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ABSTRACT  

Non-invasive biomarkers that predict HIV remission after antiretroviral therapy (ART) 

interruption are urgently needed. Such biomarkers can improve the safety of analytic treatment 

interruption (ATI) and provide mechanistic insights into the pathways involved in post-ART HIV 

control. We identified plasma glycomic and metabolic signatures of time-to-viral-rebound and 

probability-of-viral-rebound using samples from two independent cohorts. These samples include 

a large number of post-treatment controllers, a rare population demonstrating sustained virologic 

suppression after ART-cessation. The signatures remained significant after adjusting for key 

demographic and clinical confounders. We also confirmed a mechanistic link between biomarkers 

and HIV latency reactivation and myeloid inflammation in vitro. Finally, machine learning 

algorithms selected sets of biomarkers that predict time-to-viral-rebound with 74-76% capacity 

and probability-of-viral-rebound with 97.5% capacity. In summary, we fill a major gap in HIV 

cure research by identifying non-invasive biomarkers, with potential functional significance, that 

predict duration and probability of viral remission after treatment interruption. 

 

 

 

Keywords: HIV persistence; HIV Cure; HIV Rebound; Analytic Treatment Interruption; Post-
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INTRODUCTION 1 

Several therapeutic strategies are being tested in clinical trials to reduce the size of HIV reservoirs 2 

to a point where virologic control can be achieved without antiretroviral therapy (ART).1 The 3 

success of these strategies depends on the capacity to determine if potential interventions have 4 

made a meaningful impact on the HIV reservoir, i.e. if they have extended the likely period of 5 

ART-free remission following treatment discontinuation. Because current technologies are unable 6 

to measure the impact of interventions on the total body burden of HIV, HIV cure-focused clinical 7 

trials rely on the inclusion of an analytic treatment interruption (ATI) as the only definitive 8 

approach to evaluate the effectiveness of interventions.2-4 However, this approach is costly, 9 

cumbersome, and poses some risk to both study participants and the community. These realities 10 

highlight the urgent need for biomarkers that can accurately predict time-to-viral-rebound after 11 

treatment interruption and can be leveraged to guide clinical decision making. Such predictive 12 

biomarkers could be used to improve the safety of ATIs and accelerate the development of an HIV 13 

cure by providing a means for selecting only the most promising therapies for testing by ATIs.5 14 

These biomarkers could also provide mechanistic insights into the molecular and biochemical 15 

pathways involved in post-ART control of HIV.  16 

In the last few years, a small number of immunophenotypic and virologic measurements have been 17 

associated with time-to-viral-rebound.  Levels of exhaustion markers on CD4+ T cells, measured 18 

pre-ART, correlated with time-to-rebound.6 However, these measures fail as biomarkers when 19 

assessed during ART.6 Levels of cell-associated HIV DNA7 and RNA,8,9 as well as features of 20 

plasmacytoid dendritic cells,10 during ART, correlate with viral rebound after ART cessation, 21 

however, the correlations are generally modest. Thus, as of now, there are no sufficiently reliable 22 

or validated biomarkers that can be leveraged to guide clinical decision making. 23 

While the majority of HIV-infected individuals experience rapid viral rebound after ART 24 

interruption,8 a rare population of individuals, termed post-treatment controllers (PTCs), 25 

demonstrate sustained virologic suppression for several months to years after ART cessation.11-13 26 

The mechanisms underlying viral control in these individuals are not completely understood. 27 

Nonetheless, they represent a clinically relevant model for viral control post-ART.14,15 The 28 

existence of these individuals with this phenotype raises the question: is it possible to define a set 29 
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of biomarkers that can predict the probability-of-viral-rebound after potentially successful 30 

intervention (i.e., the likelihood to achieve a PTC phenotype after ART cessation)? These 31 

biomarkers can also provide critical insights into the mechanisms that underlie this clinically-32 

relevant and desirable phenotype.  33 

We have been taking advantage of work in the emerging fields of glycomics and metabolomics to 34 

identify highly robust, host-specific plasma biomarkers that can predict the duration and 35 

probability of viral remission after treatment interruption. Plasma glycoproteins (including 36 

antibodies; immunoglobulin G (IgGs)) and plasma metabolites enter the circulation from tissues 37 

through active secretion or leakage. Therefore, their levels and chemical characteristics can reflect 38 

the overall status of multiple organs, making them excellent candidates for biomarker discovery. 39 

Indeed, glycomic features in total plasma and on IgG have been identified as biomarkers for 40 

inflammatory bowel disease, cancer, and diabetes.16-21 In addition, glycans on circulating 41 

glycoproteins have functional significance, as they play essential roles in mediating 42 

immunological functions, including antibody-dependent cell-mediated cytotoxicity (ADCC) and 43 

pro- and anti-inflammatory activities.22-25 Similarly, plasma metabolites have been investigated as 44 

diagnostic and prognostic biomarkers in several diseases such as heart disease,26 hepatitis,27 45 

Alzheimer's disease,28 and cancer.29,30 Similar to plasma glycans, plasma metabolites are 46 

biologically active molecules that function to regulate critical immunological responses, including 47 

inflammatory responses.31-34   48 

In a recent pilot study,35 we identified several plasma glycomic structures whose pre-ATI levels 49 

associate with delayed viral rebound after ART discontinuation. These were the digalactosylated 50 

glycans on bulk IgG, called G2, as well as fucose (total and core) and N-Acetylglucosamine 51 

(GlcNac) on total plasma glycoproteins.35 However, that study was a small pilot and did not 52 

explicitly address the potentially confounding effects of age, gender, ethnicity, duration-on-ART, 53 

time of ART initiation (treatment at early vs. chronic stage of infection), or pre-ATI CD4 count.  54 

In this current study, we first extended our biomarker discovery by applying metabolomic analysis 55 

on one of the two cohorts used in the pilot.35 This was a cohort of 24 HIV-infected, ART-56 

suppressed individuals who had participated in an open-ended ATI study without concurrent 57 

immunomodulatory agents. Our metabolomic analysis identified a select set of metabolites whose 58 
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pre-ATI levels associate with time-to-viral-rebound. These metabolites belong to metabolic 59 

pathways known to impact inflammatory responses. We confirmed the direct functional impact of 60 

some of these metabolites on latent HIV reactivation and/or macrophage inflammation in vitro. 61 

We then profiled both the plasma glycome and metabolome of a large cohort of 74 HIV-infected, 62 

ART-suppressed individuals who underwent ATI during several AIDS Clinical Trials Group 63 

(ACTG) clinical trials. This cohort contains 27 PTCs and 47 post-treatment non-controllers (NCs). 64 

Using this cohort, we confirmed the utility of a set of plasma glycans and metabolites to predict 65 

time-to-viral-rebound and probability-of-viral-rebound even after adjusting for several potential 66 

demographic and clinical confounders. Finally, using machine learning models, we combined this 67 

set of biomarkers into two multivariate models: a model that predicts time-to-viral-rebound with 68 

74-76% capacity; and a model that predicts probability-of-viral-rebound (PVR score) with 97.5% 69 

capacity. Together, we fill a major gap in HIV cure research by identifying plasma non-invasive 70 

biomarkers, with potential functional significance, that predict duration and probability of viral 71 

remission after treatment interruption. 72 
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RESULTS 73 

Characteristics of study cohorts. In this study, we employed two ATI cohorts: 1) The Philadelphia 74 

cohort: a cohort of 24 HIV-infected individuals on suppressive ART who underwent an open-75 

ended ATI.35,36 This cohort had a wide distribution of viral rebound times (14 to 119 days; 76 

median=28; Supplementary Table 1).35 Importantly, this cohort underwent ATI without 77 

concurrent immunomodulatory agents that might confound our signatures at the initial discovery 78 

phase.35,36 2) The AIDS Clinical Trial Group (ACTG) cohort: a cohort combining 74 participants 79 

from six ACTG ATI studies (ACTG 371,37 A5024,38 A5068,39 A5170,40 A5187,41 and A519742), 80 

tested or not the efficacy of different HIV vaccines and interleukin-2 (IL-2) treatment. These six 81 

