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Abstract 

Genome wide association studies (GWAS) can reveal important genotype–phenotype associations, 

however, data quality and interpretability issues must be addressed. For drug discovery scientists 

seeking to prioritize targets based on the available evidence, these issues go beyond the single study. 

Here, we describe rational ranking, filtering and interpretation of inferred gene–trait associations and 

data aggregation across studies by leveraging existing curation and harmonization efforts. Each gene–

trait association is evaluated for confidence, with scores derived solely from aggregated statistics, linking 

a protein-coding gene and phenotype. We propose a method for assessing confidence in gene–trait 

associations from evidence aggregated across studies, including a bibliometric assessment of scientific 

consensus based on the iCite Relative Citation Ratio, and meanRank scores, to aggregate multivariate 

evidence. This method, intended for drug target hypothesis generation, scoring and ranking, has been 

implemented as an analytical pipeline, available as open source, with public datasets of results, and a 

web application designed for usability by drug discovery scientists, at https://unmtid-shinyapps.net/tiga/. 
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Introduction 

Over the two decades since the first draft human genome was published, dramatic progress has been 

achieved in foundational biology with translational benefits to medicine and human health. Genome wide 

association studies (GWAS) contribute to this progress by inferring associations between genomic 

variations and phenotypic traits (Bossé and Amos, 2018; Rusu et al., 2017). These associations are 

correlations which may or may not be causal. While GWAS can reveal important genotype–phenotype 

associations, data quality and interpretability must be addressed (Lambert and Black, 2012; Visscher et 

al., 2017; Marigorta et al., 2018; Gallagher and Chen-Plotkin, 2018).  For drug discovery scientists 

seeking to prioritize targets based on evidence from multiple studies, quality and interpretability issues 

are broader than for GWAS specialists. For this use case, GWAS are one of several evidence sources 

to be explored and considered, and interpretability must be in terms of genes corresponding to plausible 

targets, and traits corresponding to diseases of interest. 

Single nucleotide variants (SNV) are the fundamental unit of genomic variation, and the term single 

nucleotide polymorphism (SNP) refers to SNVs identified as common sites of variation relative to a 

reference genome, and measured by microarray or sequencing technologies. The NHGRI-EBI GWAS 

Catalog (Buniello et al., 2019) -- hereafter "Catalog" -- curates associations between SNPs and traits 

from GWAS publications, shares metadata and summary data, standardizes heterogeneous 

submissions, maps formats and harmonizes content, mitigating widespread data and meta-data issues 

according to FAIR (Findable, Accessible, Interoperable and Reusable) principles (Wilkinson et al., 2016). 

These challenges are exacerbated by rapid advances in experimental and computational methodology. 

As de facto GWAS registrar, the Catalog interacts directly with investigators and accepts submissions of 

summary statistic data in advance of publication. Proposing and maintaining metadata standards the 

Catalog advocates and advances FAIRness in GWAS, for the benefit of the community. The Catalog 

addresses many difficulties due to content and format heterogeneity, but there are continuing difficulties 

and limitations both from lack of reporting standards and the variability of experimental methodology and 

diagnostic criteria. 

Other GWAS data collections include the Genome-Wide Repository of Associations between SNPs and 

Phenotypes, GRASP (Eicher et al., 2015) and The Framingham Heart Study, which employs non-

standard phenotypes and some content from the Catalog (not updated since 2015). GWASdb (Li et al., 
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2016) integrates over 40 data sources in addition to the Catalog, includes less significant variants to 

address a variety of use cases, and has been maintained continually since 2011. GWAS Central, 

continually updated through 2019, includes less significant associations and provides tools for a variety 

of exploration modes based on Catalog data, but is not freely available for download. PheGenI (Ramos 

et al., 2014) integrates Catalog data with other NCBI datasets and tools. Others integrate GWAS with 

additional data (e.g. pathways, expression, linkage disequilibrium) to associate traits or diseases with 

genes (Greene et al., 2015; Shen et al., 2017; Wainberg et al., 2019; Li et al., 2018; Pallejà et al., 2012). 

