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Abstract

Predicting the response of the cortical microcircuit to perturbations is a prerequisite to determine the mechanisms
that mediate its response to stimulus; yet, an encompassing perspective that describes the full ensemble
of the network’s response in models that accurately recapitulate recorded data is still lacking. Here we
develop a class of mathematically tractable models that exactly describe the modulation of the distribution of
cell-type-specific calcium-imaging activity with the contrast of a visual stimulus. The inferred parameters recover
signatures of the connectivity structure found in mouse visual cortex. Analysis of this structure subsequently
reveals parameter-independent relations between the responses of different cell types to perturbations and each
interneuron’s role in circuit-stabilization. Leveraging recent theoretical approaches, we derive explicit expressions
for the distribution of responses to partial perturbations which reveal a novel, counter intuitive effect in the sign of
response functions. Finally applying the theory to inferring feedback to V1 during locomotion, we find that it is
predominantly mediated by both SOM and VIP modulation.
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Introduction

A defining feature of the operating regime of cortex is strong recurrent excitation that is stabilized and loosely
balanced by recurrent inhibition1–6. This understanding was achieved through the discovery of a fundamental
link between circuit stabilization and the response to specific perturbations, and was established in minimalistic
recurrent network models with only two units, one describing the mean excitatory activity and another describing
the mean activity of a single inhibitory type1,7. In these models, when recurrent excitation is sufficiently strong and
stabilized by inhibition, an increase in the input drive to the inhibitory population elicits a simultaneous decrease of
the excitatory and, paradoxically, of the inhibitory steady-state activity. This link provided a proxy to test inhibition
stabilization in in vivo cortical circuits and an understanding of counter-intuitive responses to perturbations1–4.
Nevertheless, and despite successful predictions, our understanding of the implications of the circuit’s response to
specific perturbations is still at its onset.

First, there is little consensus on how to generalize the fundamental link between stabilization and response to
perturbations to the case of multiple inhibitory types8,9. The inhibitory sub-circuit is composed of multiple
elements with three types – parvalbumin-(PV), somatostatin- (SOM), and vasoactive-intestinal-peptide (VIP)
expressing cells that constitute 80% of GABAergic interneurons in the mouse primary visual cortex (V1)10.
Importantly, these interneurons form a microcircuit characterized by a specific connectivity pattern11–13, but how
the stabilization of strong recurrent excitation is implemented by these interneurons and whether the structure
in the synaptic connectivity in any way constrains the circuit’s response to perturbations is not understood.
Second, viral (but not transgenic) cell-type specific optogenetic perturbation is insufficient to elicit a paradoxical
response4,14, demonstrating that minimalistic models are insufficient to account for the response to concrete
optogenetic manipulations and highlighting the need to advance the theoretical understanding of the circuit’s
response to perturbations in more detailed models of cortical activity in which cell, cell-type, and perturbation
diversity play a role. Finally, if new models hope to account for this emerging complexity, they will be rife with
parameter degeneracy. Yet, a data-driven framework designed to sub-select from the universe of such models has
not been established. As biological realism increases, making parameter-independent predictions or even locating
the parameters that situate a biologically insightful model in the correct network state becomes exponentially
difficult.

Here we developed a program for inferring high-dimensional cell-type-specific network models from data
and a theoretical framework for the quantitative prediction of the circuit’s response to patterned optogenetic
perturbations. This framework allowed us to i) find a mechanism for network control based on hidden symmetries
in the response matrix ii) link stability and response in high-dimensional multi-cell-type circuits, iii) predict an
unexpected effect to partial perturbations and iv) infer which are the inputs that would induce changes in the
network activity akin to those induced by behavioral modulations. Specifically, we analyzed calcium-imaging
recordings of the activity of each interneuronal type in the visual cortex of the awake mouse, in response to stimuli
of increasing contrast while the mouse was in a stationary condition. We identified, via a combination of fitting
methods and theoretical tools15–17 a family of mathematically tractable high-dimensional models that exactly
describe the distribution of cell-type-specific calcium-imaging activity and its dependence on the stimulus contrast.
Using recent results in random matrix theory18, we defined an approximation that allowed us to obtain explicit
expressions for the mean and variance of the distributions of responses to patterned optogenetic perturbations of
the high-dimensional models. By linking the mean responses of these distributions to the response to perturbations
in simpler, more minimalistic models and by evaluating these expressions with the parameters of the models
fit we were able to make quantitative predictions. We report that our fitting method, remarkably, provides sets
of parameters endowed with key aspects of the structure of the connectivity matrix found in the mouse visual
system11,19. By studying mathematically the implications of this structure for the response to population-wide
cell-type-specific perturbations, we predict a parameter-independent symmetry between the responses induced by
perturbation of VIP or of SOM, two interneuron types involved in a disinhibitory micro-circuit whose competition
directly regulates pyramidal cell activity. We find that this hidden symmetry principle is respected with remarkable
reliability in the models that fit the data. Furthermore, we establish a mathematical link between cell-type-specific
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response to perturbation and sub-circuit stability. By implementing those insights in these data-compatible
models we provide new evidence, aligned with convergent experimental20 and theoretical9 arguments, that PV
interneurons play a major role in circuit stabilization. Furthermore, we find that when effecting cell-type-specific
partial perturbations, the fraction of cells that respond paradoxically has a non-monotonic dependence on the
fraction of stimulated cells. There is a range in which increasing the number of stimulated cells actually decreases
the fraction of paradoxically responding cells, yielding a fractional paradoxical effect that can be linked to the loss
of circuit stability in the context of partial perturbations, opening a new avenue for experimental inquiry. Finally,
we reveal the mechanism by which locomotion affects V1 by inferring the distribution of inputs that each cell-type
population would need to receive for the network response to mimic the effect of locomotion.

