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Functional genomics experiments, like ChIP-Seq or ATAC-Seq, produce results that are summarized as a region
set. Many tools have been developed to analyze region sets, including computing similarity metrics to compare
them. However, there is no way to objectively evaluate the effectiveness of region set similarity metrics. In this
paper we present Bedshift, a command-line tool and Python API to generate new BED files by making random
perturbations to an original BED file. Perturbed files have known similarity to the original file and are therefore
useful to benchmark similarity metrics. To demonstrate, we used Bedshift to create an evaluation dataset of
hundreds of perturbed files generated by shifting, adding, and dropping regions from a reference BED file. Then,
we compared four similarity metrics: Jaccard score, coverage score, Euclidean distance, and cosine similarity.
Our results highlight differences in behavior among these metrics, such as that Jaccard score is most sensitive
to added or dropped regions, while coverage score is most sensitive to shifted regions. Together, we show that
Bedshift is a useful tool for creating randomized region sets for a variety of uses. Availability: BSD2-licensed
source code and documentation can be found at https://bedshift.databio.org.

Introduction
In the past few years, projects such as ENCODE (Encyclopedia of
DNA Elements) and IHEC (International Human Epigenome Con-
sortium) have established large catalogs of genomic features, in-
cluding regulatory regions, transcription factor binding sites, and
SNPs (Dozmorov, 2017). These data can be summarized into re-
gion sets, often stored in BED file format containing genomic re-
gions represented by a chromosome number, start position, stop
position, and optional metadata. Increasingly, computational tools
are being developed to produce and consume BED files (Zhou et
al., 2020). Early studies used interval analysis to study regulatory
elements for biological conclusions (Zhang et al., 2007; Wederell
et al., 2008; Chen et al., 2008; Johnson et al., 2007; Fu et al., 2008;
Cuddapah et al., 2009), and region sets are of particular interest
in epigenomics, where hundreds of thousands of cell-type specific
elements have been shown to play an important part in gene reg-
ulation (Song et al., 2011; Sheffield and Furey, 2012; Thurman et
al., 2012).

Among the many applications of region sets, interest has grown in
methods to compare region sets with one another (Kanduri et al.,
2018). New genomic regions produced from experiments can be
associated with established genomic regions using co-occurrence,
under the assumption that region sets with many overlapping
regions may reflect biological relationships (Dozmorov, 2017).
There are many methods to evaluate the similarity of two region
sets, which have been under development for more than a
decade (Fu and Adryan, 2009; Zhang et al., 2007; Chen et al.,
2008; Huen and Russell, 2010; Carstensen et al., 2010; Chikina
and Troyanskaya, 2012; Heger et al., 2013; Khushi et al., 2014;
Sarmashghi and Bafna, 2019; Ferré et al., 2019; Feng et al., 2020).
One general tool that provides the user with multiple results is the
GSuite Hyperbrowser, which includes the most similar region sets,
unique region sets, and how the co-occurrence counts change
along the genome (Simovski et al., 2018). Some tools use a
statistical test to measure the significance of the co-occurrence.

For example, GenomeRunner (Dozmorov et al., 2016), LOLA
(Sheffield and Bock, 2016; Nagraj et al., 2018), GIGGLE (Layer
et al., 2018), and IGD (Feng and Sheffield, 2020) take BED
files as input and compute region overlap counts, followed by
a Fisher’s exact test to produce a similarity score or ranking of
most similar files. Other tools, such as regioneR and ChIP-Seeker,
use permutation or sampling of regions or random background
region set to calculate the probability of observing more extreme
overlap between it and the provided data (Yu et al., 2015; Gel et
al., 2015). Another approach is to examine distribution along the
genome such as the approach taken by GenometriCorr (Favorov et
al., 2012). There is therefore a wide variety of methods and tools
to assess relationships among region sets (Kanduri et al., 2018;
Simovski et al., 2018). These tools are similar in their attempt to
compare region set data, but have subtle differences in the goal,
data used, and approach of comparison.