Each of these resources offers unique value and features. For this use case, the Catalog is the logical 

choice, given its applicability and commitment to expert curation, data standards, support and 

maintenance. 

Here we describe TIGA (Target Illumination GWAS Analytics), an application for illuminating 

understudied drug targets. TIGA enables ranking, filtering and interpretation of inferred gene-trait 

associations aggregated across studies from the Catalog. Each inferred gene-to-trait association is 

evaluated for confidence, with scores derived solely from evidence aggregated across studies, linking a 

phenotypic trait and protein-coding gene, mapped from single nucleotide polymorphism (SNP) variation. 

TIGA uses the Relative Citation Ratio, RCR (Hutchins et al., 2016), a bibliometric statistic from iCite 

(Hutchins et al., 2019). TIGA does not index the full corpus of GWAS associations, but focuses on the 

strongest associations at the protein-coding gene level instead, filtered by disease areas that are 

relevant to drug discovery. For instance, GWAS for highly polygenic traits are considered less likely to 

illuminate druggable genes. Here, we describe the web application and its interpretability for non-GWAS 

specialists. We discuss TIGA as an application of data science for scientific consensus and 

interpretability, including statistical and semantical challenges. Code and data are available under BSD-

2-Clause license from https://github.com/unmtransinfo/tiga-gwas-explorer. 

Methods 

NHGRI-EBI GWAS Catalog preprocessing 

The 2020-07-15 release of the Catalog references 8935 studies and 4628 PubMed IDs. The curated 

associations include 7433 studies and 2194 EFO-mapped traits. After filtering studies to require (i) 

mapped trait, (ii) p-value below 5e-8, (iii) reported effect size (odds-ratio or beta), and (iv) mapped 

protein-coding gene, we found 3930 studies, 1452 traits, and 12158 genes. For consistency, only genes 

mapped by the Ensembl pipeline (https://www.ebi.ac.uk/gwas/docs/faq) for genomics annotations were 

considered (not author-reported). Figures 1 and 2 illustrate the growth of GWAS research as measured 

by counts of studies and subjects.   

  

Fig 1: GWAS counts by year and vendor, 
indicating growth and platform trends. 

Fig 2: GWAS sample size distributions by 
year, on log scale, indicating variance in 
statistical power. 
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RCRAS = Relative Citation Ratio (RCR) Aggregated Score 

The purpose of TIGA is to evaluate the evidence for a gene-trait association, by aggregating multiple 

studies and their corresponding publications.  The iCite RCR (Hutchins et al., 2016) is a statistic 

designed to evaluate the evolving empirical impact of a publication, in contrast to the non-empirical 

impact factor.  By aggregating RCRs we seek to capture scientific community impact. 

 

(1) 

 

Where: 

study =    GWAS (study accession) 

gc =    gene count (in study) 

pub =    publication (PubMed ID) 

sc =    study count (in pub) 

 

The log2() function is used with the assertion that differences of evidence depend on relative, rather than 

absolute differences in RCR. Division by sc effects a partial count for papers associated with multiple 

studies.  Since RCR≥0, log2(RCR+1)≥ 0 and intuitively, when RCR= 1 and sc= 1, log2(RCR+ 1) = 1. 

Similarly division by gc reflects a partial count since studies may implicate multiple genes. This approach 

is informed by bibliometric methodology described elsewhere (Cannon et al., 2017). For recent 

publications lacking RCR, we used the global median as an estimated prior. Computed thus, RCRAS 

extends RCR with similar logic, providing a rational bibliometric measure of evidence for scoring and 

ranking gene-trait associations.  

Association weighting by SNP–gene distance 

Mapping  genomic  variation  of  single  nucleotides  (SNPs)  to  genes  is  a  challenging  area  of active  

research (Liu et al., 2010; Mishra and Macgregor, 2015; Lamparter et al., 2016).  While TIGA does not 

contribute to mapping methodology, it does employ mappings provided by the Catalog between GWAS 

SNPs and genes,  generated by the POSTGAP (https://github.com/Ensembl/postgap) Ensembl pipeline, 

which is based on STOPGAP (Shen et al., 2017)).  TIGA aggregates SNP-trait associations, assessing 

evidence for gene-trait associations, based on these understandings: 

● SNPs within a gene are more strongly associated than SNPs upstream or downstream. 