Results

The analysis of low-dimensional (LD) models, in which there is one unit per population, revealed that the
response to controlled perturbations could be interpreted to characterize the operating regime of cortex1,7. This
was established in models that considered only two populations, excitatory and inhibitory. In these models, the
circuit’s response to perturbations is linked to its stability (see Eq. (S11)). When recurrent excitation is strong
and stabilized by inhibition (an inhibition-stabilized network or ISN), an increase in the external input drive to
the inhibitory population results in a paradoxical decrease of its steady-state activity. Conversely, a paradoxical
response can only be observed in ISNs, and can therefore be utilized as a proxy to experimentally assess the
stabilization properties of the cortical circuit4.

Cortical circuits in vivo are composed of multiple inhibitory types and generate broad distributions of activity. In
models that account for these features, the paradoxical response of a given inhibitory cell-type is not a predictor of
the ISN condition21 and its implications for circuit stabilization are not understood8. Here, we set out to establish
a framework (Fig. 1) that enables quantitative, cell-type specific predictions of the response to perturbations in
models that that incorporate the diversity of inhibitory cell-types and are high-dimensional (HD), meaning that
there are many units per population that may be heterogeneous in connectivity and in other properties.

Mean-field theoretical approach to model high dimensional data

We study the response to visual stimuli of varying contrast in neurons of layer 2/3 of primary visual cortex (V1)
of awake, head-fixed mice. Specifically, we study the responses of Pyramidal (E) cells and of Parvalbumin (PV),
Somatostatin (SOM) and Vasoactive Intestinal Polypeptide (VIP) -expressing interneurons while the animal is
shown square patches of drifting grating stimuli of a small size (5 degrees) at varying contrast.

To describe contrast modulations observed within each cell-type population, we build HD models with different
proportions of cells in each population as measured experimentally10. To infer the model parameters, we begin by
first inferring the parameters of a LD circuit with four units, each representing the mean activity of one cell-type
population (Fig. 2a, fitting pipeline). Each unit has a power-law input-output function22. All four cell-types
receive a baseline input to account for the spontaneous activity observed, while feed-forward inputs only target
the E and PV populations and are taken to be a linear function of contrast. To simultaneously find the synaptic
connectivity parameters, the value of the baseline inputs, and the values of the stimulus-related inputs, we construct
surrogate contrast-response curves for each cell-type by starting with the measured mean response of each cell type
at each contrast, and adding Gaussian noise to each of these data points, with mean zero and standard deviation
given by the standard error of the given data point. We fit each LD model by finding the non-negative least
squares (NNLS)23,24 solution to each surrogate data set, and select from these, hundreds of data-compatible model
parameters for which the network steady-states provide the best fit. Starting from these seed parameters, we
search over the parameters of the HD model to find those HD models that match well the experimentally measured
distributions of responses of all of the cell types (see below and Fig. 8). In HD models (Fig. 2b), each neuron has a

4

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2020.11.11.378729doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.11.378729


Model Inference 

Response to  perturbations
Activity

Infer from 
data

Model

Data

Activity
Connectivity

Input

Partial
perturbations

Paradoxical
Non-

Paradoxical

PDF

Response = 
Stimulus
 Activity

0

Stationary condition C
on

tra
st

 (%
)

VIP

Pv

Sst
SOM

PV

E

Modulation
 inference

LocomotionStationary

?