Here, we provide a conceptual framework upon which similarities
among region sets may be evaluated. We do this by simulating
perturbations of region sets, allowing us to construct ground truth
results between two region sets. We introduce Bedshift, a com-
mand line interface and Python package that provides users the
ability to create new BED files based on random modifications to
an original BED file. A user can specify what percentage of regions
they want to shift, drop, add, cut, and merge. Users may also spec-
ify for each perturbation subsets of regions to perturb using sepa-
rate selector region sets. The most similar existing tool to Bedshift
is a function in the BEDTools suite called shuffleBed (Quinlan,
2014). This function randomly permutes the regions inside a BED
file, moving them to different locations in the genome while pre-
serving their length, which is useful for generating background or
randomized region sets. Bedshift provides control over the type,
magnitude, and combinations of perturbation, and makes it easy
to produce many replicates, making it suitable for more complex
perturbations and to test how similarity metrics behave with dif-
ferent types and levels of perturbation.
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Figure 1: Overview of simulation study and comparison of four similarity metrics. A) One BED file was used to create 3600 perturbed files, 100
repetitions for each of 36 different combinations of add, drop, and shift perturbations. B) Examples of a demo region set that has been shifted to different
degrees. C) We calculated four similarity metrics between the original file and the perturbed files. The greater the similarity score decrease, the more sensitive
the metric is. TODO change slope in figure D) Within each parameter group, as the perturbation increases, the similarity score decreases. E) Results for shift,
drop, and add-only perturbations. L-Low; M-Moderate; H-High perturbation.

Bedshift produces reference files that are useful for many down-
stream tasks, including as controls for experimental region set
data, as a randomized background of region data, as test data for a
new tool, or to test similarity metrics. In this paper, to demonstrate
one use case, we applied Bedshift to evaluate region set similarity
metrics. We created an evaluation set of thousands of files with
controlled levels of divergence to an original file, and then com-
pared different similarity metrics to see how scores vary as the type
and level of perturbation changes. This study reveals that similar-
ity metrics vary in sensitivity to different types of perturbation, and
that for universe-based metrics, the choice of universe is a critical
experimental decision.

Results
Overview of Bedshift

Bedshift is available as a command line interface as well as a
Python package. Documentation with guides on common use
cases is available at bedshift.databio.org. Bedshift perturbs
regions in a region set with 5 possible operations: shift, add, cut,
merge, and drop. The operations can be specified one at a time
or all in one command, in which case Bedshift will run them in
the order of shift, add, cut, merge, and then drop. The number
of regions perturbed is set as a proportion of the total number of
regions in the region set. For example, if given a BED file with
1000 regions, the operation bedshift -b example.bed -a 0.2

-s 0.4 would first shift 400 of the regions (40%), then add 200
new regions (20%).

The shift operation will shift the start and end position of a region
by a random value based on a normal distribution specified by the
user using the --shiftmean and --shiftstdev options. In con-
rast to BEDTools, Bedshift does not shift regions to a completely
new location on the genome, but upstream or downstream by a
small, random number, placing them near their original location.
The add operation will create randomly generated regions on any
chromosome with a length based on a normal distribution spec-
ified by the user using the --addmean and --addstdev options.
The drop operation will randomly delete regions from the region
set. The cut operation will split a region into two new regions,
with the split position in the region being randomly determined.
Finally, the merge operation will merge two adjacent regions, po-
tentially creating very large regions.

In addition to these five operations, we have added numerous
features to give the user more configurability. The --addfile,
--dropfile, and --shiftfile options allow users to input a file
from which regions are selected to be added, dropped, or shifted.
This feature makes Bedshift able to configure perturbation type
and level to specific region types, such as introns, exons, promot-
ers, or enhancers. To facilitate dataset generation, the --repeat

option makes it easy to create many replicates of the perturbation
with a single command.
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Users may specify perturbations on the command line, from
within Python, or using a YAML configuration file with the
--yaml-config option. This yaml configuration file allows users
to specify the order or perturbations and construct arbitrary
complex combinations, which also make it possible to construct
highly realistic biological scenarios, such as dropping only a
subset of promoter elements or adding from a prespecified list of
enhancer elements. In the documentation, we provide scripts that
show how bedshift can be used to create thousands of perturbed
files for dozens of different parameter sets easily with a few
commands on the command line.