ATI studies included 567 participants and identified 27 PTCs out of these participants. Our ACTG 82 

cohort included all 27 PTCs and 47 matched NCs from the same studies. The definition of post-83 

treatment control was: remaining off ART for ≥24 weeks post-ATI with VL ≤400 copies for at 84 

least 2/3 of time points; had no ART in the plasma; and had no evidence of spontaneous control 85 

pre-ART. The remaining 47 were non-controllers (NCs) who rebounded before meeting PTC 86 

criteria.43-45 The PTC and NC groups within the ACTG cohort are matched for gender, age, 87 

ethnicity, % treated during early infection, ART duration and pre-ATI CD4 count (Table 1 and 88 

Supplementary Figure 1). Notably, the combined studies within the ACTG cohort reflect six ATI 89 

clinical trials where individuals received or not different HIV vaccines and/or immunotherapies.37-90 
42 This important feature of this cohort allows for identifying/validating markers that predict 91 

duration and probability of viral remission independent of potential interventions.    92 

Elevated pre-ATI levels of plasma markers of glutamate and bile acid metabolism associate with 93 

delayed viral rebound in the Philadelphia Cohort. We first aimed to examine the utility of plasma 94 

metabolites as biomarkers of time-to-HIV-rebound after ART-cessation. Towards this goal, we 95 

measured levels of plasma metabolites from the Philadelphia cohort.35,36 Using an untargeted mass 96 

spectrometry (MS)-based metabolomics analysis, we identified a total of 179 metabolites in 97 

plasma samples collected immediately before the ATI. Then, we applied the Cox proportional-98 

hazards model to identify metabolomic signatures of time-to-viral-rebound. As shown in Figure 99 

1A, higher pre-ATI levels of 13 plasma metabolites were significantly associated with a longer 100 

time-to-viral-rebound with P<0.05 and false discovery rate (FDR) <20%. In contrast, higher pre-101 

ATI levels of 12 plasma metabolites were significantly associated with a shorter time-to-viral-102 
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rebound. When participants were separated into low or high groups by the median of each of these 103 

25 metabolic markers, pre-ATI levels of 20 of 25 metabolites significantly indicated hazards of 104 

viral-rebound over time using the Mantel-Cox test (Figure 1B and Supplementary Table 2).   105 

We next sought to determine if the 25 metabolites associated with time-to-viral-rebound shared 106 

similar metabolic pathways. Multi-analysis combining KEGG and the STRING Interaction 107 

Network (focusing on metabolite-associated enzymatic interactions) revealed that most of the 13 108 

metabolites whose pre-ATI levels associated with a longer time-to-viral-rebound belong to two 109 

major metabolic pathways. Specifically, five metabolites lay within the anti-inflammatory 110 

glutamate/tricarboxylic acid (TCA) cycle pathway, and three were intermediates within the 111 

primary bile acid biosynthesis pathway (Figure 1C). Confirmatory analysis on these 13 112 

metabolites using the MetaboAnalyst 3.0 pathway feature (http://www.metaboanalyst.ca/) showed 113 

enrichment in glutamate metabolism (P = 0.00068) and the bile acid biosynthesis pathway (P = 114 

0.0399) (Figure 1C and Supplementary Table 3).  115 

Elevated pre-ATI levels of plasma markers of pyruvate and tryptophan metabolism associate 116 

with accelerated viral rebound in the Philadelphia Cohort. Multi-analysis of the 12 metabolites 117 

whose pre-ATI levels associated with shorter time-to-viral-rebound showed four intermediates in 118 

the tryptophan metabolism pathway and three that are central players in the pro-inflammatory 119 

pyruvate pathway (Figure 1D). These observations were confirmed for the 12 metabolites using 120 

MetaboAnalyst 3.0, which demonstrated enrichment in pyruvate metabolism (P = 0.0065) (Figure 121 

1D and Supplementary Table 3). The roles of key discovered metabolites within the glutamate, 122 

bile acids, tryptophan, and pyruvate pathways are graphically illustrated in Supplementary 123 

Figure 2. These data reveal a previously undiscovered class of plasma metabolic biomarkers that 124 

are associated with time-to-viral rebound post-ATI. They further demonstrate that these 125 

biomarkers belong to a specific set of metabolic pathways that may play a previously unrecognized 126 

role in HIV control.  127 

L-glutamic acid and pyruvate modulate latent HIV reactivation and/or macrophage 128 

inflammation in vitro. Among the top candidate metabolic biomarkers from Figure 1 are L-129 

glutamic acid (glutamate metabolism) and pyruvic acid (pyruvate metabolism).  The higher pre-130 

ATI levels of L-glutamic acid and pyruvic acid associated with longer or shorter time-to-viral-131 
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rebound, respectively. These two metabolites can impact inflammation in opposing directions. 132 

Glutamate controls the anti-inflammatory TCA cycle through its conversion by glutamate 133 

dehydrogenase to α-ketoglutarate,46,47 whereas pyruvate is centrally positioned within the pro-134 

inflammatory glycolytic pathway.48-50 We therefore sought to determine if these two metabolites 135 

exhibited a direct functional impact on latent HIV transcription and/or myeloid inflammation. We 136 

first assessed the impact of these two metabolites on latent HIV reactivation using the established 137 

“J-Lat” model of HIV latency.  J-Lat cells harbor a latent, transcriptionally competent HIV 138 

provirus that encodes green fluorescent protein as an indicator of reactivation (Figure 2A).51,52 139 

There are several clones of the J-Lat model with different characteristics, including the type of 140 

stimulation to which they respond. For example, the 5A8 is the only J-Lat clone responsive to 141 

αCD3/αCD28 stimulation. We examined the impact of L-glutamic acid and pyruvate on two J-Lat 142 

clones (5A8 and 10.6). Whereas pyruvate had no observable effect on latent reactivation for either 143 

clone (data not shown), L-glutamic acid significantly inhibited the ability of phorbol-12-myristate-144 

13-acetate (PMA)/ionomycin or αCD3/αCD28 to reactivate latent HIV in clone 5A8 without 145 

impacting viability compared to stimuli alone controls (Figure 2B). L-glutamic acid also inhibited 146 

the ability of PMA/ionomycin or TNFα to reactivate latent HIV in clone 10.6 without impacting 147 

viability compared to stimuli alone controls (Figure 2C). These data demonstrate that a plasma 148 

metabolite, L-glutamic acid, can inhibit latent viral reactivation, consistent with the observation 149 

that pre-ATI levels of L-glutamic acid predicted a longer time-to-viral-rebound. 150 

Beyond direct impact on latent viral reactivation, plasma metabolites may exert effects on myeloid 151 

inflammation, and such effects may underlie HIV control during ATI. This possibility was tested 152 

by examining the effects of L-glutamic acid and pyruvate on lipopolysaccharides (LPS)-mediated 153 

secretion of pro-inflammatory cytokines from THP-1 derived macrophage-like cells. These cells 154 

characterized by high basal glycolytic activity closely reflect the Warburg-like phenotype observed 155 

in HIV infected individuals,53 and exhibit similar inflammatory responses to primary cells under 156 

similar in vitro conditions.48 Cells were treated with L-glutamic acid, pyruvate, or appropriate 157 

controls for 2 hours before stimulating with LPS and IFNγ for 5 hours (Figure 2D). L-glutamic 158 

acid inhibited LPS/IFNγ-mediated production of pro-inflammatory cytokines such as IL-6 and 159 