???
VIP

Pv

Sst
SOM

PV

E

Stability and 
response

VIP

Pv

Sst
SOM

PV

E

Freeze
 PV

Hidden response
symmetries

SOM increases
activity of    

VIP decreases
activity of    

Sst

VIP

SOM

PV

E

Figure 1 Workflow. Top: Model inference stage. In high-dimensional models with multiple cell types, the response of
the circuit to perturbations is strongly dependent on parameters. In order to build models with predictive power, we fit the
distribution of activity of each cell-type population (E, PV, SOM and VIP) to cell-type specific calcium imaging data of mouse
visual cortex in response to stimuli of different contrasts, in a stationary condition (see also Fig. 2). Given a certain accuracy of
the fit, we work with a family of data-constrained models. Middle: Response to perturbations stage. We developed a theoretical
framework that allows us to derive explicit expressions for the mean and the variance of each cell-type population response to
perturbations, under a suitable approximation. This approximation allows us to map the insights obtained in the perturbations
analysis in LD models to HD models (see also Fig. 3). Bottom Left: Hidden response symmetries. We find hidden symmetries
in the response to perturbations that lead to two mutually-exclusive mechanisms for network control via the manipulation of
SOM and VIP activity (see also Fig. 4). Bottom middle left: Stability and response. Building the mapping between LD and
HD models, we link the mean response to full-population perturbations with the stability of the network sub-circuit without
the perturbed cell-type population, extending results of LD models with a single inhibitory type (see also Fig. 5). Bottom
middle right: Partial perturbations. When the perturbations to the circuit are restricted to a subset of neurons, the responses to
perturbations are bimodal. If a full population perturbation induces a paradoxical effect, we show that a partial perturbation
exhibits a fractional paradoxical effect (see also Fig. 6). Bottom right: Modulation inference. Finally, we infer the perturbation
pattern that would elicit a model response that matches the activity modulation induced by locomotion (see also Fig. 7).
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Figure 2 Fitting the distribution of responses to multiple contrasts with a HD model. a) Model inference pipeline.
We firstly fit the mean activity of the pyramidal-cell (E, black), PV (turquoise), SOM (orange) and VIP (pink) populations, as
measured with two photon calcium imaging (thick line, ± s.e.m.), as a function of stimulus contrast with a LD model of four
populations. Inputs to each cell-type are composed of a spontaneous activity baseline hb, and a stimulus related current, hc, to
E and PV, modeling the feed-forward inputs from layer 4. Stimulus-related inputs are linear functions of the stimulus contrast.
After performing non-negative least squares (see text) to find the 22 parameters of the model (16 weights, 4 baseline inputs
and 2 stimulus-related inputs) we find a family of possible models (thin lines, mean and s.e.m. over models; here we show the
300 models) that qualitatively reproduce the mean activity. We aim to find a family of HD models that recapitulate not only
the means but the entire distributions of activity of all cell-types at all contrast values. Then, we use the inferred LD model
parameters as a seed to build Gaussian priors for the connectivity mean (wαβ ) and the input means (Hα

b and Hα
c ), whereas

priors for the variance of the connectivity and the inputs are chosen arbitrarily. We generate HD models by sampling from
those prior distributions of parameters, and compare the obtained model distributions to the fitted data distributions using an
error function. This error, is given by the sum of the Kullback-Leibler divergences of the distributions given by the model (Pmf)
and the data (Pc) for all cell-types and contrast values, which can be found explicitly. By only accepting models with error less
than a threshold of 0.5 (top 0.005%), we build a family of suitable models. b) HD model has a distribution of external baseline
inputs with mean Hb, and a stimulus related current, Hc, to E and PV, which is a linear function of the stimulus contrast. The
variance of the input does not depend on contrast. The model has 34 parameters (24 that account for the 16 mean weights and
the 8 low-rank weight variance, 4 mean baseline inputs, 2 mean stimulus-related inputs and 4 input variances, independent of
contrast). For more details see Figure 8. c) Distribution of KL divergences, indicating the 0.5 threshold. We used models below
this threshold for the analysis in the remaining text (see Methods for details). d) Example of a parameter configuration within
the threshold. Data (histogram, colored bars) and data fits (solid colored line) are in good agreement. e) Distribution of mean
connectivity weights over all possible models is shown. The gray-scale background of each panel is the logarithm of the mean
of each distribution. Notice that, as in experiments (see Fig.9), the models lack recurrent SOM and VIP connections, and the
connections from VIP to E and PV are small on average.
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power-law input-output function22,25 and receives heterogeneous baseline inputs and a stimulus-related inputs that
have cell-type-specific means and variances (and the means of stimulus-related input depend on the stimulus). The
connectivity is heterogeneous with a mean and a variance dependent on both the pre- and post-synaptic cell-type.
This class of models reduces to the LD class whenever there is no heterogeneity in the connections or the inputs
(homogeneous network).

