Ratemap of five cells identified as egoBVCs. Top row, original environ-
ment. Second row, after manipulation. Rotation of distal cues did not affect egoBVCs’ activity.
E) Number of RNN units identified as egoBVCs before and after the environment manipulation.
F) Histogram of change in preferred egocentric angle to boundary of egoBVCs. G) Histogram
of change in preferred distance to boundary of egoBVCs. H) Ratemap of five cells identified as
(allocentric) BVCs. Top row, original environment. Second row, after manipulation. BVCs fol-
lowed the rotation of distal cues. I) Number of RNN units identified as BVCs before and after the
environment manipulation. J) Histogram of change in preferred allocentric angle to boundary of
BVCs. K) Histogram of change in preferred distance to boundary of BVCs. L) Ratemap of five
place-cell-like units. Top row, original environment. Second row, after manipulation. M) Num-
ber of fields for each place cell before and after the environment manipulation. N) Displacement
of place-cell field centroid after manipulation. Blue cross indicates the original centroid, red
arrows show their displacement. Black arrows show the displacement when a single field in
the original environment split into several fields after manipulation. O) Histogram of change in
phase of the place-cell centroid of activity when calculated in polar coordinates taking as origin
the centre of the enclosure.
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Extended Data Figure 6: Effects of enclosure resizing (width was doubled) on the representa-
tions of the model shown in Fig 2. There was no training after the manipulation. A) Polar plots
of five cells identified as head-direction cells. Top row, original environment. Second row, after
manipulation. The manipulation did not affect HD-cells. B) Number of RNN units identified
as head-direction cells before and after the environment manipulation. C) Histogram of change
in phase of the resultant vectors of all HD cells. D) Ratemap of five cells identified as egoB-
VCs. Top row, original environment. Second row, after manipulation. Cells maintained their
egocentric response after the stretch. E) Number of RNN units identified as egoBVCs before
and after the environment manipulation. F) Histogram of change in preferred egocentric angle to
boundary of egoBVCs. G) Histogram of change in preferred distance to boundary of egoBVCs.
H) Ratemap of five cells identified as (allocentric) BVCs. Top row, original environment. Second
row, after manipulation. Cells maintained their allocentric response after the stretch. I) Number
of RNN units identified as BVCs before and after the environment manipulation. J) Histogram of
change in preferred allocentric angle to boundary of BVCs. K) Histogram of change in preferred
distance to boundary of BVCs. L) Ratemap of five place-cell-like units. Top, original environ-
ment; below, after manipulation. The manipulation caused the activity fields of most cells to
stretch with the stretched environment axis. However some cells’ activity field split into two
fields. M) Displacement of place-cell field centroid after manipulation. Blue cross indicates the
original centroid, red arrows show their displacement. Black arrows show the displacement when
a single field in the original environment split into several fields after manipulation. N) Number
of fields for each place cell before and after the environment manipulation. O) Change in size
and eccentricity of each place cell’s activity field.
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Extended Data Figure 7: Effects of extra barrier insertion on the representations of the model
shown in Fig 2. There was no training after the manipulation. A) Polar plots of five cells
identified as HD cells. Top row, original environment. Second row, after manipulation. The
manipulation did not affect HD cells. B) Number of RNN units identified as HD cells before and
after the environment manipulation. C) Histogram of change in phase of the resultant vectors of
all HD cells. D) Ratemap of five cells identified as egoBVCs. Top row, original environment.
Second row, after manipulation. Cells maintained their egocentric response to the new barrier.
E) Number of RNN units identified as egoBVCs before and after the environment manipulation.
F) Histogram of change in preferred egocentric angle to boundary of egoBVCs. G) Histogram
of change in preferred distance to boundary of egoBVCs. H) Ratemap of five cells identified
as (allocentric) BVCs. Top row, original environment. Second row, after manipulation. Cells
maintained their allocentric response to the new barrier. I) Number of RNN units identified as
BVCs before and after the environment manipulation. J) Histogram of change in preferred allo-
centric angle to boundary of BVCs. K) Histogram of change in preferred distance to boundary
of BVCs. L) Ratemap of five place-cell-like units. Top row, original environment. Second row,
after manipulation. The extra barrier caused cells in the region to duplicate their fields. Cells
with distant activity fields were not affected. M) Number of fields for each place cell before and