TNFα (Figure 2E; other cytokines are shown in Supplementary Figure 3A). Consistently, L-160 

glutamic acid also increased anti-inflammatory IL-10 secretion (Figure 2E). Conversely, pyruvate 161 

increased IL-6 and TNFα secretion (Figure 2F; other significantly regulated cytokines are shown 162 
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in Supplementary Figure 3B). These data demonstrate that not only do some metabolites 163 

associate with time-to-viral-rebound, but also that there is a plausible, functionally significant link 164 

between these biomarkers and viral control during and following ATI. 165 

Pre-ATI plasma glycomic and metabolic biomarkers associate with time-to-viral-rebound in the 166 

ACTG Cohort. Our recent pilot study showed that pre-ATI levels of a specific set of glycans 167 

predicted a longer time-to-viral rebound after ART discontinuation.35 However, this small pilot 168 

study did not correct for confounders such as  age, gender, and nadir  CD4 count on viral rebound. 169 

We hypothesized that a set of plasma glycans and metabolites we identified in that pilot study,35 170 

as well as in the results shown in Figure 1, can predict time-to-viral-rebound and/or probability-171 

of-viral-rebound using plasma samples from a larger validation cohort, even after adjusting for 172 

potential demographic and clinical confounders. For this analysis we analyzed samples from the 173 

ACTG cohort.  174 

We analyzed the plasma metabolome of samples collected from this cohort before ATI. A total of 175 

226 metabolites were identified using MS-based metabolomics analysis. In addition, we applied 176 

two different glycomic technologies to analyze the plasma glycome of the same samples. First, we 177 

used capillary electrophoresis to identify the N-linked glycans of total plasma glycoproteins 178 

(identified 24 glycan structures, their names and structures are listed in Supplementary Figure 4) 179 

and isolated plasma IgG (identified 22 glycan structures, their names and structures are listed in 180 

Supplementary Figure 5). Second, we used a 45-plex lectin microarray to identify total (N and 181 

O linked) glycans on plasma glycoproteins. The lectin microarray enables sensitive identification 182 

of multiple glycan structures by employing a panel of 45 immobilized lectins (glycan-binding 183 

proteins) with known glycan-binding specificity, resulting in a "glycan signature" for each sample 184 

(the 45 lectins and their glycan-binding specificities are listed in Supplementary Table 4.).54      185 

We used the Cox proportional-hazards model and a set of highly stringent criteria to identify sets 186 

of glycans or metabolites whose pre-ATI levels associated with either time to VL ≥1000 (Figure 187 

3 top panel) or time to two consecutive VL ≥1000 (Figure 3 bottom panel). To ensure high 188 

stringency, we only considered markers with a hazard ratio (HR) ≥ 2 or ≤0.5. We also included in 189 

these sets only those glycomic and metabolic markers with either FDR<0.1 or markers that 190 

emerged from the Philadelphia cohort (Figure 1 and our previous pilot study35). Importantly, we 191 
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only included markers that remained significant (P<0.05) after adjusting for age, gender, ethnicity, 192 

ART initiation (during early or chronic HIV infection), ART duration, or pre-ATI CD4 count 193 

(Supplementary Table 5). These combined strict criteria identified a signature that predicted 194 

shorter time-to-rebound to VL≥1000, comprising four glycan structures and one metabolite 195 

(Figure 3 top panel, red).These five markers include the highly sialylated plasma N-glycan 196 

structure (A3G3S3), GalNAc-containing glycans (also known as T-antigen; measured by binding 197 

to both MPA and ACA lectins) and the metabolite pyruvic acid. We also identified a signature that 198 

associated with a longer time-to-rebound to VL≥1000, comprising seven glycan structures and one 199 

metabolite, notably the digalactosylated G2 glycan structure on plasma bulk IgG, fucosylated 200 

glycans in plasma (binding to AAL lectin), GlcNac glycans in plasma (binding to DSA, UDA, and 201 

STL lectins), and the metabolite L-glutamic acid (Figure 3 top panel, blue). 202 

Turning to markers that associated with time to two consecutive VL ≥1000, and applying the same 203 

strict criteria, we identified five glycomic markers and one metabolite whose pre-ATI levels 204 

associate with shorter time-to-rebound post-ATI, including A3G3S3 in plasma, T/Tn-antigens 205 

(binding to MPA, ACA, and ABA lectins), and the metabolite Nicotinamide (Figure 3 bottom 206 

panel, red). We also identified seven glycan structures and two metabolites whose pre-ATI levels 207 

predicted a longer time-to-rebound, including, G2 glycan structure on bulk IgG, core fucosylated 208 

glycans (binding to LCA lectin) in plasma, total fucosylated glycans (binding to AAL lectin) in 209 

plasma, GlcNac glycans (binding to DSA, UDA, and STL lectins) in plasma, and the metabolites 210 

oxoglutaric acid (α-ketoglutaric acid) and L-glutamic acid (Figure 3 bottom panel, blue). The 211 

significance of several of these markers was also confirmed using the Mantel-Cox test in an 212 

independent analysis (Figure 4). In sum, using stringent analysis criteria that also took into 213 

account potential confounders, we identified and validated plasma glycomic/metabolomic 214 

signatures of time-to-viral-rebound after ART discontinuation in this independent heterogeneous 215 

cohort of individuals who underwent ATI and received or not several different interventions before 216 

ATI.    217 

Levels of pre-ATI plasma glycomic and metabolic markers that associate with time-to-viral-218 

rebound are linked to levels of cell-associated HIV DNA and RNA. We next examined whether 219 

the plasma glycans and metabolites (Figure 3) that associated with time-to-viral-rebound also 220 

reflected levels of virological markers of HIV persistence (levels of peripheral blood mononuclear 221 
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cell (PBMC)-associated total HIV DNA and HIV RNA) in blood. We found that pre-ATI levels 222 

of total fucose (binding to AAL lectin), which predicted delayed viral rebound, showed a 223 

significant inverse correlation with pre-ATI levels of cell-associated HIV DNA and RNA (Figure 224 

5A-B). Similarly, pre-ATI levels of core fucose (binding to LCA lectin), which also predicted 225 

delayed viral rebound, also showed an inverse correlation with pre-ATI levels of cell-associated 226 

HIV DNA and RNA (Figure 5C-D). Furthermore, total levels of (GlcNAc)n (binding to UDA 227 

lectin), which predicted delayed viral rebound, had an inverse correlation with levels of total HIV 228 

DNA (Figure 5E). Noteworthy, levels of pyruvic acid, whose pre-ATI levels predicted accelerated 229 

viral rebound, had a significant positive correlation with pre-ATI levels of cell-associated HIV 230 

DNA (Figure 5F). These data provide more support for a plausible mechanistic connection 231 

between our discovered plasma markers and HIV control during ATI.    232 

Multivariable Cox model, using Lasso technique with the cross-validation (CV), selected 233 

variables that their combination predicts time-to-viral-rebound. As a single marker would be 234 

highly unlikely to strongly predict these complex virological milestones, we next sought to apply 235 

a machine learning algorithm to identify a smaller set of plasma biomarkers (from Figure 3) that 236 

together can predict either time to VL ≥1000 or time to two consecutive VL ≥1000 better than any 237 

of these biomarkers individually. The analysis considered biomarkers, both metabolites and/or 238 

glycan structures, that emerged as significant from the ACTG cohort (Figure 3) and using samples 239 

with complete data set (n=70; four samples did not have a complete dataset). The machine learning 240 

algorithm, Lasso (least absolute shrinkage and selection operator) regularization, selected seven 241 

markers from among the 13 that associated with time to VL ≥1000 (Figure 3 top panel), whose 242 

predictive values are independent and combining them together would enhance the predictive 243 

ability of the signature compared to each of these marker alone (Supplementary Table 6). Indeed, 244 

a multivariable Cox regression model using these seven variables showed a concordance index (C-245 

index) value of 74% (95% confidence interval: 68%-80%), which is significantly higher than the 246 