Simulation study and evaluation approach
To test Bedshift and demonstrate how it can be used to evalu-
ate similarity measures of region sets, we selected one input file
from ENCODE (ENCFF549PGC)(Moore et al., 2020) and created
an evaluation set of perturbed BED files for shift, drop, and add,
with 3 levels and 10 replicates for each perturbation. Our pa-
rameter values included a low, medium, and high degree for each
perturbation type, and visual inspection of region sets allowed us
to tune the parameters to a biologically relevant range (Figure 1B;
Figure S1). We expected that similarity scores would reflect this
known degree of perturbation. We used the --addfile feature
of Bedshift to add regions from a “universe” of possible regions
to include, instead of completely random regions. Our primary
universe is unified set of regulatory elements from the SCREEN
database of the ENCODE project (See Methods) (Moore et al.,
2020).

To extend this basic experiment, we did three additional, extended
experiments: First, to test how the metrics behave in combinations
of perturbations, we expanded the experiment to include pairwise
combinations of each level and perturbation, resulting in 360 BED
files made from 36 different Bedshift parameter sets (Supplemen-
tal Materials Table S1), such as adding and shifting, or dropping
and shifting, repeating each combination 10 times (Figure 1A).
Second, we repeated this combinatorial study on 3 separate input
files to test how the input file affects the metrics. Finally, we re-
peated this study using the original file, but with 3 additional uni-
verses, to test how changing the universe affects the metrics. Addi-
tional universes are specific subsets of the primary universe from
SCREEN: CTCF sites, promoter-like sequences (PLS), or DNase-
H3K4me3 sites (See Methods).

After simulating perturbed region sets to known parameters, we
sought to evaluate the performance of different measures of re-
gion set similarity. For each pairwise comparison of original to
perturbed BED file, we computed four similarity metrics: Jaccard
score, coverage score, Euclidean distance, and cosine similarity
(Figure 1B). The Jaccard score and coverage metrics were chosen
based on their common usage in other similarity scoring methods
(Kanduri et al., 2018). The Euclidean distance and cosine similar-
ity metrics are a simple vector-based approach computed on binary
vectors with each element reflecting presence or absence of a re-
gion in the universe. We focused in this study on metrics useful for
measuring the level of difference between two very similar region
sets, as opposed to other common tools (such as the Fisher’s Exact
Test) which can be used to test the hypothesis that two sets are
independent. To evaluate the metrics, we compared each measure
for its ability to reflect Bedshift perturbations (Figure 1D).

Experiment 1: Evaluating individual perturbations
Shift. As the percentage of shift was increased from 20% to 50%
to 80%, the similarity score decreased for all four scoring methods.

The score with the greatest amount of decrease was the coverage
score, which can be explained by how the coverage score mea-
sures the percentage of individual regions that overlap with other
regions, and is therefore affected by any shift. In contrast, the
other measures are based only on overlap counts, which will only
change if the shift is substantial enough to eliminate overlap.

Drop. When measuring the drop perturbation, which increased
from 10% to 20% to 30%, the Jaccard score had the greatest simi-
larity score decrease (Figure 1D). In fact, the way in which the Jac-
card score is calculated makes it so that it measures the exact per-
centage of regions dropped. Shown in the graph, the Jaccard score
decreases perfectly from 90% to 80% to 70% as drop increases
from 10% to 20% to 30%. The other three metrics displayed levels
of decrease which were smaller than the Jaccard score decrease.
This indicates that the simple Jaccard overlap counting method
was the most sensitive to dropped regions.

Add. For the add perturbation, the Jaccard score again had the
lowest similarity scores and steepest decline as the add percentage
increased from 10% to 20% to 30% (Figure 1D). However, un-
like in the drop perturbation, the Jaccard score does not perfectly
measure the percentage of added regions. This is due to added re-
gions having the probability of overlapping existing regions, which
would thus not be recognized as a newly introduced region. Inter-
estingly, not only was the Jaccard score less sensitive, but we also
found that the other three metrics were less sensitive to adding
regions than dropping regions. We expected sensitivity to adding
to resemble sensitivity to dropping, because the perturbations are
complementary. We explore this further in the next section.