after the environment manipulation. N) Displacement of place-cell field centroid after manip-
ulation. Blue cross indicates the original centroid, red arrows show their displacement. Black
arrows show the displacement when a single field in the original environment split into several
fields after manipulation.
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Extended Data Figure 8: Head direction cell connectivity learnt by a Vanilla-RNN network.
A) Polar plot of the resultant vectors of cells in RNN-1. B) Activation of each unit over 1000
steps of blind integration. Top: True integrated angle. Bottom: Activation of HD-units in RNN-1
through time (units ordered by the phase of their resultant vectors). For the first 250 steps the
angular velocity was set to π/20 rad/step, the following 250 steps 0 rad/step, the remaining
500 steps −π/40 rad/step. C) Weights in the RNN dynamics matrix, W. Columns and rows
ordered by the phase of their resultant vector. D) Histogram of preferred angular velocities for
each cell. E) Matrix of weights from CCW cells to all other cells. F) Matrix of weights from
CW cells to all other cells. G) Average weights connecting cells in each of the two rings to all
other cells ordered by their angular offset.
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Extended Data Figure 9: Stability of representations learnt across three environments: square (1),
circular (2) and trapezoidal (3). First column compares environments 1 and 2, second column
environments 1 and 3, third column environments 2 and 3. A) Histogram of HD cell preferred
direction differences between environment pairs. HD cells rotate coherently between environ-
ments. B) Histogram of egoBVC preferred egocentric direction differences between environ-
ments. The egoBVCs preserve their angular tuning between environments. C) Histogram of
BVC preferred allocentric direction differences between environments. The BVCs do not rotate
coherently between environments. D) Histogram of egoBVC preferred distance differences be-
tween environments (red) and normalised histogram of differences between randomly shuffled
units (blue). The egoBVCs preserve their distance tuning across environments. E) Same as D)
for BVCs. The distance tuning is significantly preserved across environments, although not as
tightly as in the case of egoBVCs.
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Extended Data Figure 10: Hypothesised BVC mechanisms. A) Traditional BVC mechanism:
BVCs result from the conjunction of HD and egoBVC signals. B) Proposed BVC mechanism:
BVCs are driven by the reactivation of visual memories and temporal coherence.
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Extended Data Figure 11: Reinforcement learning architectures and baselines. A) Agent train-
ing with the Spatial Memory Pipeline. The visual inputs from three visually different training
environments were stored in separate memory slot banks. The Spatial Memory Pipeline (light
blue frame) was trained as in the unsupervised experiments to minimise the loss in prediction
of memory reactivations. The policy (purple frame) was trained to minimise a combination of
policy gradient, value and entropy losses. B) Agent training baseline with an LSTM replacing
the Spatial Memory Pipeline. C) Agent training baseline with one LSTM per training environ-
ment and a common LSTM replacing the Spatial Memory Pipeline. D) Left, training learning
curves, and right, transfer learning curves, for the architectures in A (two curves), B and C. Error
regions represent the standard deviation of the average episode returns across 3 training envi-
ronments and 25 training seeds (training curves) or 5 transfer environments for each of the 25
trained agents (transfer curves).
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Extended Data Figure 12: Representations across three reinforcement learning training enclo-
sures, one enclosure in each row. A) Agent view of the enclosures. B) Ratemaps of two egoBVCs
in RNN-2, with their egocentric-boundary ratemap (see Supplementary Methods). C) Ratemaps
of two BVCs in RNN-3, with their allocentric-boundary ratemap (see Supplementary Methods).
D) Polar plots of four HD cells in RNN-1. E) Ratemaps of five place cells in each environment.
Note that, unlike the egoBVC, BVC or HD units, there is no relationship between the place cell
units across environments, since they correspond to separate memory banks.
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Movie S1: https://youtu.be/tkpX7Javyh0 Reconstructions of visual input along the
replay trajectory in Fig 4E (goal on the left arm of the T-maze). Left, ground-truth vision, recon-
structed from the actual visual encoding vectors along the agent’s trajectory. Right, the agent’s
reconstruction of the visual input from the sequence of visual embeddings in the memory slot
with highest prediction probability according to the RNN states at each time step. Middle plot,
agent trajectory in the enclosure. The arrow shows the agent’s position and heading direction.
The arrow is red while the agent is receiving visual input, at the beginning of the trajectory; for
the rest of the trajectory the agent is blind (arrow is black).