C-index values obtained from Cox models using each variable individually (P<0.05; 247 

Supplementary Table 6). Notably these seven markers included four whose pre-ATI levels 248 

associated with accelerated rebound, A3G3S3, T-antigen (MPA and ACA lectins binding), and the 249 

metabolite pyruvic acid. The other three markers associated with delayed rebound: total fucose 250 

(AAL lectin binding), (GlcNAc)n (STL lectin binding), and the metabolite L-glutamic acid 251 

(Supplementary Table 6).  252 
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Examining markers associated with time to two consecutive VL ≥1000, Lasso selected 12 markers 253 

from the 15 identified (Figure 3 bottom panel) whose predictive values are independent and 254 

whose combination enhanced the predictive ability of the signature compared to any single marker 255 

alone (Supplementary Table 7). A multivariable Cox regression model using these 12 variables 256 

showed a concordance index (C-index) value of 76.4% (95% confidence interval: 70%-84.2%), 257 

which is significantly higher than the C-index values obtained from Cox models using each 258 

variable individually (P<0.05; Supplementary Table 7). The 12 markers included some whose 259 

pre-ATI levels associated with accelerated rebound, including A3G3S3 glycans and T-antigen 260 

(ABA and ACA lectins binding) and some whose pre-ATI levels associated with delayed viral 261 

rebound, including G2 glycans, total fucose (AAL lectin binding), (GlcNAc)n (STL lectin 262 

binding), and the metabolite L-glutamic acid. (Supplementary Table 7). Together, these data 263 

suggest that these multivariable models of combined plasma glycans and metabolites markers 264 

warrant further exploration for their capacity to predict time-to-viral rebound in different settings. 265 

Pre-ATI plasma glycomic and metabolic markers distinguish post-treatment controllers (PTC) 266 

from non-controllers (NCs). Examining the glycan structures and metabolites obtained from the 267 

ACTG cohort, we identified eight glycan structures whose pre-ATI levels were significantly 268 

different between PTCs and NCs with FDR<0.1 (Figure 6A-H). Among these eight glycans 269 

structures, three exhibited lower levels in the plasma of PTCs compared to NCs (FDR<0.02), 270 

including the di-sialylated glycans, A2, in total IgG glycans; the highly-sialylated glycans, 271 

A3G3S3, in plasma N-glycans; and T-antigen (binding to ABA lectin) (Figure 6A-C); and five 272 

glycans were higher in PTCs compared to NCs (FDR≤0.035). These included total fucose (binding 273 

to AAL lectin), core fucose (binding to LCA and PSA lectins), and (GlcNac)n (binding to STL 274 

and UDA lectins (Figure 6D-H).  275 

Examining metabolites, we found that pre-ATI levels of α-ketoglutaric acid and L-glutamic acid, 276 

both of which predicted delayed viral rebound, were higher in the plasma of PTCs compared to 277 

NCs (P<0.01, Figure 6J-I). Importantly, for both glycans and metabolites, we only selected 278 

markers whose levels remained different (P<0.05) between PTCs and NCs after adjusting for age, 279 

gender, ethnicity, ART initiation, ART duration, or pre-ATI CD4 count (Supplementary Table 280 

8). Together, these data suggest that a selective set of plasma glycans and metabolites can 281 
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distinguish PTCs from NCs and may be used to predict the probability of viral rebound (i.e., the 282 

likelihood of PTC phenotype after ATI).  283 

Multivariable logistic model, using CV Lasso technique, selected variables that their 284 

combination predicts risk of viral rebound. We next applied the Lasso regularization to select 285 

from among the ten markers in Figure 6 a set of markers whose combined predictive utility is 286 

better than the predictive utility of any of these 10 markers individually. The analysis used 287 

biomarkers that emerged as significant from the ACTG cohort (Figure 6) and using samples with 288 

complete data set (n=70). Lasso selected seven markers from the 10 identified as able to distinguish 289 

PTCs from NCs (Figure 6) that their predictive values are independent and combing them together 290 

would enhance the predictive ability of the signature compared to each of these markers alone 291 

(Supplementary Table 9). Indeed, a multivariable logistic regression model using these seven 292 

variables showed an area under the ROC curve (AUC) value of 97.5% (Figure 7A; 95% 293 

confidence interval: 94% -100%), which is significantly higher than the AUC values obtained from 294 

logistic models using each variable individually (P<0.05; Supplementary Table 9). These seven 295 

markers included three whose pre-ATI levels are lower in PTCs compared to NCs, namely A2, 296 

A3G3S3, and T-antigen (ABA lectin binding), and four whose pre-ATI levels were higher in PTCs 297 

compared to NCs, namely total fucose (AAL lectin binding), core fucose (LCA lectin binding), 298 

(GlcNAc)n (STL lectin binding), and the metabolite L-glutamic acid (Supplementary Table 9).  299 

Next, a risk score predicting NC was estimated for each individual using the multivariable logistic 300 

model. We then examined the ability of these risk scores to classify PTCs and NCs from the ACTG 301 

cohort. As shown in Figure 7B, the model was able to correctly classify 97.7% of NCs 302 

(sensitivity), and 85.2% of PTCs (specificity) with overall accuracy of 92.9%. This analysis 303 

highlights the potential utility of this risk score estimated from the multivariable model combining 304 

six plasma glycans and one metabolite, to predict the risk of NC post-ATI. This prediction can be 305 

utilized to select individuals likely to achieve PTC phenotype during HIV cure-focused clinical 306 

trials, to be included in ATI studies. In addition, the markers that are included in this model might 307 

also serve as windows into the mechanisms that contribute to the PTC phenotype.308 
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DISCUSSION  309 

In this study we identified and initially validated pre-ATI plasma glycomic and metabolomic 310 

biomarkers of both duration and probability of viral remission after treatment interruption. We 311 

observed a significant overlap between plasma markers that predicted time-to-viral rebound and 312 

markers that predicted probability of viral rebound (i.e., predicted the PTC phenotype in 313 

comparison to the NC phenotype). Specifically, pre-ATI plasma levels of the anti-inflammatory 314 

L-glutamic acid, N-Acetylglucosamine (GlcNac), and fucose were associated with both delayed 315 

rebound and higher likelihood to achieve viral remission. Whereas pre-ATI plasma levels of the 316 

highly-sialylated A3G3S3 and GalNAc-containing glycans (T/Tn-antigens) were associated with 317 

both accelerated rebound and lower likelihood of achieving viral remission. Notable differences 318 

included the digalactosylated G2 glycan on IgG glycome whose pre-ATI levels associated with 319 

longer time-to-viral-rebound but not probability of viral rebound; and the di-sialylated IgG glycan, 320 

A2, whose pre-ATI levels associated with higher probability of viral rebound but not with time-321 

to-viral rebound.  322 

It is not surprising that a single marker cannot highly predict these complicated virological 323 

milestones (time to and probability of viral rebound). Therefore, we applied machine learning 324 

algorithms to select the smallest number of variables that, when combined, maximizes the 325 

predictive utility of our signatures. The variables selected by CV Lasso technique, when used in 326 

multivariate models, were able to predict time-to-viral rebound using Cox models with C-index of 327 