Sensitivity of dropping vs adding. We were initially surprised that
all metrics were more sensitive to dropping than adding. After
employing a hypothetical overlap counting example, we can see
why that happens for the Jaccard score: Given a set of 4 regions,
if a non-overlapping region is added, the score would decrease by
25% to 3

4
. On the other hand, if a region is dropped, then the score

decreases by 33% to 2
3
. This provides a theoretical explanation of

the observation that the Jaccard score is more sensitive to drop
than add. Remarkably, our perturbation results were able to cap-
ture this nuance. Similarly, the coverage score is less sensitive to
add than drop, which can be explained similarly: adding a region
would decrease the score by 12.5% to ( 3

4
+ 3

3
)/2, and dropping a re-

gion would decrease the score by 16.7% to ( 2
3

+ 2
2
)/2. Thus, drop-

ping regions still decreases the coverage score more than adding.

Experiment 2: Evaluating combinatorial perturbations

To extend our results, we next examined the sensitivity when com-
binations of perturbations were used. We used Bedshift to create
perturbed files with each pairwise combination of parameters, at
each level (Table S1). This resulted in 36 parameter sets: 9 rep-
resent the 3 individual perturbations at 3 levels each discussed
previously, and then 27 sets represent each pairwise combination
of 3 perturbations at 3 levels. We grouped these results into 9
scenarios, 3 of which represent individual perturbations and 6 of
which represent each pairwise comparison of perturbation (Figure
2A). For example, in Scenario 2, we plotted the decrease of the
similarity score as the add perturbation is increased, with the drop
perturbation held constant. For each pairwise scenario, we used
3 different levels (high, moderate, and low) of one type of per-
turbation in combination with another perturbation held constant,
resulting in 3 plots per pairwise scenario. To summarize these re-
sults, we computed the decrease across three levels of perturbation
increase (Figure 2B) in each line plot. As a further summary, we
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Figure 2: Bedshift and similarity score results. A) Similarity scores for shift, drop, and add perturbations, along with their pairwise combinations. B)
Summary of similarity score change for different perturbation levels measured. For a given scenario, each perturbation is classified as either “increasing”, “not
used”, or “held constant”. To condense the information from panel A, the amount of decrease shown for each Scenario is the average across all three levels in
the corresponding Scenario in panel A. C) Summary of the sensitivity of each metric to the three different perturbations.

created a heat map of each scores’ sensitivity to the three pertur-
bations we tested (Figure 2C).

Multiple perturbations decrease similarity score and preserve
sensitivity

OUr results show that the similarity scores for combinatorial per-
turbations are lower than each perturbation individually, showing
that the similarity scores accurately recognize that more perturba-
tion, even of different types, leads to lower similarity (Figure 2A).
Furthermore, the overall sensitivity trends remain intact (Figure
2B). For instance, the coverage score is clearly still most sensi-
tive to shift, even in the presence of add and drop. Similarly, the
Jaccard score remains most sensitive to drop, and, to a lesser de-
gree, to add in the combinatorial analysis. Furthermore, all met-
rics remain more sensitive to drop than to add (Figure 2B). This
indicates that these metrics are robust and detect changes that are
compounded on each other.

Euclidean distance is the least sensitive overall

This analysis also shows that across all individual and combinato-
rial perturbations, our Euclidean distance metric is the least sensi-
tive to changes (Figure 2C). This result indicates that these metrics
could be useful for different purposes, with Euclidean distance as
implemented here more likely to be useful for more distant rela-
tionships among region sets. Interestingly, the cosine similarity
and coverage scores behave almost identically to the add, drop,
and add + drop scenarios, but differ dramatically when shift is
included, due to the increased sensitivity of coverage to shift.