Movie S2: https://youtu.be/_kTZ9x2ZPfo Reconstructions of visual input along the
replay trajectory in Fig 4F (goal on the right arm of the T-maze).
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Configuration Value Meaning
bm 0.13 Linear velocity Rayleigh scale while moving (m/s)
bs 0.0 Linear velocity Rayleigh scale while stopped (m/s)

µ(φ) 0 Rotation velocity Gaussian distribution mean (deg/s)
σ(φ) 330 Rotation velocity Gaussian distribution standard deviation (deg/s)

d 0.03 Distance to wall to activate wall avoidance (m)
a 90 Angle limit to activate wall avoidance (deg)

slowdown 0.25 Velocity reduction factor when avoidance activated
dt 0.02 Simulation step time increment (s)

µ(stop) 50 Mean period for stop/move switching (simulation steps)
n 7 Number of simulation steps per trajectory sample
N 500 Number of samples per trajectory

Extended Data Table 1: Parameters of rat-like motion model24 to generate trajectories for unsu-
pervised experiments.
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Parameter Single-environment Multi-environment
BPTT unroll length 50 50

Batch size 32 32
Training batches 200, 000 200, 000

Optimiser Adam RMSProp
Learning rate (RNNs) 3 · 10−5 3 · 10−4

Learning rate (memory embeddings) 1 · 10−2 3 · 10−2
Other optimiser params β1 = 0.9, β2 = 0.999 decay=0.9, momentum=0

Dropout in RNN states predicting memories 0.5 0.5

Extended Data Table 2: Parameters for training in unsupervised experiments.
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Configuration Value (unsupervised experiments) Value (RL experiments)
Image shape 64 x 64 x 3 96 x 72 x 3

Number of conv. layers 4 4
Conv. kernel sizes 5, 5, 3, 3 5, 5, 3, 3

Conv. strides 2, 2, 1, 1 2, 2, 1, 1
Conv. output channels 16, 16, 32, 32 32, 32, 64, 64

Conv. padding Same Same
Output vector (y(enc)

t ) size 64 128

Extended Data Table 3: Configuration of the visual encoding level in Spatial Memory Pipeline.
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Configuration Value (unsupervised experiments) Value (RL experiments)
S 512 1024
R 3 3

yt y
(enc)
t y

(enc)
t

F1, F2, F3 Sigmoid-LSTM Sigmoid-LSTM
G1, G2, G3 Sigmoid-LSTM Sigmoid-LSTM

N1 32 64
N2 128 256
N3 128 256
v1,t 10· (cos(ωt), sin(ωt)) 10· (cos(ωt), sin(ωt))
v2,t 10· (cos(ωt), sin(ωt), st) 10· (cos(ωt), sin(ωt), st, s⊥,t)
v3,t () ()

Hreact 0.5 nats 1.0 nats
Pcorrection 0.1 0.1
Pstorage 0.0000625 0.0001

Extended Data Table 4: Configuration of the first integration level in the Spatial Memory
Pipeline. Where y

(enc)
t is the output of the visual encoder, ωt is the angular velocity, st speed

parallel to the direction of heading, and (only for RL experiments) s⊥,t the speed perpendicular
to the direction of heading.
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Configuration Value (RL experiments)
S 512
R 1
yt x3,t

F1 Sigmoid-LSTM
G1 Sigmoid-LSTM
N1 256
v1,t (x1,t, st, s⊥,t)

Hreact 1.0 nats
Pcorrection 0.1
Pstorage 0.0001

Extended Data Table 5: Configuration of the second integration level in reinforcement learning
experiments. x1,t is the state in RNN-1 of level 1, where head-direction cells develop; and x3,t is
the state in RNN-3 of level 1, where allocentric BVCs appear.
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There is Supplemental Information that contains additional results, discussion and methods.