74-76% and probability of viral rebound using logistic model with AUC of 97.5%. The utility of 328 

these multivariable models to be used in HIV cure-directed clinical trials warrants further 329 

investigation. Upon validation, these models could have a profound impact on the HIV cure field 330 

by mitigating the risk of ATI during HIV cure-focused clinical trials and provide means for 331 

selecting only the most promising therapies and most likely individuals to achieve viral remission 332 

to be tested by ATIs.  333 

Beyond their utility as biomarkers, these metabolic and glycomic signatures of viral rebound 334 

represent an opportunity to better understand the host milieu preceding a viral rebound. The 335 

likelihood of viral rebound and viral remission after ART cessation is likely a function of both the 336 

size of the inducible replication-competent HIV reservoir and the host environment that influences 337 
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inflammatory and immunological responses.55 The on-going efforts by many groups to understand 338 

the quantitative and qualitative nature of the HIV reservoir are critical to understanding the 339 

virological basis of viral rebound.56-58 However, complementary studies are also needed to 340 

understand host determinants of inflammatory and immunological states that also may impact 341 

post-treatment control of HIV. Our functional analyses on two of these biomarkers (L-glutamic 342 

acid and pyruvic acid in Figure 2) suggest that our signatures have a potential functional 343 

significance for HIV post-treatment control. These markers may directly impact latent HIV 344 

reactivation or may indirectly condition the host environment with differential levels of 345 

inflammation that might impact viral reactivation, cellular processes, and immunological functions 346 

during ATI.  The potential direct and indirect functional significance of each of the key variable 347 

in our models warrants further investigations as they can serve as windows into the mechanisms 348 

that contribute to post-ART HIV control.  349 

Our data obtained from two independent cohorts suggest that the bioactive plasma metabolites 350 

might not only predict duration and probability of viral remission, but also actively contribute to 351 

it. Our in vivo data showed that the pre-ATI levels of L-glutamic acid predict a delayed viral 352 

rebound and a higher probability of viral remission. Indeed, our in vitro validation experiments 353 

showed that L-glutamic acid can directly suppress HIV reactivation and suppress LPS and IFNγ-354 

mediated inflammation of myeloid cells. It has been argued that L-glutamic acid, through its 355 

conversion to α-ketoglutarate, fuels the TCA cycle/oxidative phosphorylation, which is typically 356 

regarded to be an anti-inflammatory metabolic signature.59 TCA cycle metabolites may regulate 357 

immune processes through epigenetic modifications such as DNA methylation,60 which may 358 

directly impact proviral reactivation. This is consistent with our in vivo and in vitro data on L-359 

glutamic acid. In contrast to L-glutamic acid, our in vivo data showed that elevated pre-ATI levels 360 

of the pro-inflammatory pyruvic acid are associated with accelerated viral rebound. We also 361 

observed a significant positive correlation between pre-ATI levels of plasma pyruvic acid and total 362 

HIV DNA, a marker for reservoir size. Our in vitro data confirmed these in vivo observations and 363 

showed that pyruvate can induce a pro-inflammatory phenotype in myeloid cells upon stimulation. 364 

Aerobic glycolysis, where pyruvate is converted into lactate, drives pro-inflammatory M1-365 

macrophage polarization,61 in the context of HIV infection.48,62 This is consistent with our in vivo 366 

and in vitro data on pyruvate. While no studies have evaluated the impact of plasma metabolic 367 

alterations in ATI, one study observed a glycolytic plasma profile in transient HIV elite controllers 368 
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(TECs) compared to persistent elite controllers (PECs).63 Moreover, glutamic acid was shown to 369 

be elevated in PECs compared to TECs,63 corresponding to our observation that glutamate 370 

metabolism associated with delayed time to HIV rebound. In totality, a global Warburg phenotype 371 

has now emerged as a classic manifestation of HIV infection.53,64,65 Thus, the plasma metabolite 372 

signatures we observed are likely a snapshot of the global and intrinsic cellular metabolic flux that 373 

occurs during ATI in individual patients. 374 

In addition to L-glutamic acid and pyruvic acid, other intriguing plasma metabolites emerged from 375 

the analysis of the Philadelphia cohort. Among the plasma markers associated with delayed viral 376 

rebound is ethylmalonic acid. Ethylmalonic acid is central in the metabolism of butyrate, a short-377 

chain fatty acid produced by the gut microbiota and known for its anti-inflammatory effects.66 378 

Another group of metabolites, consisting of indole-3-pyruvic acid, indole-3-lactic acid, 3-indoxyl 379 

sulphate, and 2-oxindole, characterized accelerated rebound and may reflect a biochemical 380 

manifestation of dysbiosis of gut bacteria resulting in tryptophan catabolism.67 Indeed the 381 

tryptophan metabolic pathway was highlighted as one of the main metabolic pathways associated 382 

with accelerated viral rebound. Although it was not mechanistically interrogated, a positive 383 

association between plasma indoleamine 2,3-dioxygenase (IDO) activity (an immunoregulatory 384 

enzyme that metabolizes tryptophan) and total HIV DNA in peripheral blood has been 385 

established.68 Impaired intestinal barrier integrity is a classical feature of HIV infection, 386 

characterized by dysbiosis and increased microbial by-products that drive systemic and mucosal 387 

inflammation.69,70 Microbes with the capacity to catabolize tryptophan have been linked to adverse 388 

HIV disease progression,71 at least in part due to induction of IDO1 that interferes with Th17/Treg 389 

balance in the periphery and gut.72 Our data highlight previously unrecognized interactions 390 

between the gut microbiome, its metabolic activity, and HIV persistence. Understanding these 391 

potential multi-nodal complex relationships during ART and post ATI warrants further 392 

investigation. 393 

Similar to metabolites, glycans on glycoproteins are bioactive molecules and can play significant 394 

roles in mediating immunological functions. For example, antibody glycans can alter an antibody’s 395 

Fc-mediated innate immune functions, including ADCC and several pro- and anti-inflammatory 396 

activities.22-25 Among glycans on antibodies, the presence of core fucose results in a weaker 397 

binding to Fcγ receptor IIIA and reduces ADCC.73 The same occurs with terminal sialic acid, 398 
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which reduces ADCC.74-76 On the other hand, terminal galactose induces ADCC.77 In three 399 

independent geographically-distinct cohorts, two studied in our previous plot study35 and the 400 

ACTG cohort studied in the current study, we observed a significant association between pre-ATI 401 

levels of the digalactosylated non-fucosylated non-sialylated glycan, G2, and delayed viral 402 

rebound. G2 is the only IgG glycan trait that is terminally galactosylated, non-fucosylated, and 403 

non-sialylated (Supplementary Figure 5) which is compatible with higher ADCC activity. 404 

Similar to our pilot study,35 we observed a link between plasma levels of N-acetyl-glucosamine 405 

(GlcNAc) and delayed viral rebound. GlcNAc has been reported to have an anti-inflammatory 406 

impact during several inflammatory diseases by modulating NFκB activity.78-80 Investigating the 407 

potential direct impact of these glycans on innate immune functions and inflammation, and how 408 

this affects HIV control during ART, warrants further investigations.  409 

Glycoproteins can also be shed from cells in different organs; therefore, their characteristics can 410 

reflect these cells’ functions. Glycans on the cell surface are involved in signaling cascades 411 

controlling several cellular processes.81-83 It is not clear how the higher pre-ATI levels of plasma 412 

fucose, which associate with both delayed viral rebound (in our pilot study35 as well as the current 413 

study) and higher likelihood for PTC status post-ATI, can directly impact viral control during ATI. 414 

Nor is it clear how the higher pre-ATI levels of plasma GalNAc-containing glycans (T/Tn 415 

antigens), which associate with both accelerated viral rebound and lower likelihood for PTC status, 416 

can directly impact viral control during ATI. However, these higher levels might reflect differential 417 

levels of these glycans on cells in different organs. For example, T-antigens (tumor-associated 418 

antigen) and Tn antigen are O-glycans that are truncated and have incomplete glycosylation, 419 

commonly present in cancerous cells, and have been used as tumor markers.84-87 These GalNAc-420 

containing glycans expressed on some normal immune cells (such as T cells) are ligands of the 421 

macrophage galactose type lectin (MGL) that is expressed on activated antigen presenting cells 422 