● Strength of association decreases with distance, or more rigorously stated, the probability of 

linkage disequilibrium (LD) between a SNP and protein coding gene decreases with genomic 

physical distance. Accordingly, we employ an inverse exponential scoring function, consistent 

with LD measure (Δ) and coefficient of decay (β) by Wang and coworkers (Wang et al., 2006).   

This function, used to weight N_snp to compute a distance-weighted SNP count N_snpw, is plotted 

together with the observed frequencies of mapped gene distances in supplementary Fig. 1, to illustrate 

how the extant evidence is weighted.  

 

(2) 

where d=distance in base pairs  

and k = ”half-life distance” (50k) 
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Multivariate ranking 

Multivariate ranking is a well studied problem which needs to be addressed for ranking GWAS 

associations. We evaluated two approaches, namely non-parametric µ scores (Wittkowski, 2008) and 

meanRank, and chose the latter based on benchmark test performance. meanRank aggregates ranks 

instead of variables directly, avoiding the need for ad hoc parameters. Variable-ties imply rank-ties, with 

missing data ranked last. We normalize scoring to (0,100] defining meanRankScore as follows. 

 

Variables of merit used for scoring and ranking gene-trait associations: 

● N_snpw: N_snp weighted by distance inverse exponential described above. 

● pVal_mLog: median(-Log(pValue)) supporting gene-trait association. 

● RCRAS: Relative Citation Ratio (RCR) Aggregated Score (iCite-RCR-based), described above. 

Variables of merit and interest not currently used for ranking: 

● OR: median(odds ratio, inverted if <1) supporting gene-trait association. 

● N_beta: simple count of beta values with 95% confidence intervals supporting gene-trait 

association. 

● N_snp: SNPs involved with gene-trait association. 

● N_study: studies supporting gene-trait association. 

● study_N: mean(SAMPLE_SIZE) supporting gene-trait association. 

● geneNtrait: total traits associated with the gene. 

● traitNgene: total genes associated with the trait. 

From the variables selected via benchmark testing the meanRankScore is computed thus: 

 

Mu (µ) scores were implemented via the muStat (Wittkowski and Song, 2012) R package. Vectors of 

ordinal variables represent each case, and non-dominated solutions are cases, which are not inferior to 

any other case at any variable. The set of all non-dominated solutions defines a Pareto-boundary. The µ 

score is defined as the number of lower cases minus the number of higher cases, with ranking as the 

useful result. The ranking rule between case k and case k′ may be formalized thus: 

 

 

Simply put, case k’ is higher than case k if it is higher in some variable(s) and lower in none. 

Benchmark against gold standard 

Lacking a suitable gold standard set of gene–trait associations in general, we instead relied on 

established gene–disease associations from the Genetics Home Reference, GHR (Fomous et al., 2006) 

and UniProtKB (UniProt Consortium, 2018) databases. This gold stand set was built following a 

previously described approach (Pletscher-Frankild et al., 2015). It consists of 5,366 manually curated 

associations (positive examples) between 3,495 genes and 709 diseases. All other (2,472,589) possible 

pairings of these genes and diseases were considered negative examples. 

 

To assess the quality of the TIGA gene–trait associations, we mapped the Ensembl gene IDs to 

STRING v11 identifiers using the STRING alias file (Szklarczyk et al., 2019) and the EFO terms to 
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Disease Ontology identifiers (Schriml et al., 2019) based on ontology cross-references and the EMBL-

EBI Ontology Xref Service. We then benchmark any individual-variable or multivariate ranking of the 

associations by constructing the receiver operating characteristic (ROC) curve by counting the 

agreement with the gold standard. 

Results 

The TIGA web application 

 

 

Fig 3: TIGA web application (http://unmtid-shinyapps.net/tiga/), displaying a plot of genes 
associated with trait "HbA1c measurement" (EFO_0004541). 