Acknowledgements We thank Matt Botvinick, Vivek Jayaraman, Tim Behrens, Daan Wierstra, Sergei
Lebedev, Christopher Summerfield, Kimberly Stachenfeld, and Charlie Beattie for their valuable advice.

Competing Interests The authors declare that they have no competing financial interests.

Correspondence Correspondence and requests for materials should be addressed to Benigno Uria and
Charles Blundell (email: buria@google.com, cblundell@google.com).

Author Contributions
Conceived project: B.U, A.B, B.I, C.Ba, C.Bl, D.K, D.H.
Contributed ideas to experiments: B.U, C.Ba, B.I, C.Bl, A.B, V.Z, D.K
Performed experiments and analysis: B.U, B.I, V.Z, A.B
Development of testing platform and environments: B.I, V.Z, B.U, A.B
Wrote paper: C.Ba, C.Bl, B.U, B.I, A.B, D.K, D.H
Managed project:C.Bl, C.Ba, D.H

43

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 12, 2020. ; https://doi.org/10.1101/2020.11.11.378141doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.11.378141


Supplemental Information for The Spatial Memory Pipeline: a model of egocentric to
allocentric understanding in mammalian brains
Benigno Uria∗,1, Borja Ibarz∗,1, Andrea Banino1, Vinicius Zambaldi1, Dharshan Kumaran1,
Demis Hassabis1, Caswell Barry2, Charles Blundell1
1DeepMind
2University College London
∗Equal contribution
This section contains:

• Supplementary Results

– Emergent representations in a circular environment

– Effects of distal cue rotation on the model’s representations

– Effects of enclosure stretch on the model’s representations

– Effects of barrier insertion on the model’s representations

– Preservation of spatial characteristics across environments

– RNN-1 ring attractor analysis

• Supplementary Methods

– Decoding of position and heading angle

– Quantitative categorisation of spatial representations

– Spatial ratemaps

– Resultant vector of binned data

– Head-direction cells

– Egocentric boundary score

– Allocentric boundary score

– Spatial stability score

– Place cell field characterisation

– Model selection criterion

– Reinforcement learning baselines

– Videos of replay in T-maze

44

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 12, 2020. ; https://doi.org/10.1101/2020.11.11.378141doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.11.378141


Supplementary Results for The Spatial Memory Pipeline: a model of egocentric to allocentric
understanding in mammalian brains

Emergent representations in a circular environment The appearance of spatial representa-
tions shown in Fig 2 does not depend on the square geometry of the environment. The emergence
of such representations is robust to training in enclosures with different environment shapes. To
demonstrate this, the model was trained from scratch in a simulated circular environment of ra-
dius 1.5 meters, white walls, no internal cues, and distal cues consisting of a city-like scene. The
model developed similar representations (Extended Data Fig 2) to those appearing in the square
enclosure.

The majority of units in the first RNN module (RNN-1), which received only angular velocities
and corrections from the visual memories, exhibited activity modulated by the agent’s direction
of facing (Extended Data Fig 2A-B). In total 94% (30/32) of units were classified as head direc-
tion cells (resultant vector length >0.48) with unimodal responses distributed uniformly in the
unit circle (Extended Data Fig 2H, uniform distribution was selected under BIC over mixtures of
Von Mises).

The second module (RNN-2) received angular velocity and speed, together with corrections from
the visual memories. Units in this RNN encoded distances relative to boundaries at a particular
heading (Extended Data Fig 2C). As in the square arena, they resembled egoBVC responses,
with 94% (120/128) of units identified as egoBVCs (ego-boundary score >0.1, 99th percentile
of bin-shuffled distribution, Extended Data Fig 2I). None of the 128 units were identified as
BVCs. Here cells did not exhibit HD cell-like patterns of activity (mean resultant vector 0.01,
0/128 units classified as HD cells).