Experiment 3: Testing across input files

To ensure that the results are not specific to input file, we ran the
experiment again on two additional files. The original file con-
tained CTCF data with an average region length of 301 bp, and
the other two files contain DNA methylation data and DNAse-seq
data, with average region length of 1161 bp and 150 bp, respec-
tively. These therefore reflect a variety of data types and region
sizes. The three files experiment shows that, in general, the orig-
inal analysis results hold across all three input files: coverage is
most sensitive to shift; jaccard is most sensitive to add and drop;

Euclidean distance is least sensitive overall; etc. (Figure S2). How-
ever, this analysis also reveals an interesting observation that the
metrics do behave differently for the different files. Most pro-
nounced, we observe that different region length in the two new
files caused results to vary in all of the shift perturbation combi-
nations, especially for the coverage score (Figure S2, Scenario 1).
The file with the highest similarity score decrease was the file with
the smallest average region length, while the file with larger re-
gions had a less pronounced sensitivity to shift. This reflects the
constant shift distance across the files, so the file with the smallest
region length would be the most likely to have regions shifted fur-
ther from their original locations. In conclusion, specific similar-
ity results are clearly affected by input file, but general sensitivity
trends among metrics hold across input files.

Experiment 4: Testing across universes

In addition to the multiple file analysis, we also wanted to see if the
universe choice would impact the results. We chose to use three
subsets of the SCREEN universe: CTCF sites only, promoter-like
sequences (PLS), or DNase-H3K4me3 sites, and re-ran the analy-
sis using the original file, but switching the universe (Figure S3).
We observed that the coverage and Jaccard scores were invariant
across the three universes under the same operations, whereas Eu-
clidean distance and cosine similarity varied significantly. This is
expected, as the coverage and the Jaccard scores are not vector-
based similarity measures, while Euclidean distance and cosine
similarity are, and therefore depend on the chosen universe. If the
universe does not encapsulate the regions in the file we are per-
turbing, then the Euclidean distance and cosine similarity score
will be less accurate. In addition, we noticed that as the size of
the universes decreased, Euclidean distance and cosine similarity
became more sensitive. This can be explained by the proportion of
vector components that change. When the dimension of a vector
is smaller, one component of the vector changing due to an add,
drop, or shift will cause the vector to change proportionally more.

In Scenario 6, we observe an interesting anomaly, that for the Eu-
clidean distance, the slope turns positive, indicating that when
adding regions is held constant, dropping more regions actually in-
creases similarity between the files. This counterintuitive result can
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be explained by the possibility of dropping regions that were just
added. In most cases, this is not a problem because the probability
of dropping regions that were just added is low; however, in very
specific situations, such as this particular scenario in our study, this
effect can occur. The effect would be most pronounced when uni-
verses are very different from the query file, because the add oper-
ation is adding regions unlikely to be in the original file, making it
more likely that drop will drop something that’s different from the
original file, increasing similarity. Also, it makes sense that this is
more pronounced when add is higher, because it increases proba-
bility of dropping a region that is different. Further, we can explain
that it only occurs for Euclidean distance, not for cosine distance,
because for widely divergent universes, when adding lots of new
unrelated dimensions, cosine distance is unaffected, as the angle
between two vectors is only calculated on the basis of dimensions
present; in contrast, Euclidean distance explodes. This result em-
phasizes the importance of choosing an appropriate, fitting uni-
verse for vector-based approaches; if the universe is not a good
reflection of the underlying data, then distance metrics may po-
tentially behave counterintuitively, particularly for the Euclidean
distance

Future Development
We have shown a use case for Bedshift in investigating how region
set similarity metrics are affected by different types of differences.
There are several ways Bedshift could be extended to address addi-
tional questions. First, Bedshift does not consider strandedness in
perturbations, but adding strand-aware perturbations would allow
testing how strand-aware similarity metrics behave. There could
also be a new perturbation that flips the strand. Another extension
is a perturbation similar to BedTools shuffle that moves regions to
completely new locations in the genome, but does not change their
length. Finally, we are working on ways to increase efficiency of
the shift operation, which currently is the slowest operation be-
cause it iterates over and edits each region.