We emphasize that, due to the nonlinear transfer function, heterogeneity in the values of the synaptic connectivity
will change the mean activity compared to the system without heterogeneity. Consequently, it is not sufficient
to use the parameters found for the LD model as the mean values of the heterogeneous connectivity and input
distributions; the mean and variance of the connections and the inputs have to be found simultaneously for the HD
model to fit the data. We expect the HD mean values to be near the LD values, so we focus our search for HD
mean values on the vicinity of the LD values.

In order to find HD models, we build on two facts. First, given a power-law input-output function, there is
a closed-form expression that maps the distribution of inputs that a given cell-type population receives to the
distributions of activity that cell-type population produces17 (see Eq. S44). Given that this expression is explicit, it
allows us to infer, from the distributions of activity for each cell-type and each stimulus contrast, the distributions
of inputs to each population. Second, given a HD circuit model (for a fixed set of parameters), the distributions
of inputs and activities it will produce can be computed self-consistently through mean-field theory15,16 (see Eq.
S40). These two facts, taken together, allowed us to obtain an explicit error function that quantifies how different
the measured distributions of activity of all cell types at all contrast are from those distributions produced by
the mean-field equations with a given set of parameters. To generate candidate models, we sample from prior
distributions on the parameters. These prior distributions are Gaussian distributions for the mean and variances of
the weights and the external inputs. The priors for the means are centered on the LD seed parameters. We keep
the solutions that have a sufficiently small error, to define a family of HD models that fit the data (Fig. 2c,d). This
family of models recapitulates the dependence of the distribution of responses of all cell types on contrast, and
captures both the spreading out of the distributions with increasing contrast and the heavy tails of the distributions
seen in calcium data.

We require that the recurrent excitation is strong, and that the LD system has a paradoxical response in the PV
population in the absence of visual stimulation (i.e. at zero contrast), as measured experimentally4. Beyond
that, this optimization takes as sole input the response data and uses no other prior information on the synaptic
structure, hence it is not obvious that any meaningful synaptic structure should be recoverable from such a
procedure. Surprisingly, the structure of the inferred connectivity matrices has a striking resemblance to that
reported experimentally (Fig. 2e), see also 9b). In particular, recurrent connections within the SOM population
and the VIP population were absent in most models, as observed in mouse V111,13,19 (Fig. 9); and,whenever inputs
were chosen to target only E and PV, VIP interneurons had weak or absent connections to all other cell-types except
SOM interneurons, also as reported in mouse V111,13,19.

Analytical approach to full and partial perturbations

To develop a theoretical framework for using optogenetic perturbations to probe the circuit, we compute the
distribution of responses of the network to perturbations, e.g. optogenetic activation or suppression of sets of
cells. For each pair of cells, the change in steady-state response of the cell i (belonging to a population α) per
small change in the input to a cell j (belonging to a population β ) will be given by the element χ

αβ

i j of the response
matrix χ . We developed a theoretical framework that allows analytic computation of the mean and the variance
of the response over each population to (small) perturbations, under the following approximation. We assume
that the gain of the neurons in a given population is the same for each cell (equal to the gain of the homogeneous
system). Our system then satisfies the assumptions needed to build on recent work on random matrix theory18 to
compute these response distributions. Under this approximation, which we refer to as the homogeneous fixed point
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Figure 3 Analytical framework for the study of perturbations. In order to study perturbations in HD models (top
left), in which the heterogeneity in the connections and the inputs induces heterogeneity in the response gain of each neuron,
we make an approximation. By linearizing around the homogeneous fixed point (i.e. linearizing around the fixed point of the
network without heterogeneity, middle panel), we are able to leverage results from random matrix theory to obtain explicit
expressions for the mean and the variance of the response of each cell-type population. The analytical approach reveals that,
when perturbing all cells in a given population, the mean response of an HD system in the HFA is equal to the response of the
LD system (right panel, which is equivalent to the system without heterogeneity).

approximation (hereinafter HFA, see Eq. S54), we are able to obtain analytical expressions for the behavior of the
mean and the variance of the distributions of optogenetic responses in each population to either full or partial, and
either homogeneous or heterogeneous, perturbations. Importantly, we find that under the HFA, neurons belonging
to a specific cell-type’s population of the HD heterogeneous system, have a mean response to cell-type-specific
perturbations given by the response of the homogeneous system without heterogeneity, equivalent to the LD system
(Fig. 3, see also Eq. S121), allowing us to directly link the response of the LD and HD models. In the following,
we will distinguish analytics using the HFA, from simulations of the fully nonlinear system, in which different
cells of a given cell-type can have different gains at the network’s fixed point.