The third (RNN-3) received no self-motion inputs, thus was dependent upon corrections from
visual reactivations as its sole input and learning signal. Units in this RNN were characterised by
spatially stable responses (Extended Data Fig 2F). As in the square enclosure, the activity profile
of this module was reminiscent of BVCs (Extended Data Fig 2D). 83% (106/128) of units were
classified as BVCs (BVC score>0.11, 99th percentile of shuffled distribution) – 16% (20/128)
met the criteria for egoBVCs, but 13 of those 20 had a higher BVC score than egoBVC score.
Units in this layer were not modulated by heading direction (mean resultant vector 0.11, 0/128
units classified as HD cells).

Effects of distal cue rotation on the model’s representations First, we rotated the visible
distal cues by 45o clockwise (Extended Data Fig 5). The preferred orientation of HD units
in RNN-1 rotated en masse, tracking the cue rotation the same way that rodent head direction
cells are controlled by visual cues (resvec phase rotated by 43o on average, 1o SD) – tuning
width was unchanged (average 76.5o, 17.8o SD). The manipulation did not significantly affect
egoBVC activity (preferred egocentric directions to wall rotated by 3o on average, 6oSD). The
firing correlates of BVCs rotated with the head direction system (35o, 9oSD). The activity field
of the place-cell-like memory slots rotated around the centre of the environment (27o on average,
20o SD).

Effects of enclosure stretch on the model’s representations We transformed the training en-
vironment stretching it by 100% along the horizontal axis to form a 4.4 m by 2.2 m rectangle
(Extended Data Fig 6). Again, the response characteristics of HD cells as well as egoBVCs
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and BVCs were unchanged, and simply extended along the elongated walls like their biological
counterparts5, 6, 16, 17. Place cell responses closely mirrored those observed in rodents30, tending
to be stretched along the axis of elongation and in some cases becoming bimodal (Extended Data
Fig 6L-O).

Effects of barrier insertion on the model’s representations In a similar fashion, we introduced
a barrier into the virtual environment (Extended Data Fig 7). The responses of HD cells were
largely unaffected, maintaining the same direction of tuning (0o average change in phase, 0.2o

SD). Similarly, egoBVCs and BVCs retained their basic firing correlates, responding to the new
barrier as they had to the existing walls, resulting in the inception of additional firing fields
(Extended Data Fig 7D,H). Biological BVCs and egoBVCs are known to respond similarly;
indeed, the predictable response of these cells to extra walls is considered to be a diagnostic
feature5, 6. Place cell responses were more complex, some – typically those further from the
barrier – were unaffected (60%), whereas 22% formed a duplicate field on either side of the
barrier (Extended Data Fig 7L-N). Notably, similar outcomes have been reported in empirical
studies6329.

Preservation of spatial characteristics across environments To study the properties of the
Spatial Memory Pipeline representations across environments we trained concurrently in three
different enclosures (Fig 4A). In RNN-1, although the preferred firing directions of HD cells
changed between environments, the responses of all units were rotated by a similar amount,
maintaining the relative angular tuning between cell pairs (resultant vector phase rotation be-
tween environments 1 and 2 was 179o on average, 0.5o SD; between environments 1 and 3, −41o
on average, 0.6o SD; Fig 4A, Extended Data Fig 9A). The preservation of HD-cell characteris-
tics across environments is consistent with the presence of ring-attractor dynamics, as analysed
in single-environment experiments (Fig 3).

The ensemble response properties of egoBVCs in RNN-2 were similarly preserved. Between
the three different environments individual egoBVCs maintained their distance and directional
tuning, without rotation (mean resultant vector phase rotation 2o on average, 25o SD, between
environments 1 and 2; 0o on average, 6o SD between 1 and 3, Extended Data Fig 9B; mean
distance tuning difference 0.07 m between 1 and 2, 0.04 m between 1 and 3, p < 10−4 compared
to differences with shuffled units, Extended Data Fig 9D). These representations do not depend
on arbitrary distal cues, and are therefore preserved.