(APCs). MGL interacts with GalNAc-containing glycans on T cells to induce T cell dysfunction.88 423 

Our data show that higher levels of these antigens in plasma ae associated with accelerated rebound 424 

and lower likelihood of viral remission and raise the question of whether these glycan levels reflect 425 

an immunosuppressive environment in NCs and those who rebound fast. Future studies are needed 426 

to examine the direct impact of these glycans on HIV control and/or the potential meaning of their 427 

levels as reflections of cellular functions in different tissues during ATI in HIV+ individuals.   428 
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We ensured the inclusion in our multivariate models of only metabolic and glycomic markers 429 

whose significance was not dependent on several demographic and clinical confounders such as 430 

age, gender, ethnicity, ART initiation during early versus chronic stages of HIV infection, duration 431 

of ART, and pre-ATI CD4 count, as all of these markers can influence HIV reservoir size and/or 432 

our metabolic/glycomic signatures. However, other potential confounders could impact our results 433 

including ART regimen, diet, co-morbidities, co-infections, and other medications. Investigating 434 

these other confounders as well as investigating geographically distinct and pediatric cohorts 435 

should be the subject of future studies. We examined the links between our glycomic and metabolic 436 

signatures and levels of cell-associated HIV DNA and RNA in the blood. However, the majority 437 

of HIV DNA and RNA harbor mutations and/or deletions, rendering them defective.89,90 It will be 438 

important to examine the potential links between these plasma markers and the level of intact and 439 

inducible HIV reservoirs in the blood and tissues. In addition, it will be important, in future studies, 440 

to examine the potential links between these plasma markers and host immunological and 441 

inflammatory responses. Despite these shortcomings, our study represents the first to identify a set 442 

of non-invasive, previously unrecognized class of plasma molecules (glycans and metabolites) that 443 

can be used as biomarkers of HIV remission. These signatures of viral rebound were obtained 444 

using two independent cohorts of ATI and after applying stringent criteria to avoid the potential 445 

impact of several confounders. Our machine learning algorithms also identified a combination of 446 

these markers that can enhance their predictive value. Our novel signatures, upon further 447 

validation, have the potential to fill a major gap in the HIV cure field through their usage as 448 

biomarkers of viral rebound during HIV cure-focused clinical trials. In addition, these results open 449 

new mechanistic avenues to better understand the fundamental biological processes, including 450 

carbohydrate metabolism, that may regulate HIV control during ART and post-ATI.  451 
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METHODS 

Study cohorts. Analyses were performed from banked plasma samples of two different cohorts 

that underwent analytical treatment interruption (ATI): (1) Philadelphia Cohort and (2) ACTG 

cohort. In the Philadelphia cohort,35,36 24 HIV+ individuals on suppressive ART underwent an 

open-ended ATI without concurrent immunomodulatory agents.35,36 The ACTG cohort combined 

74 HIV-infected ART-suppressed participants who underwent ATI from six ACTG ATI studies 

(ACTG 371,37 A5024,38 A5068,39 A5170,40 A5187,41 and A5197).42   27 of these 74 individuals 

exhibited a PTC phenotype post-ATI, i.e. these individuals remained off ART for ≥24 weeks post-

treatment interruption, sustained virologic control for at least 24 weeks, maintained viral load (VL) 

≤400 copies for at least 2/3 of time points, had plasma drug level testing performed, and had no 

evidence of spontaneous control pre-ART. The remaining 47 cohort members were non-controllers 

(NCs) who exhibited virologic rebound before meeting PTC criteria. These two groups were 

matched for gender, age, % treated at the early stage of HIV infection, ART duration, pre-ATI 

CD4 count, and ethnicity, as shown in Table 1.  All analyses were performed on samples collected 

immediately before ATI in both cohorts. 

Plasma untargeted metabolomics analysis. Metabolomics analysis was performed as described 

previously.91 Briefly, polar metabolites were extracted from plasma samples with 80% methanol. 

A quality control (QC) sample was generated by pooling equal volumes of all samples and was 

injected periodically during the sequence of LC-MS runs. LC-MS was performed on a Thermo 

Scientific Q Exactive HF-X mass spectrometer with HESI II probe and Vanquish Horizon UHPLC 

system. Hydrophilic interaction liquid chromatography was performed at 0.2 ml/min on a ZIC-

pHILIC column (2.1 mm × 150 mm, EMD Millipore) at 45 °C. Solvent A was 20 mM ammonium 

carbonate, 0.1% ammonium hydroxide, pH 9.2, and solvent B was acetonitrile. The gradient was 

85% B for 2 min, 85% B to 20% B over 15 min, 20% B to 85% B over 0.1 min, and 85% B for 

8.9 min. All samples were analyzed by full MS with polarity switching. The QC sample was also 

analyzed by data-dependent MS/MS with separate runs for positive and negative ion modes. Full 

MS scans were acquired at 120,000 resolution with a scan range of 65-975 m/z. Data-dependent 

MS/MS scans were acquired for the top 10 highest intensity ions at 15,000 resolution with an 

isolation width of 1.0 m/z and stepped normalized collision energy of 20-40-60. Data analysis was 

performed using Compound Discoverer 3.1 (ThermoFisher Scientific). Metabolites were 
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identified by accurate mass and retention time using an in-house database generated from pure 

standards or by MS2 spectra using the mzCloud spectral database (mzCloud.org) and selecting the 

best matches with scores of 50 or greater. Metabolite quantification used peak areas from full MS 

runs and were corrected based on the periodic QC runs. Peak areas from samples of the ACTG 

study were normalized to the summed area for identified metabolites in each sample. 

In-vitro examination of the impact of L-glutamic acid on latent HIV reactivation.   J-Lat cells 

were used as model of HIV latency. J-Lat cells harbor latent, transcriptionally-competent HIV 

provirus that encodes green fluorescent protein (GFP) as an indicator of viral reactivation.51,52 

Levels of latent HIV transcription after stimulation can be measured using flow cytometry. L-

glutamic acid was purchased from Sigma (catalog# 49449-100G) and was dissolved in cell-culture 

compatible HCl solution (Sigma catalog# H9892-100ML). J-Lat 5A8 clone was kindly provided 

by Dr. Warner Greene (The Gladstone Institute of Virology and Immunology). J-Lat clone 10.6 

(catalog number 9849) was provided by the NIH AIDS Reagent Program (Germantown, MD). 

Cells from different clones of J-Lat (5A8 and 10.6) were cultured at 1×106 cells/ml in cultured in 

R10 media (complete RPMI 1640 medium supplemented with 10% fetal bovine serum (FBS)), 

and were stimulated with PMA/ionomycin (16 nM/500 nM- Sigma catalog# P8139/ catalog# 

I0634-1MG, respectively) or ImmunoCult Human CD3/CD28 T Cell Activator (Stem cell catalog# 

10971), or TNFα (10 ng/ml; Stem Cell catalog# 78068.1) in the presence of HCl solution as a 

control. J-Lat cells were also treated with L-glutamic acid (5mM) in the presence or absence of 

the above stimulators. After 24 hours, cells were stained with live/dead marker (Thermo catalog# 

L34966) and GFP Mean Fluorescence intensity (MFI) was measured by LSR II flow cytometer 

and FACSDiva software.   

In-vitro examination of the impact of L-glutamic acid and pyruvate on myeloid inflammation. 

THP-1 cell line (catalog number 9942) was provided by the NIH AIDS Reagent Program 

(Germantown, MD). THP1 cells were plated in 24-well plates at a density of 7×105 cells per well. 

To differentiate them into macrophages-like, 100nM of PMA (Sigma catalog# P8139) was added 

and incubated for 72hours. After incubation, media was aspirated, and each well was gently 

washed twice with R10 media. Cells were then rested for 24 hours on R10 media without PMA. 