Conclusion
In this paper we present Bedshift, a new tool to help researchers
evaluate the effectiveness of region set similarity metrics. Similar-
ity scoring metrics and tools are becoming increasingly common,
and it is important to know how each tool performs on different
datasets. Bedshift is a way to generate new BED files with pertur-
bations such as shifted regions, added regions, dropped regions,
and more.

Our results provide an initial analysis to compare different simi-
larity scoring metrics. In our study design, we considered scores
that measure differences among similar region sets, as opposed to
scores that test a hypothesis that region sets are independent. We
uncovered interesting information about the relative performance
of these metrics. The key conclusion is that similarity scores have
unique sensitivities to types of perturbation. One key caution is
that a metric that is more sensitive will more quickly reach a sat-
uration point; at this stage, the metric becomes unreliable. In our
analysis, we did not identify a global “best” metric, but each met-
ric is likely to be more appropriate depending on use case. For
example, Euclidean distance and cosine similarity were generally
the least sensitive overall and would therefore be more useful for
measuring similarities between distant region sets. Overall, the
Jaccard score seemed to be the most sensitive, and may therefore
be most useful for highly similar region sets. It also showed consis-
tency in the slope decrease across multiple levels of perturbation.

The coverage score would be most appropriate for detecting slight
shifts. Discovering the performance of these different similarity
metrics showcases a powerful use for Bedshift, as it has allowed us
to discover pros and cons of different similarity metrics.

Our analysis also leads to several directions for future work. First,
it is possible that the universe-based measures would behave dif-
ferently depending on the universe used to construct the vectors.
More work needs to be done to explore optimal ways for construct-
ing universes, which would benefit vector-based similarity metrics.
Second, it will be interesting to explore the behavior of new simi-
larity metrics in comparison to current similarity metrics. Finally,
similarity scoring methods could be combined for increased confi-
dence in results. Bedshift will be a helpful tool going forward as
we develop and evaluate new ways to measure similarity of region
sets.

Availability of Data and Materials
For this paper, we used bedshift version 1.1.0. Bedshift is
licensed under BSD-2, and can be downloaded from GitHub:
https://github.com/databio/bedshift/ or from the Python Package
Index (https://pypi.org/project/bedshift/). Complete documen-
tation can be found at bedshift.databio.org, including repositories
with code to reproduce the all experiments in this paper. All
datasets used are publicly available with download instructions
included in the documentation.
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Methods
Data set

The 3 query files used as the original file, which is then perturbed
with Bedshift are all from the ENCODE consortium: 1) CTCF TF
ChIP-seq on human HCT116 (primary file, ENCFF549PGC); 2)
K4me3 Histone ChIP-seq on human GM12864 (ENCFF749NUK);
and 3) DNase-seq on human stromal cell of bone marrow
(ENCFF409URA).

The 4 universe region sets used in this analysis are from
the SCREEN ENCODE database: 1) GRCh38-ccREs (Primary
universe); 2) DNase-H3K4me3; 3) CTCF-only; and 4) PLS.

Bedshift operations

The order of operations is shift, add, cut, merge, and drop. From
the command line interface, a call to bedshift will use the
all perturbations function to run up to all 5 perturbations,
then output the file either in a user specified location using the
--outputfile option, or in the same directory with the original
filename prepended with bedshifted . From the Python API, the
user has more flexibility to call the perturbations individually, or
use the same all perturbations function. Bedshift stores the
state of the BED file in a Pandas dataframe, and each perturbation
operates on the result of the previous one, which is why the order
is important. When using the Python API, the state of the BED file
can be reset to its original state using the reset bed() method.
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Shift

Using the rate parameter as a proportion of the total number of
regions in the BED file, a subset of regions to shift is chosen from
the BED file. The start and end position of each of these regions is
adjusted by the same distance. The distance is chosen from a nor-
mal distribution (--shiftmean, --shiftstdev), which defaults to
N(0, 150). In order to use shift, a .fasta file containing chromo-
some lengths must be provided with the --chromosome-lengths

option, to ensure that regions are not shifted off the ends of chro-
mosomes.