The BVCs in RNN-3 tended also to preserve distance tuning (0.19 m mean difference in distance
tuning between environments 1 and 2, 0.26 m between 1 and 3, SD 0.22, p < 10−4 compared
to differences with shuffled units, Extended Data Fig 9E), but not directional tuning across envi-
ronments (phase rotation had SD 69o between environments 1 and 2, and 89o between 1 and 3;
Extended Data Fig 9C).

RNN-1 ring attractor analysis To understand the mechanism by which our model tracks head
direction, we repeated the experiment shown in Fig 3 substituting the efficient but complex
LSTM integrators with Vanilla-RNNs. In Vanilla-RNNs each activity state is a simple function
of the previous state and inputs, thus is amenable to a mechanistic analysis34 (see Supplementary
Methods). As expected, this new experiment also developed head-direction cells in RNN-1, all
32 units being classified as head direction cells (resultant vector length >0.4, 99-th percentile of
shuffled data, Extended Data Fig 8A). Like the LSTM-based model, the Vanilla-RNN effectively
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integrated angular velocity over many time steps (Extended Data Fig 8B).

The simplicity of Vanilla-RNNs allowed us to examine the connectivity that supported angular
velocity integration, revealing a striking similarity with that found in the fly33 and hypothesised
for mammals32. The weight matrix of dynamics, W, when displayed ordered according to each
units’ preferred firing direction (Extended Data Fig 8C), resembled a circulant matrix, with a
diagonal band of excitatory connections surrounded by diagonal bands of inhibition. That is,
the connectivity between units forms a ring with local excitation and long-range inhibition. The
angular-velocity tuning of the cells, calculated as the arc-tangent of the 2-dimensional vector
of control weights, V, that receive as input the cosine and sine of the angular velocity, showed
a clear split of the units in two groups, 18/32 units being activated by positive angular veloc-
ities (ccw-cells) and 14/32 activated by negative angular velocities (cw-cells) (Extended Data
Fig 8D). Plotting the weight matrix of dynamics separately for each group revealed the mecha-
nism by which angular velocity was integrated (Extended Data Fig 8E-F). Each cell preferentially
excited other cells offset around the ring in the same direction as their angular-velocity tuning, an
asymmetry that became more obvious when the average weights to units with different relative
firing directions were calculated (Extended Data Fig 8G).
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Supplementary Methods for The Spatial Memory Pipeline: a model of egocentric to allocen-
tric understanding in mammalian brains

Decoding of position and heading angle For decoding of position and head direction (Fig 1D)
we trained a single-layer MLP (256 hidden units with tanh non-linearity) to predict either the true
(x, y) position of the agent in the environment, or the cosine and sine of its true head direction,
from either the vector of log probabilities of activation of the visual slots or the concatenation
of all the RNN outputs. We used RMSProp as optimiser (learning rate 10−4, decay 0.9, no mo-
mentum) with square loss. The decoder was trained on 10 million batches of 25 frames sampled
at random out of 300,000 frames from the same trajectories used for unsupervised training of
the Spatial Memory Pipeline. The decoding error shown in Fig 1D for position is the mean Eu-
clidean distance over the whole training set between the (x, y) output of the decoder and the true
position. For head direction, it is the mean absolute difference between the true head direction
and the arc-tangent of the cosine and sine prediction of the decoder. Error bars show the standard
error of the mean calculated as the standard deviation of 100 bootstrapped means computed from
5000 decoded samples.

Quantitative categorisation of spatial representations Where possible we have used the same
functional characterisations of cells used for rodent data. Resultant vector lengths of allocentric
direction-of-facing were used to characterise head-direction cells64. Resultant vector lengths of
egocentric-boundary ratemaps were used to characterise egocentric boundary cells (egoBVCs) 65.
We used the same procedure with allocentric-boundary ratemaps to detect allocentric boundary
cells (BVCs).