After 24 hours, cells were washed again with serum-free (no FBS) RPMI 1640 media and kept on 

this media for the rest of experiment. Macrophage-like THP1 cells were pre-incubated with L-
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glutamic acid (5mM) or Sodium Pyruvate solution (2mM, Sigma catalog# S8636-100ml) for 2 

hours before stimulating with Escherichia coli serotype O127:B8 LPS (50ng/ml; Sigma catalog# 

L3129-10MG) and IFNγ (10ng/ml; R&D Systems catalog# 285-IF-100, respectively). After 5 

hours of incubation with LPS/IFNγ, culture supernatants were collected for cytokine quantitation. 

Supernatant levels of IL-10, IL-12p70, IL-13, IL-1β, IL-2, IL-4, IL-6, and IL-8 were determined 

using U-PLEX Proinflam Combo 1 (Meso Scale Diagnostic # K15049k-1) according to 

manufacture. Levels of TNF-α were quantified using DuoSet ELISA kits (R&D Systems catalog# 

DY210-05).   

IgG isolation. Bulk IgG was purified from 50µl plasma using Pierce™ Protein G Spin Plate 

(Thermo Fisher catalog# 45204). IgG purity was confirmed by SDS gel.  

N-glycan analysis using capillary electrophoresis. For both plasma and bulk IgG, N-glycans were 

released using peptide-N-glycosidase F (PNGase F) and labeled with 8-aminopyrene-1,3,6-

trisulfonic acid (APTS) using the GlycanAssure APTS Kit (Thermo Fisher cat. A33952), 

following the manufacturer's protocol. Labeled N-glycans were analyzed using the 3500 Genetic 

Analyzer capillary electrophoresis system. IgG N-glycan samples were separated into 22 peaks 

and total plasma N-glycans into 24 peaks. Relative abundance of N-glycan structures was 

quantified by calculating the area under the curve of each glycan structure divided by the total 

glycans using the Applied Biosystems GlycanAssure Data Analysis Software Version 2.0.  

Glycan analysis using lectin array. To profile the plasma total glycome, we used the lectin 

microarray as it enables analysis of multiple glycan structures; it employs a panel of 45 

immobilized lectins with known glycan-binding specificity. Plasma proteins were labeled with 

Cy3 and hybridized to the lectin microarray. The resulting chips were scanned for fluorescence 

intensity on each lectin-coated spot using an evanescent-field fluorescence scanner GlycoStation 

Reader (GlycoTechnica Ltd.), and data were normalized using the global normalization method.  

Quantification of HIV DNA and CA-RNA. Cell-associated (CA)-RNA and DNA were isolated 

from cryopreserved peripheral blood mononuclear cells (PBMCs) using the AllPrep DNA/RNA 

Mini Kit (Qiagen). Unspliced CA-RNA and total HIV DNA levels were quantified using a real-

time PCR approach with primers/probes targeting conserved regions of HIV LTR/gag as 

previously described.8,92 The CA-RNA assay measures levels of unspliced transcripts, which are 
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late RNA products necessary for the creation of HIV structural proteins and remains one of the 

most commonly used assay in HIV curative studies.93-96 Cell numbers were quantified by the real-

time PCR measurement of CCR5 copy numbers. Cellular integrity for RNA analysis was assessed 

by the measurement of total extracted RNA and evaluation of the IPO-8 housekeeping gene.97  

Statistical analysis. For each of the studied biomarkers, data distribution was first examined, and 

appropriate data transformation was made for further analysis. Data from metabolic analysis and 

lectin array were log2-transformed before analysis. Two-group t-tests or Mann-Whitney tests were 

used to determine the difference between two groups. Spearman’s rank correlation coefficient was 

used to evaluate correlations. For binary outcome (NC vs. PTC) or time-to-viral-rebound, logistic 

or Cox regression models with or without adjusting for confounders were used to assess the 

association between a biomarker and outcome, respectively. False discovery rates (FDR) were 

calculated using Benjamini-Hochberg correction. To explore biomarkers that could be predictors 

of clinical outcomes, specific sets of biomarkers were identified among those with FDR<0.1. 

Variables for the multivariable models were selected from the identified specific sets of biomarkers 

using Lasso technique with the cross-validation (CV) selection option by separating data in 5-fold. 

Due to this exploratory study with modest sample size, variables selection was determined using 

100 independent rounds runs of CV Lasso with minimum tuning parameter lambda. The 

biomarkers that were selected 80 or more times from 100 runs were used as final set of predictors 

in our models. The predictive ability of final logistic model and Cox model were assessed by AUC 

and C-index. GraphPad Prism 6, Stata 16, and R were used for data analysis.   

 

Data availability.  The authors declare that data supporting the findings of this study are available 

within the paper and its supplementary information files. Further raw data not included in our 

findings are available from the corresponding author upon request.     
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FIGURE LEGENDS 

Figure 1. Plasma metabolites associate with time-to-viral-rebound in the Philadelphia 

Cohort. (A) Cox proportional-hazards model of metabolites that associate with longer (blue) or 

shorter (red) time-to-viral rebound during ATI. False Discovery Rate (FDR) was calculated using 

Benjamini-Hochberg correction. (B) Mantel-Cox test analysis of four selected metabolites from 

(A). Low pre-ATI levels = lower than group median; High pre-ATI levels = higher than group 

median. (C) Pathway analysis of the 13 metabolites (blue circles in A) whose pre-ATI levels 

associated with delayed viral rebound. Left image: multi-analysis approach combining KEGG and 

STRING Interaction Network. Right image: unbiased analysis using MetaboAnalyst 3.0 

(http://www.metaboanalyst.ca/) where the node color is based on p-value, and the node radius is 

based on the pathway impact value. The pathway impact is determined by normalizing the sum of 

matched metabolites to the sum of all metabolites in each pathway. (D) Pathway analysis of the 

12 metabolites (red circles in A) whose pre-ATI levels associated with accelerated viral rebound. 

Analysis was performed as in panel (C).  

Figure 2. L-glutamic acid and pyruvate directly impact latent HIV reactivation and/or 

macrophage inflammation. (A) JLat 5A8 or 10.6 clones were stimulated with appropriate stimuli 

in the presence or absence of L-glutamic acid or vehicle control (cell culture suitable HCl solution). 

Geometric mean fluorescence intensity (MFI) of HIV-regulated GFP expression was measured by 

flow cytometry. Cell viability was determined by LIVE/DEAD aqua staining. (B) J-Lat 5A8 cells 

(n=3) and (C) J-Lat 10.6 cells (n=3), were treated with PMA/I (2 nM/500 nM), ImmunoCult 

Human CD3/CD28 T Cell Activator (25µl per 106 cells), or TNFα (10ng/ml) in the presence or 

absence of L-glutamic acid (5mM) or appropriate control. Bar graphs display mean±SD values, 

and statistical comparisons were performed using two-tailed unpaired t-tests. (D) THP-1 cells were 

differentiated into macrophage-like cells using PMA. Cells were then treated with L-glutamic acid 

(5mM), pyruvate (2mM), or appropriate controls for 2 hours prior to LPS/IFNγ stimulation for 5 

hours. Cell viability was determined by LIVE/DEAD aqua staining and cytokine secretion was 

measured in the supernatants using ELISA and MSD platform multiplex assay (E) L-glutamic acid 

significantly inhibited LPS/IFNγ-mediated secretion of pro-inflammatory cytokines such as IL-6 

and TNFα but significantly increased the ant-inflammatory IL-10 release.  Bar graphs display 

mean±SD, and statistical comparisons were performed using two-tailed unpaired t-tests. (F) 
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Pyruvate significantly increased LPS/IFNγ-mediated secretion of IL-6 and TNFα. Bar graphs 

display mean±SD, and statistical comparisons were performed using two-tailed unpaired t-tests.  