Shift From File

Shift from file uses a file specified through --shiftfile to deter-
mine which regions to shift. If pyranges tool is available on the
user’s machine, then --shiftfile will consider only intersecting
regions as candidates to be shifted. Otherwise, only regions that
are exact matches will be candidates for shifting.

Add

The number of regions to add is determined from the rate pa-
rameter as a proportion of the total number of regions in the
BED file. For each added region, first a chromosome is chosen
with proportional odds to the length of each chromosome; then a
start position is chosen anywhere along the chromosome; then a
length is computed based on a normal distribution defaulting to
N(320, 20) (--addmean, --addstdev) and added to the start po-
sition to arrive at the end position. In order to use add, a .fasta
file containing chromosome lengths must be provided with the
--chromosome-lengths option.

Add From File

Instead of adding randomly generated regions, the user can specify
a file to the --addfile option which contains candidate regions to
add. From these regions, a number of them is chosen based on the
rate parameter and added to the file.

Add in Valid Regions

Another way to add regions is to specify a file with valid regions
where random new regions can be added. The option is called
--valid-regions. The user would use this option instead of
--addfile if they wanted to add more random regions instead of
specific regions from a file, but wanted to restrict these to certain
valid areas of the genome. The valid regions file could contain
very large areas of the genome such as introns or promoters.
Random region generation works the same as the basic add
operation, but restricts the chromosomes and regions to the ones
specified in the --valid-regions file.

Cut

Using the rate parameter as a proportion of the total number of re-
gions, the regions to cut are determined. For each of these regions,
the cut is made at the midpoint of the start and end position, cre-
ating two new regions. The original region is dropped from the
BED file.

Merge

Using the rate parameter as a proportion of the total number of
regions, the regions to merge are determined. For each of these
regions, they are merged with the next subsequent region in the
BED file if they are both on the same chromosome by taking the
start position of the first region and the end position of the second
region. We recognize that this method has the potential to create
very large regions.

Drop

Using the rate parameter as a proportion of the total number of
regions, the regions to drop are determined. They are simply re-
moved from the BED file.

Drop From File

Similar to add from file and shift from file, drop from file uses a
file specified through --dropfile to determine which regions to
drop. If pyranges tool is available on the user’s machine, then
--dropfile will consider only intersecting regions as candidates
to be dropped. If those tools are not available, then only regions
that are exact matches will be candidates.

Seed

Sometimes, users may wish their Bedshift perturbations to be iden-
tically reproducible. Assuming every other operation remains con-
stant, setting the same integer-valued seed through --seed will
allow Bedshift to produce identical perturbations.

Bedshift file generation
We leverage the Looper tool (http://looper.databio.org) to cre-
ate hundreds of perturbation replicates using the same 4 columns
(sample name, shift, add, and drop) as Supplemental Table 1. The
normal distributions used in shift and add are the default param-
eters. Each sample was run by looper using a Bedshift command
with the specified shift, add, and drop. Details and actual scripts
used in the analysis can be found in the documentation for bed-
shift.

Jaccard score
The first metric was the Jaccard score based on overlapping re-
gions between two BED files, computed by the formula

|A ∩B|
|A ∪B| (1)

where A and B are the two BED files. Any region with at least
1 base pair overlap was counted in the total number of overlaps.
Overlaps were computed using Augmented Interval List (AIList)
(Feng et al., 2019).

Coverage score
The BedTools coverage function was used, which takes in two BED
files and uses the first one as the reference region set to determine
coverage for each region in the second BED file (Quinlan, 2014). A
normalization technique was applied to assign coverage scores to
every region in both files. First, BedTools coverage (in the Python
wrapper PyBedTools) was run with the perturbed file as the first
argument and the original file as the second. No additional ar-
guments were provided other than the two files. Then the files
were passed as arguments to the coverage tool in the opposite or-
der, in order to account for coverage in regions across both files.
This produced a coverage score between 0 and 1 for each region in
both the original and the perturbed file. To get the final similarity
score, the mean was taken of coverage values for every region in
both files:

(
ΣCoverage(A,B)i

|A| +
ΣCoverage(B,A)i

|B| )/2 (2)

where A and B are the two BED files and Coverage is the BedTools
coverage score.
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Euclidean distance

In vector-based similarity methods, a standard vocabulary was
needed to represent each region as a position in the vector. To
do this, a “vocabulary”, or a universe, was used. For our primary
analyses, we used the general set of regulatory elements from the
SCREEN database ((Moore et al., 2020)). We also tested other
universes in the universe experiment. When casting new files
into the universe to create a vector, if a region in the new file
overlapped with a universe region, then that index in the vector
was set to 1. Therefore, each BED file was represented by a vector
of 0’s and 1’s. The Euclidean distance is defined as

√
Σ(Ai −Bi)2 (3)

where A and B are the two vectors representing the BED files. A
normalized Euclidean distance was calculated by dividing by the
maximum distance of two vectors (a vector of all 0’s and a vector
of all 1’s), which was 518.02. That value was subtracted from 1,
because a smaller normalized distance indicates a higher similarity.

Cosine similarity

The same vectorization technique and vectors used for the Eu-
clidean distance metric were also used for the cosine similarity
analysis. The cosine similarity is defined as

A ·B
‖A‖‖B‖ (4)

where A and B are the two vectors representing the BED files. In
vector space, the closer two vectors are, the closer their cosine is
to 0. Thus, the resulting cosine score was subtracted from 1 to get
the final similarity score.

Similarity score change

The change in similarity was measured by taking the difference be-
tween the highest and lowest score in the perturbation level (for
example, the score difference between add 0.1 and add 0.3 using
the Jaccard score was 0.15). For groups of 9 perturbation param-
eters, such as increasing shift from 0.1 to 0.3 while holding add
constant at 0.1, 0.2, and 0.3, the three scores from the levels of
add were averaged.
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Supplemental Materials
parameter set add drop shift
add1 0.1 0.0 0.0
add2 0.2 0.0 0.0
add3 0.3 0.0 0.0
drop1 0.0 0.1 0.0
drop2 0.0 0.2 0.0
drop3 0.0 0.3 0.0
shift1 0.0 0.0 0.2
shift2 0.0 0.0 0.5
shift3 0.0 0.0 0.8
add drop1 0.1 0.1 0.0
add drop2 0.1 0.2 0.0
add drop3 0.1 0.3 0.0
add drop4 0.2 0.1 0.0
add drop5 0.2 0.2 0.0
add drop6 0.2 0.3 0.0
add drop7 0.3 0.1 0.0
add drop8 0.3 0.2 0.0
add drop9 0.3 0.3 0.0
shift drop1 0.0 0.1 0.2
shift drop2 0.0 0.1 0.5
shift drop3 0.0 0.1 0.8
shift drop4 0.0 0.2 0.2
shift drop5 0.0 0.2 0.5
shift drop6 0.0 0.2 0.8
shift drop7 0.0 0.3 0.2
shift drop8 0.0 0.3 0.5
shift drop9 0.0 0.3 0.8
add shift1 0.1 0.0 0.2
add shift2 0.1 0.0 0.5
add shift3 0.1 0.0 0.8
add shift4 0.2 0.0 0.2
add shift5 0.2 0.0 0.5
add shift6 0.2 0.0 0.8
add shift7 0.3 0.0 0.2
add shift8 0.3 0.0 0.5
add shift9 0.3 0.0 0.8

Table S1: Parameter combinations used in the analysis.
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Figure S1: Demo visualization of perturbations. Original file is shown in black, randomizations in gray. The vertical axis label sdepict perturbation degree,
corresponding to parameter values in the parameter table. Shift plots are reproduced here from figure 1 for comparison. For combinatorial perturbations,
only the maximum perturbation is shown.
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Figure S2: Detailed results showing how metrics vary by query file. Universe is held constant.
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Figure S3: Detailed results showing how metrics vary by universe. Query file is held constant, and is the same as in the original study.
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