Symmetry principles of optogenetic response

Figure 4 shows the first application of the link between LD and HD systems offered by the HFA. When computing
the response distributions to perturbations, we find consistent symmetries in the responses to perturbation of the
SOM population vs. a perturbation of the VIP population. In order to understand this, based on our recovery of
the structure of the connectivity matrix found in mouse V1 (Fig. 2), we examined the linear response matrix of
LD circuits (Eq. S7) for a generic connectivity that satisfies the condition that VIP projects only to SOM, but is
otherwise arbitrary. We found that in this case, the linear response matrix has a symmetry between the response of
E, PV, SOM and VIP to a VIP perturbation vs. to a SOM perturbation: for each cell type, the two responses will
be negatively proportional to one another, with a common proportionality constant across the four cell types (Fig.
4a), see also Eq. S13). In the case of VIP, there will be an additional shift given by its own gain. Specifically, if f ′V
is the gain of VIP at a particular steady-state configuration and ωSV is the synaptic weight from VIP to SOM then

χ
αV
LD =− f ′V ωSV χ

αS
LD +δαV f ′V α = {E,P,S,V} (1)

We refer to these equalities as Hidden Response Symmetries (HRS) (Fig. 4a-c). Because the mean response of a
population to the perturbation of all neurons in another population under the HFA is given by the response of the LD
circuit (see Figure 2), these symmetries also apply to the mean of the distributions in the high dimensional system
under the HFA. Figure 4b shows the response distributions of an example model from Figure 2, to perturbations
of the entire SOM and VIP populations. The distributions obtained under the approximation (colored lines) are in
good agreement with the results of simulations of the fully non-linear system (green). 4c quantifies to which extent
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Figure 4 Hidden response symmetries (HRS). a) A parameter-independent relation holds true between the response
of pyramidal cells (E), PV interneurons (P), SOM interneurons (S), and VIP interneurons (V) to perturbation of SOM and VIP.
These relations or hidden response symmetries (HRS), described by Eq. (1), are derived for LD models under the assumption
of VIP projecting only to SOM, and hold for the mean response of HD models under the HFA. The illustration depicts the
response of cell-type α to VIP perturbation vs the response to a SOM perturbation multiplied by the coefficient in Eq. (1).
Given a perturbation to the VIP population, the constraints imposed by the HRS define the sign and magnitude of the response
to SOM, so that possible values lie on a line, as shown. Two regimes can be identified: One in which VIP disinhibits while
SOM inhibits the cell-type α (lower right, green) and another one in which the opposite is true (upper right, purple). We
hypothesize that this relation could approximately hold at the single cell level. b) Distribution of responses to full-population
SOM (left) and VIP (right) perturbations, for maximum stimulus contrast. Green histograms are the result of the simulation of
a fully nonlinear HD system, while colored histograms and corresponding lines are the analytical result, only possible under the
HFA. c) Opposite and proportional responses to perturbations of SOM and VIP, for E (top left), PV (top right), SOM (bottom
left) and VIP (bottom right), for the top 360 of models. Given that the data-compatible connectivities have only small values
of connections weights from VIP to E, PV and SOM, this symmetry is evident in the models that fit the data. These results
show that the best fit models support a clear disinhibitory motif in which a perturbation to VIP decreases SOM activity and
increases both E and PV, and a perturbation to SOM does the opposite. d) Hidden response symmetries at the single neuron
level. Responses of single cells of type E (black), PV (turquoise) and SOM (orange) and VIP (pink) cells to a VIP perturbation,
vs. the responses of those same cells to a SOM perturbation multiplied by the factor: 〈 f ′V 〉〈wSV 〉. The response symmetries
hold at the single cell level in the fully nonlinear HD system. In experiments, it may be necessary to compare the response
of one cell to a SOM perturbation and a different cell to a VIP perturbation. The contour lines show the distribution of such
responses across pairs of cells, with VIP perturbed for one and SOM perturbed for the other. In this case, the response to VIP
and to SOM perturbations are not perfectly correlated, but the two perturbations still elicit responses with opposite sign.

the HRS hold in the mean response of HD models that fit the data, both in models under the HFA and the fully
nonlinear networks. As the data-compatible models naturally exhibit only weak connections from VIP to other
interneurons besides SOM, this symmetry in the mean response is revealed in this family of models.

The HRS formalize a clear intuition: Because VIP neurons only project to SOM neurons, a weak perturbation to
VIP will only affect the rest of the circuit through SOM, relaying that perturbation with an opposite sign.

The HRS defines two alternative regimes of network configuration: one in which an increase in the input to VIP

9
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increases the activity of a given population, and another one in which it decreases it, with SOM causing an opposite
response in each case. VIP will be inhibitory if the disinhibitory effect of SOM cells on PV cells outweighs the
direct inhibitory effect of SOM cells on E cells; otherwise, it is disinhibitory. In our data-compliant models,
activation of VIP has a disinhibitory effect on E, as in experiments26–29, and disinhibits PV while inhibiting
SOM. These effects of small VIP perturbations on PV and SOM, and the opposing, proportional effects on E, PV
and SOM of small VIP versus SOM perturbations, with the same proportionality constant for all, are conclusive
predictions resulting from our our analysis.