Figure 3. Hazard ratios of plasma glycomic and metabolic markers that associated with time-

to-viral-rebound in the ACTG Cohort. Cox proportional-hazards model of glycomic and 

metabolic markers of time to (top panel) VL ≥1000 or (bottom panel) two constitutive VL ≥1000 

within the ACTG Cohort. G = group (All = using data from all 74 participants and PTC = using 

data from only the 27 PTCs within the ATG Cohort). False Discovery Rate (FDR) was calculated 

using Benjamini-Hochberg correction.  

Figure 4. Mantel-Cox plots of plasma glycomic and metabolic markers that associated with 

time-to-viral-rebound in the ACTG Cohort. Graphic representation of Mantel-Cox test 

illustrating six glycans (A-F) and one metabolite (G) that predicted time-to-viral-rebound in Figure 

3. Low pre-ATI levels = lower than the median; high pre-ATI levels = higher than the median. 

Figure 5. Plasma glycomic and metabolic markers of time-to-viral-rebound associate with 

levels of PBMC-associated HIV DNA and RNA in the ACTG Cohort.  (A-D) Inverse 

associations between pre-ATI plasma levels of total fucose and core fucose, and levels of pre-ATI 

cell-associated (A,C) HIV DNA or  (B,D) HIV RNA.  (E,F) Associations between pre-ATI plasma 

levels of the (E) glycan structure (GlcNac)n or (F) the metabolite pyruvic acid and levels of cell-

associated HIV DNA. All correlations were done using Spearman's rank correlation coefficient 

tests. 

Figure 6. Plasma glycomic and metabolic markers that distinguish post-treatment 

controllers (PTCs) from non-controllers (NCs). Pre-ATI levels of three glycan structures were 

are lower in PTCs compared to NCs: (A) the disialylated glycans, A2, in the IgG glycome, (B) the 

highly sialylated glycan structure (A3G3S3), and (C) T/Tn antigen (measured as binding to ABA 

lectin). Pre-ATI levels of four glycan structures were higher in PTCs compared to NCs: (D) total 

fucose (binding to AAL lectin) in plasma, (E-F) core fucose (binding to LCA and PSA lectins) in 

plasma, and (G-H) (GlcNAc)n (binding to STL and UDA lectins). Pre-ATI levels of two 

metabolites were higher in PTCs compared to NCs: (I) α-ketoglutaric acid and (J) L-Glutamic 

acid. All statistical comparisons were performed using a Mann-Whitney test. Truncated violin 
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plots showing median. False Discovery Rate (FDR) was calculated using Benjamini-Hochberg 

(BH) correction. 

Figure 7. A multivariable logistic model using Lasso selected variables predicts probability 

of viral remission post ATI.  The machine learning algorithm, Lasso (least absolute shrinkage 

and selection operator) regularization, selected seven markers from the 10 markers in Figure 6.  

Analysis using this model demonstrates that when these seven markers are combined, their 

predictive ability is better than the predictive ability of any marker individually (Supplementary 

Table 9). (A) Receiver operator characteristic (ROC) curve showing the area under the curve 

(AUC) is 97.5% from the multivariable logistic regression model with seven variables. (B) 

Coefficients from the multivariable logistic model were used to estimate risk score for each 

individual and then tested for the ability of these scores to accurately classify PTCs and NCs at an 

optimal cut-point. The model was able to correctly classify 97.7 of NCs (sensitivity), 85.2% of 

PTCs (specificity) with overall accuracy of 92.9%. Squares represent individuals the model failed 

to identify correctly.  

 

TABLES 

Table 1. Demographic and clinical characteristics of PTCs and NCs from the ACTG cohort. 

 

SUPPLEMENTARY MATERIALS 

Supplementary Figure 1. Longitudinal viral loads of PTCs and NCs from the ACTG cohort. 

Supplementary Figure 2. Pathways enriched in the analysis of plasma metabolites for time-

to-viral-rebound in the Philadelphia Cohort. (A) Glutamate metabolism pathway. (B) Primary 

bile acid biosynthesis pathway. (C) Pyruvate metabolism pathway. (D) Tryptophan metabolism 

pathway. Metabolites in blue circles are those in which their pre-ATI levels associated with a 

delayed viral rebound. Metabolites in red circles are those in which their pre-ATI levels associate 

with accelerated viral rebound. 
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Supplementary Figure 3. Effects of L-Glutamic acid and pyruvate on myeloid inflammation. 

THP-1 cells were differentiated into macrophage-like cells using PMA. Macrophage-like cells 

were treated with L-Glutamic acid, Pyruvate, or appropriate controls for 2 hours before stimulating 

with LPS and IFNγ for 5 hours. (A) Impact of L-Glutamic acid on LPS/IFNγ mediated cytokine 

secretion. (B) Impact of Pyruvate on LPS/IFNγ mediated cytokine secretion. Mean±SD is 

displayed as bar charts, and statistical comparisons were performed using two-tailed unpaired t-

tests.  

Supplementary Figure 4. The structures and names of N-glycans identified in plasma by capillary 

electrophoresis. 

Supplementary Figure 5. The structures and names of N-glycans identified in isolated plasma 

IgG by capillary electrophoresis. 

Supplementary Table 1. Clinical and demographic data of the Philadelphia Cohort. 

Supplementary Table 2. A list of metabolites which their pre-ATI levels associate with time-to-

viral-rebound in the Philadelphia Cohort. Analysis was conducted using the Proportional Cox 

Hazard Model as well as the Mantel-Cox test. 

Supplementary Table 3. Pathways enriched by metabolites associated with time-to-viral-rebound 

in the Philadelphia Cohort. Pathway analysis utilized the MetaboAnalyst 3.0 program 

(http://www.metaboanalyst.ca/). 

Supplementary Table 4. Lectins used in the 45-plex lectin microarray and their glycan-binding 

specificity.  

Supplementary Table 5. Plasma glycomic and metabolomic predictors of time-to-viral-rebound 

in the ACTG Cohort after adjusting for potential confounders.  

Supplementary Table 6. Comparisons of C-index values between each univariate Cox model and 

the multivariable Cox model with Lasso selected variables predicting time to VL ≥1000. 
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Supplementary Table 7. Comparisons of C-index values between each univariate Cox model and 

the multivariable Cox model with Lasso selected variables predicting time to two consecutive VL 

≥1000. 

Supplementary Table 8. Plasma glycomic and metabolic markers that distinguished PTCs from 

NCs in the ACTG Cohort after adjusting for potential confounders. 

Supplementary Table 9. Comparisons of AUC values between each logistic model employing 

single marker predictors versus multivariable logistic regression with Lasso selected marker set 

predicting PTC and NC status.  
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PTCs (N=27) NCs (N=47)
Male, n  (%) 21 (78) 40 (85)
Age, years, median (IQR) 41 (8) 41 (10)
Early treated, n (%) 10 (37) 19 (40)
Years on ART, median (IQR) 4.2 (4.7) 3.4 (4.5)
Pre-ATI CD4 count, median (IQR) 885 (224) 846 (301.5)
Days to VL ≥50 copies/ml, median (IQR) 43 (65.5) 18 (14.5)
Days to VL ≥1000 copies/ml, median (IQR) 111 (282) 27 (25.5)
Days to two consecutive VL ≥1000 copies/ml, median (IQR) 331 (278) 27 (27)

Caucasian, n  (%) 17 (63) 30 (64)
African American, n  (%) 7 (26) 9 (19)
Hispanic, n  (%) 3 (11) 8 (17)

Table 1. Demographic and clinical characteristics of PTCs and NCs from the ACTG cohort

PTCs, post-treatment controllers; NCs, post-treatment non-controllers; ART, antiretroviral 
therapy; IQR, interquartile range.

Ethnicity
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