 

TIGA facilitates drug target illumination by currently scoring and ranking 101,762 associations between 

protein-coding genes and GWAS traits. While not capturing the entire Catalog, the TIGA app can 

aggregate and filter GWAS findings for actionable intelligence, e.g., to enrich target prioritization via 

interactive plots and hitlists (Fig 3), allowing users to identify the strongest associations supported by 

evidence. 

Hits are ranked by meanRankScore described in Methods. Scatterplot axes are Effect (OR or N_beta) 

vs. Evidence as measured by meanRankScore. Plot markers may be sized by N_study or RCRAS. This 

app accepts "trait" and "gene" query parameters via URL, e.g. ?trait=EFO_0004541, 

?gene=ENSG00000075073, ?trait=EFO_0004541&gene=ENSG00000075073.  Gene markers are 

colored by Target Development Level (TDL)(Oprea et al., 2018). TDL is a knowledge-based 

classification that bins human proteins into four categories: Tclin, mechanism-of-action designated 

targets via which approved drugs act (Santos et al., 2017; Ursu et al., 2019; Avram et al., 2020); Tchem 

are proteins known to bind small molecules with high potency; Tbio includes proteins that have Gene 

Ontology (Ashburner et al., 2000) “leaf” (lowest level) experimental terms; or meet two of these 

conditions:  A fractional publication count (Pafilis et al., 2013) above 5, three or more Gene “Reference 

Into Function” annotations (Mitchell et al., 2003), or 50 or more commercial antibodies in Antibodypedia 

(Björling and Uhlén, 2008); Tdark are manually curated UniProtKB proteins that fail to place in any of 

the previous categories. 
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Benchmark against gold-standard disease–gene associations 

 

Fig. 4: Performance evaluation. The performance of TIGA on the gold standard of gene-
disease associations. A) Results for the top-3 individual variables of merit. B) Results for 
the multivariate ranking by meanRankScore and µ score. 

 

To benchmark the quality of the GWAS associations in TIGA, we focused on the 383 EFO terms that 

could be mapped to diseases and their 20,458 associations with genes. We evaluated the performance 

of each variable of merit individually against the manually curated gold standard gene–disease 

associations. The resulting ROC curves showed that the three best performing variables are RCRAS, 

pVal_mLog, and N_snpw, which have areas under the curve (AUC) of 0.72, 0.65, and 0.63, respectively 

(Fig. 4A). These variables are complementary, having a maximal pairwise Spearman correlation of 0.34 

and evaluating different aspects of the associations. Based on these, we calculated two multivariate 

rankings, µ score and the meanRankScore. We benchmarked both rankings the same way as the 

individual variables and found that meanRankScore performs marginally better than µ score (Fig. 4B). 

As the meanRankScore is also more than five orders of magnitude faster to calculate, we selected it as 

the final ranking in TIGA. 

Using TIGA for drug target illumination 

The main motivation of developing TIGA is to capture GWAS data when illuminating drug targets. Table 

1 shows how many targets from each protein family and TDL are covered with associated traits in TIGA, 

with families as defined by Drug Target Ontology(Lin et al., 2017) (DTO) Level 2. Noteworthy is the 

coverage for 2469 Tdark (understudied) proteins (Oprea et al., 2018). The associations for other TDLs 

are also providing unique evidence, especially for Tbio proteins that are biologically characterized but 

have not before been clinically validated. 

 

Figures 3 and 5 illustrate a typical use case, the plot and gene list for trait "HbA1c measurement" 

(glycated hemoglobin, signifying prolonged hyperglycemia), highly relevant to the management of type 2 

diabetes mellitus. Figure 6 shows the provenance for one of the associated genes, SLC25A44 "Solute 

carrier family 25 member 44" with the scores and studies for this gene-trait association, including links to 

the Catalog and PubMed. SLC25A44 is an understudied (Tdark) transporter for branched-chain amino 

acids that acts as metabolic filter in brown adipose tissue, contributing to metabolic health (Yoneshiro et 

al., 2019). 
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Table 1. TIGA mapped target (protein) counts by IDG Target Development Level (TDL) and Drug Target 

Ontology (DTO) level 2 gene family. 