Finally we asked to which extent the mathematical understandings offered by the Hidden Response Symmetries
hold at the single cell level. We reasoned that the effect of the perturbation that each cell receives, will respect
the HRS but now with the average values of the connectivity and the gains. Indeed, Figure 4d shows, for a
single example fully nonlinear network, the response of each cell to a perturbation to the full SOM population
vs the response to a perturbation to the full VIP population with the appropriate corrections. These responses are
perfectly anticorrelated.

Paradoxical effects in circuits with multiple cell types and link to sub-circuit stabilization

We next investigated the relation between paradoxical response of an inhibitory cell-type and the stability of the
network sub-circuits. A multi-cell-type circuit is an inhibition-stabilized network (ISN) if and only if an increase
in the input drive to any or all of the inhibitory populations paradoxically results, in the new steady state, in a
change in the same direction – both increasing, or both decreasing – in both the inhibitory input to the excitatory
population and of the excitatory activity.25,30. Therefore, if a perturbation to the entire inhibitory sub-circuit elicits
a paradoxical decrease in activity in all GABAergic cells that project to excitatory cells, thereby guaranteeing that
the net inhibition received by excitatory cells decreases, and also decreases the excitatory activity, then the circuit
is an ISN. The converse, that the ISN condition implies a paradoxical response of the inhibitory activity, is only
true in an E/I circuit: in the multi-cell-type case, there are multiple ways in which the total inhibitory input current
to the E population can decrease, so no specific cell-type needs to decrease its activity.

To systematically investigate the response of each cell-type to its own stimulation, we start by focusing on the
diagonal of the LD linear response matrix (see Eq. S10) χαα , found by linearizing the dynamics in the vicinity
of some stable fixed point of activity. These elements, can be written as a function of the Jacobian J of the entire
circuit (which drives the linearized dynamics) and the Jacobian Jα of the sub-circuit without cell-type α:

χαα ∝
1

det(−J)
det(−Jα) α = {E,P,S,V} (2)

At a stable fixed point, the determinant of the negative Jacobian is positive (because all eigenvalues of the Jacobian
have negative real part). As a result, det(−J)> 0, so χαα has the same sign as det(−Jα). Thus, if the response of
cell-type α at a given fixed point is paradoxical (χαα < 0), then the sub-circuit without that cell-type is unstable
(det(−Jα) < 0, see Eq. (S10)). This insight is a simple generalization of the two-population ISN network, in
which the I unit shows a paradoxical response at a given stable fixed point when the circuit without it, i.e. the E
unit, is unstable, and links cell-type-specific paradoxical response to sub-circuit stability in a more general setting
(Fig. 5a)). In particular, we furthermore find that when VIP projects only to SOM, the response of SOM to its
own perturbation is directly linked to the stability of the sub-circuit E-PV: a paradoxical response in the SOM
population indicates that the E-PV sub-circuit is unstable (see Eq. S12).

To link the LD insights to the HD models, we notice that if the connectivity is dominated by its random component
(see Eq. S33), the eigenvalues of the Jacobian of the HFA will follow a circular law, except for a set of outliers
corresponding to the eigenvalues of the LD system (as proven in31 for the case of an i.i.d. random matrix, see also
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Methods; this seems to well describe our results, but a more precise treatment of our case, in which the variances
of different cell types are different, is in18). Therefore, in the HD systems, whenever the mean of the LD system
is paradoxical, then for sufficiently large variance of the connectivity, the system without that population will,
under the HFA, retain the unstable eigenvalue of the LD system and thus be unstable (Fig. 5a)). This phenomenon
is illustrated for an example model at 100 % contrast in Figure 5b-c. Notice that the mean response is only
paradoxical for PV cells, and that therefore the eigenvalue distribution of the system without PV, has a positive
outlier (top left panel). For comparison, simulations of the fully nonlinear system are also shown. Although there
is no theoretical guarantee that the outlier eigenvalues of the fully nonlinear system will be organized as the ones
in the HFA, we observe good agreement.

To fit the HD models, we required that the LD seed used for the model priors (see Fig. 2 and Methods) had a
paradoxical response in PV in the absence of visual stimulus, to match experiment4, but we did not apply any
constraints to the response of the HD system, which therefore could have lacked a paradoxical response in PV.
Nevertheless we observe that the mean response of PV to its own stimulation is paradoxical in almost all HD
models that fit the data ( Fig. 5e-f)), and that the outlier eigenvalue of the sub-circuit without PV is positive,
suggesting a fundamental role of PV in circuit stabilization in our family of models (Fig. 5e-f), top left panel).
Furthermore, we find that no other interneuron has a mean paradoxical response, and that the real parts of the
eigenvalues of the sub-circuits without them are always negative (Fig. 5e-f)).