Our simulation datasets correspond to much longer duration than is common in rodent studies.
For this reason we avoided using thresholds based on random shifts of the data, as this results
in very low thresholds due to a null hypothesis that removes most of the dependency of activa-
tions from any environmental features. We used a bin-shuffling procedure that results in much
more stringent, and qualitatively pleasing, thresholds. Thresholds were calculated as the 99-th
percentile of resultant vector lengths for 1000 bin shuffles for each unit. All units from all RNNs
were used to calculate the threshold of each cell category.

Spatial ratemaps We measured and plotted the dependence of a cell’s activity on the agent’s
location by using spatial ratemaps. We partitioned the environment into a grid of 14cm by 14cms
square bins aligned with the cardinal directions. The spatial ratemap for a cell is the matrix of its
average activity when the agent is located inside each of these bins.

When we aimed to show the dependence of cell’s activity on both spatial location and head-
direction, the per-octant spatial ratemaps were calculated and plotted surrounding the spatial-
ratemap. These are eight spatial ratemaps where the data is restricted to times when the agent’s
head direction is contained in each of the eight intervals of 45o centered at the cardinal and
inter-cardinal directions.

Resultant vector of binned data Resultant vectors were calculated as a single complex number
from mean activities binned by angle:
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Ru =
∑
b

Fb,u∑
b′ Fb′,u

eib
2π
B (11)

where Fb,u is the average activity of unit u for the b-th bin out of a total of B bins.

The length of the resultant vector corresponds to the modulus of Ru and serves as a statistical
measure of circular concentration (inverse variance). While the argument of Ru is a statistical
measure of preferred direction of activation.

Head-direction cells Head direction cells characteristically fire in a small range of allocentric
direction. This preference for a single direction can be measured by the length of the resultant
vector of activations.

In order to calculate the resultant vector of each unit, we partitioned allocentric directions into
20 bins. The angular ratemap, Fb,u, of the u-th unit, with instantaneous activity au,t at time t,
was calculated as:

Fb,u = E
t|αt∈b−th bin

au,t (12)

where αt the agent’s direction of facing at time t, and αt ∈ b-th bin if (b − 0.5)2π
20

< αt ≤
(b+ 0.5)2π

20
.

The tuning-curve width for units classified as head-direction cells was calculated as
2π

20
, the

width of a single bin, times the number of bins where the mean activity was greater than 0.5 of
the greatest mean-bin activity for that unit.

Egocentric boundary score Egocentric boundary cells were characterised by the resultant vec-
tor of a the egocentric-boundary ratemap (EBR) 65. The EBR uses the agent’s position and
direction of facing as frame of reference and computes the average instantaneous activity when
a boundary is present at a particular distance and egocentric direction. In our unsupervised ex-
periments the EBR was calculated for bins of 4◦ by 2.5cm. The maximum distance considered
was half of the maximum distance between opposing walls. Examples of EBRs can be seen in
the middle row of Extended Data Fig 3A and D.

The length of resultant vector of the EBR (averaged over distance) was used to detect egocentric
boundary cells. For a cell classified as an egoBVC, the angle of the resultant vector was taken as
its preferred direction and the distance of the maximum activity along this direction in the EBR
as its preferred distance.

Allocentric boundary score We characterised allocentric boundary cells using an allocentric-
boundary ratemap (ABR). In the ABR the agent’s position is used as frame of reference but not
its direction of facing, the relative angle to boundaries is locked to the allocentric north direction.
The ABR computes the average instantaneous activity where a boundary is present at a particular
distance and allocentric direction. In our unsupervised experiments the ABR was calculated for
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bins of 4◦ by 2.5cm. The maximum distance considered was half of the maximum distance
between opposing walls. Examples of ABRs can be seen in the bottom row of Extended Data
Fig 3A and D

The length of resultant vector of the ABR (averaged over distance) was used to detect allocentric
boundary cells (BVC). For a cell classified as a BVC, the angle of the resultant vector was taken
as its preferred direction and the distance of the maximum activity along this direction in the
ABR as its preferred distance.