Family \ TDL Tclin Tchem Tbio Tdark Total 

G-protein coupled 

receptor 73 / 101 78 / 143 73 / 129 110 / 407 334 / 780 

Ion channel 97 / 127 59 / 89 72 / 116 12 / 20 240 / 352 

Kinase 57 / 66 278 / 360 97 / 133 12 / 20 444 / 579 

Calcium-binding protein 3 / 5 1 / 3 58 / 93 8 / 11 70 / 112 

Cell-cell junction 0 / 0 0 / 0 22 / 49 8 / 12 30 / 61 

Cell adhesion 0 / 1 0 / 2 23 / 52 6 / 15 29 / 70 

Cellular structure 4 / 10 5 / 11 244 / 323 44 / 86 297 / 430 

Chaperone 0 / 1 8 / 9 27 / 46 6 / 8 41 / 64 

Enzyme modulator 4 / 5 25 / 44 376 / 532 50 / 101 455 / 682 

Enzyme 69 / 104 277 / 387 1022 / 1553 177 / 332 1545 / 2376 

Epigenetic regulator 9 / 13 41 / 55 16 / 22 0 / 1 66 / 91 

Extracellular structure 0 / 1 0 / 1 50 / 57 8 / 9 58 / 68 

Immune response 0 / 1 0 / 2 13 / 41 4 / 6 17 / 50 

Nuclear receptor 16 / 18 16 / 19 8 / 11 0 / 0 40 / 48 

Nucleic acid binding 0 / 1 13 / 19 354 / 603 67 / 131 434 / 754 

Transcription factor 1 / 2 12 / 16 385 / 557 73 / 163 471 / 738 

Transporter 31 / 37 63 / 82 405 / 605 105 / 160 604 / 884 

Receptor 20 / 24 6 / 12 157 / 225 27 / 55 210 / 316 

Signaling 13 / 24 24 / 32 245 / 338 17 / 34 299 / 428 

Storage 0 / 1 0 / 1 2 / 7 1 / 2 3 / 11 

Surfactant 0 / 0 0 / 0 3 / 5 0 / 0 3 / 5 

Other 95 / 134 233 / 337 3973 / 6131 1734 / 3416 6035 / 10018 

Total 492 / 676 1139 / 1624 7625 / 11628 2469 / 4989 

11725 / 

18917 
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Fig. 5: TIGA hit list of genes for trait "HbA1c measurement". 

 

Fig. 6: Provenance for association between gene SLC25A44 "Solute carrier family 25 
member 44" and trait "HbA1c measurement". 
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Discussion 

Target illumination 

The explicit goal of the NIH Illuminating the Druggable Genome (IDG) program (Oprea et al., 2018) is to 

"map the knowledge gaps around proteins encoded by the human genome." TIGA is fully aligned with 

this goal, as it evaluates the GWAS evidence for disease (trait) – gene associations. TIGA generates 

GWAS-centric trait–gene association dataset using an automated, sustainable workflow amenable for 

integration into the Pharos portal (Nguyen et al., 2017; Sheils et al., 2021). The OpenTargets platform 

(Koscielny et al., 2017) uses Catalog data and other sources to identify and validate therapeutic targets 

by aggregating and scoring disease–gene associations for "practicing biological scientists in the 

pharmaceutical industry and in academia." In contrast, TIGA is a GWAS Catalog-only application that 

takes into account cited articles in a simple, interpretable manner.  

From information to useful knowledge 

In data-intensive fields such as genomics, specialized tools facilitate knowledge discovery, yet 

interpretation and integration can be problematic for non-specialists. Accordingly, this unmet need for 

integration and interpretation requires certain layers of abstraction and aggregation, which depend on 

specific use cases and objectives. Our target audience is drug discovery scientists for whom the 

aggregated findings of GWAS, appropriately interpreted, can provide additional value as they seek to 

prioritize targets. This clear purpose serves to focus and simplify all aspects of its design. Our approach 

for evidence aggregation is simple, easily comprehensible, and based on what may be regarded as 

axiomatic in science and rational inductive learning: First and foremost, evidence is measured by 

counting independent confirmatory results. 