In summary, and consistent with previous work showing that strong perturbations to PV destabilize the dynamics
in V120, we find that in most models that fit the data i) SOM does not respond paradoxically, consistent with the
E-PV circuit being stable, and ii) PV responds paradoxically, meaning that the circuit without it is unstable (Fig.
4b,c).
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Figure 5 Paradoxical response and circuit stabilization in data compatible models. a) Graphic summary of the relation
between stability and paradoxical responses. The response of a cell-type α in the LD case, which is the change in activity
normalized by the size of the perturbation, is shown as a function of contrast. When the response of the cell-type which is being
perturbed is negative, the response is paradoxical. A paradoxical response of a cell-type in an LD model in turn implies that
the circuit without that cell-type is unstable (see Eq. 2). This relation holds in the HD system under the HFA if the variance
of the weight distribution is sufficiently small. b) Distribution of responses to full-population perturbations for a stimulus of
100% contrast. Green histograms are the result of the simulation of a fully HD nonlinear system (dashed green line is its
mean), while colored histograms and colored lines are the analytical curves obtained under the HFP approximation (dashed
red line is its mean, corresponding to the LD system response). The responses of E, SOM and VIP cells are not paradoxical,
while all cells in the PV population respond paradoxically to PV stimulation. c) Eigenvalue distribution of the Jacobian of the
sub-system without the E (top left), without the PV (top right), without the SOM (bottom left) and without the VIP (bottom
right) populations. As the outliers of the eigenvalue spectrum of the Jacobian under the HFA are defined by the LD system
for sufficiently small variance of the weight distribution, and because χ̄

αβ

HFA = χ
αβ

LD , a mean negative response in the HFA
approximation indicated that the sub-circuit without that population is unstable. In the special case in which VIP projects only
to SOM, the lack of a paradoxical response in SOM indicated that the E-PV circuit is stable. d) Cumulative distribution of
responses (HFA) to full-population perturbation in the presence of a visual stimulus for varying stimulus contrast. e) Mean
response of each cell type to a perturbation to that same cell type, vs the real part of the maximum eigenvalue of the sub-circuit
without that cell type, for all values of the contrast. f) Mean response of each cell type to a perturbation to that same cell type
as a function of contrast, for models in the HFA (E in black, PV in turquoise, SOM in orange, VIP in pink) and for the fully
nonlinear network (green). g) Same as f) for the standard deviation of the response. Note the paradoxical response of PV at all
contrasts and the non-paradoxical response of SOM in most cases. In the multiple cell-type circuit and unlike in the EI system,
excitatory activity can in principle also respond paradoxically. Nevertheless, none of the data-compatible models obtained had
an excitatory paradoxical response. 12
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Fractional paradoxical effect

Optogenetic perturbations of cortical circuits do not affect all cells equally. In most animal species, the accessible
toolbox for opsin expression is via local viral injection, infecting only a fraction of the cells in the relevant local
circuit. Optogenetic activation in this case will result in a partial perturbation. Within the perturbed population,
diversity in the opsin expression affects the responsiveness of each cell to light differently and introduces another
source of heterogeneity, which we model as a heterogeneous perturbation.

Figure 6a) shows the distribution of PV responses to perturbing 25%, 75% and 100% of the PV population.
We find mathematically, that under the HFA, the distribution of responses of the entire population is bi-modal,
given by a mixture of Gaussians (turquoise) composed of a Gaussian distribution corresponding to the perturbed
cells (red dashed line) and another one corresponding to the unperturbed population (green dashed line, see Eq.
S94). The distributions of responses under the HFA are in good agreement with simulations of the fully nonlinear
system (gray). When the number of perturbed PV cells is small, the mean of the Gaussian response distribution
corresponding to the perturbed cells is positive (see also Fig. 6b)) and all the eigenvalues of the Jacobian of
the sub-circuit without those perturbed cells have negative real part (Fig. 6a), bottom left). As the fraction
of perturbed PV cells increases, the mean response of the perturbed population moves towards negative values,
ultimately changing sign, as does the maximum eigenvalue of the sub-circuit without the perturbed cells (Fig.
6a), bottom right). The negative movement of the responses of the perturbed population mean gives rise to a
curious phenomenon: with increasing fraction of PV cells perturbed, the fraction of PV cells responding negatively
(paradoxically) can show non-monotonic behavior (Fig. 6b), top right). Over some range, increasing the fraction
of stimulated PV cells decreases the probability that we will measure a PV cell showing negative response, because
it adds more cells to the perturbed population, which still shows positive responses. With further increase in the
fraction perturbed, the responses of an increasing fraction of the perturbed population become negative, ultimately
increasing the probability that a PV cell has a negative response. When 100% of PV cells are stimulated, all show
a negative response. We name this the fractional paradoxical effect. This result extends the concept of critical
fraction developed in Ref.32 to the case in which the neurons have heterogeneous connectivity.