Spatial stability score Where reported, the spatial stability of a unit was measured as the Pear-
son correlation of its spatial ratemap for two halves of the data. In our experiments each half
of the data was comprised of 200,000 data points, which under the motion model used would
amount to 3000 seconds for each half.

Place cell field characterisation The activity field of a cell was calculated using the follow-
ing procedure on its spatial ratemap: (1) a Gaussian filter of radius 1 bin was applied, (2) bins
with value higher than half the maximum value were considered part of the activity fields, (3)
fields were segmented using the skimage.measure.label function, (4) fields smaller than
3 adjacent bins were discarded, and (5) the attributes of each field (position, size, and eccentric-
ity) were calculated using the skimage.measure.regionprops function with the original
ratemap as intensityimage parameter. We used version 0.14.0 of skimage throughout.

Model selection criterion Where a probability distribution is reported as fitting data (e.g. the
distribution of HD angles, or the angular preferences of egoBVCs) we used the Bayesian infor-
mation criterion to compare several alternative distributions. This criterion penalises the log-
likelihood of the model, L, by a term that depends on the number of parameters, k, and number
of data points, n:

BIC = k lnn− 2L (13)

A lower BIC signals a better model fit.

Reinforcement learning baselines Extended Data Fig 11A depicts the architecture of our agent
as described in the previous paragraph. The baselines we used to compare performance in the
water maze transfer task are the following:

• An agent with the same architecture, receiving visual corrections at every time step (instead
of every 10 steps on average). This is the baseline labelled Memory pipeline no integration
in Extended Data Fig 11D.

• An agent where the Spatial Memory Pipeline was replaced by a generic recurrent network
(LSTM) (Extended Data Fig 11B) integrating visual and velocity inputs. The size of the
LSTM output was 832 units, to make it the same as the concatenation of all the RNNs
in the Spatial Memory Pipeline. Unlike the memory pipeline, the LSTM did not have a
separate unsupervised loss for training, it was trained directly from the gradients of the
policy loss.

• An agent where the Spatial Memory Pipeline was replaced by a two-layer network of
LSTMs (Extended Data Fig 11C), where the first layer consisted of three LSTMs (output
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size 512 units), each integrating the visual and velocity inputs from one of the three train-
ing environments, and the second layer consisted of a single LSTM (output size 832 units)
integrating the batched outputs of the first-layer LSTMs. This network paralleled the Spa-
tial Memory Pipeline architecture, with the first-layer LSTMs playing the role of the per-
environment memory banks and the second-layer LSTM the role of the memory pipeline
RNNs. For transfer, the first layer was replaced by a single 512-unit LSTM, and the rest of
parameters were kept from the trained agent. As with the single-layer LSTM baseline, the
LSTMs did not have a separate unsupervised loss for training, and were trained directly
from the gradients of the policy loss.

Videos of replay in T-maze The Spatial Memory Pipeline can run on velocity inputs without
visual reactivations. In our artificial replay experiments, an agent trained on the water maze task
in a T-shaped enclosure was subsequently tested without providing visual inputs, except for a
number of steps at the beginning of each trajectory. As shown in Fig 4E-F, predicted place cell
activations and head-direction cell activity, as well as value predictions, correspond closely to
what would be expected in the presence of visual input. Since the RNNs have been trained to
predict the activations of visual memory slots, it is also possible to reconstruct the visual scene
from the low-dimensional embeddings contained in the slots. We demonstrate this in Movie S1
and S2. The left-hand side images in the videos, shown only for comparison, are reconstructed
from the ground-truth visual inputs along the agent’s imagined trajectory (which are not provided
to the agent, save for the first few steps; see Methods). The right-hand side images are recon-
structed from the visual embedding in the memory slot with the highest prediction probability
according to the RNN states, equation (4). Note that the reconstruction from memory is limited
to the available embeddings in the memory (1024, see Methods). As with place cell, HD-cell
and value predictions, the reconstruction from memory agrees well with the ground-truth visual
inputs along the trajectory.
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