 

Interpretability concerns exist throughout science, but GWAS is understood to present particular 

challenges (Lambert and Black, 2012; Visscher et al., 2017; Marigorta et al., 2018; Gallagher and Chen-

Plotkin, 2018). The main premise of GWAS is that genotype-phenotype correlations reveal underlying 

molecular mechanisms. While correlation does not imply causation, it contributes to plausibility of 

causation.  Genomic dataset size adds difficulty.  The standard GWAS p-value significance threshold is 

5e-8, based on overall p-value 0.05 and Bonferroni multiple testing adjustment for 1-10 million 

tests/SNPs (Marigorta et al., 2018). The statistical interpretation is that the family-wise error ratem 

FWER, or overall probability of a type-1 error, is 5%, but associations to mapped genes require 

additional interpretation. Motivated by, and despite these difficulties, it is our belief that GWAS data can 

be rationally interpreted and used by non-specialists, if suitably aggregated. Accordingly, TIGA is a 

rational way to suggest and rank research hypotheses, with the caveat that the identified signals may be 

accompanied by experimental noise and systematic uncertainty. 
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Fig 7: TIGA data sources and interfaces. TIGA integrates GWAS data from the Catalog 
and several other sources to rank gene-disease associations. These associations can be 
accessed through the TIGA webapp and are integrated into the DISEASES (Pletscher-
Frankild et al., 2015) and Pharos platforms. Bulk download is also available.  

Designing for downstream integration 

Biomedical knowledge discovery depends on integration of sources and data types which are 

heterogeneous in the extreme, reflecting the underlying complexity of biomedical science. These 

challenges are increasingly understood and addressed by improving data science methodology. 

However, provenance, interpretability and confidence aspects are underappreciated and rarely 

discussed. As in all signal propagation, errors and uncertainty accrue and confidence decays. Here, we 

proposed the use of simple, transparent, and comprehensible metrics to assess the relative confidence 

of disease-gene associations, via the unbiased meanRank scores. Figure 7, summarizing TIGA sources 

and interfaces, illustrates its well-defined role. Continuous confidence scores support algorithmic 

weighting and filtering. Standard identifiers and semantics support rigorous integration. Limiting 

provenance to the Catalog and its linked publications, semantic interpretability is enhanced.  

Conclusions 

We agree with Visscher et al. that: "the paradigm of 'one gene, one function, one trait' is the wrong way 

to view genetic variation"(Visscher et al., 2017). Yet in the real world of biomedical science, progress 

often requires simplifying assumptions. Findings must be interpreted in context for an audience and 

application. Mindful of these concerns and limitations, TIGA provides a directly interpretable window into 

GWAS data, specifically for drug target hypothesis generation and elucidation. As interest in 

"interpretable machine learning" and "explainable artificial intelligence" (Gilpin et al., 2018) grows, TIGA 

summarizes gene-trait associations derived solely and transparently from GWAS summary- and meta-

data, with rational and intuitive evidence metrics and a robust, open-source pipeline designed for 

continual updates and improvements. Whether in stand-alone mode, or integrated into other resources, 

TIGA can contribute to drug target identification and prioritization.  
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Definitions 

Common terms used in GWAS and related fields can vary in their definitions and connotations 

depending on context. Therefore for clarity and rigor the following definitions are provided, which we 

consider consistent with best practices in the GWAS and drug discovery communities. 

 

genotype An organism has one genotype, comprised of a germ line genome 
and multiple somatic genomes. Statistical models may assume a 
population distribution hence a population genotype. 

phenotype An organism has one phenotype, comprised of (potentially) all 
non-genomic observable characteristics, a.k.a. phenotypic traits. 

gene Genomic unit responsible for an expression product. Protein 
coding genes are a subset of this definition.  

trait Single non-genomic, observable characteristic. 

drug target Biomolecular entity involved in the mechanism of action of a drug. 
The IDG project is human protein-centric; hence in this context, all 
drug targets are human proteins. 
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Supplementary material 

 

 

Supplementary Fig 1:  SNP-gene distances for (up|down)stream genes and TIGA 
weighting function 

 

WExp(d) = 2−d/k 

where d=distance in base pairs  

and k = ”half-life distance” (50k) 
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