The lower panels of Figure 6b) show the dependence of the fraction of PV negative responses on the fraction of
perturbed PV cells for different values of the stimulus contrast in the models obtained in Figure 2. Intriguingly, in
the models that fit the data, PV has a fractional paradoxical response at all contrasts. Recent experiments (Ref.4)
have revealed that an optogenetic perturbation of PV interneurons with transgenic opsin expression (affecting
essentially all PV cells) elicits a paradoxical effect in most cells, whereas if the expression is viral (and therefore
affecting only a fraction of PV cells), a much smaller portion (about 50%) of cells show negative responses. Our
models are consistent with that observation, and predict that that property is independent of the stimulus contrast.

To understand the relationship between fractional paradoxical response and stability, we built a LD, 5-dimensional
(5D) network (Fig. 6c), top right), with two PV populations, a perturbed one (red) and an unperturbed one (green).
The connectivity of this network is chosen such that its response to perturbations is mathematically equivalent
to the mean population response to a partial perturbation in the HD system under the HFA. As predicted by Eq.
2, whenever the response of the perturbed PV population in the 5D system becomes negative (paradoxical), the
sub-system composed of all of the non-perturbed populations loses stability.

On the one hand, this tailored 5D network links response to partial perturbations in a high dimensional system
with response to perturbations in a LD system. On the other hand, by similar arguments than those given in Figure
5, the eigenvalues of the Jacobian of the non-perturbed HFA HD system will have outlier eigenvalues close to
those given by the non-perturbed populations in the 5D system. These two facts taken together, imply that when
the mean response of the perturbed PV population in the HFA becomes negative, the sub-system without those
perturbed neurons will become unstable. The top panel of figure 6d), illustrates this fact by showing the mean
response of the perturbed PV population (both in the HFA and the fully nonlinear system) as a function of the
outlier eigenvalue for different fractions of perturbed PV neurons. Also shown is the response of the equivalent
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5D system to a perturbation of the red PV population. For this example, perturbing more than 60% of the PV
population will make the circuit without the perturbed population unstable. This understanding links stability of
the non-perturbed circuit to the fractional paradoxical effect: whenever the system exhibits a fractional paradoxical
effect, the unperturbed neurons will form a stable circuit, which will lose stability only after a critical fraction of
cells are stimulated. We observe that, at high contrast, there are networks for which the sub-system loses stability
but for which the mean perturbed population does not change sign. The link between perturbation and stability is
not bi-directional; the system can lose stability without changing the sign of the determinant of the Jacobian (see21

for a full clarification).
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Figure 6 Fractional paradoxical effect and link to sub-circuit stability: a) Top: distribution of perturbation strengths,
when perturbing 25% (left), 75% (middle) and a 100% (right) of the PV population. This can be understood as having an
increasingly larger radius of an optogenetic stimulus, as indicated in the top right scheme of a mouse brain . Middle: Partial
perturbations result in a bimodal distribution of responses in the HFA, given by a mixture of two Gaussians (turquoise). The
rightmost peak (dashed red) corresponds to the response of the sub-population of stimulated PV cells, while the leftmost peak
(dashed green) corresponds to the response of non-stimulated PV cells. The distribution of responses is the HFA is in good
agreement with simulations of the fully nonlinear system (gray histograms), for this example model at lowest contrast. Note that
the mean response of the perturbed population changes sign with increasing number of perturbed PV cells. Bottom: Eigenvalue
spectrum of the Jacobian of the non-perturbed sub-circuit for the HFA approximation (purple, orange and yellow) and the
fully nonlinear system (green). The maximum eigenvalue of the network subsystem changes sign with increasing number of
perturbed PV cells. b) Top left: Mean of the entire (bimodal) distribution of PV cell responses (turquoise), the mean of the
perturbed PV cell responses (dashed red) and the non-perturbed PV cell (dashed green) responses as a function of the fraction
of PV cells perturbed. Top middle: While all three means monotonically decrease with the fraction of stimulated cells, the
variance of both perturbed (dashed red) and non-perturbed (dashed green) monotonically increase, resulting in a non-monotonic
variance of the full distribution. Top right: Fraction of negative responses as a function of the fraction of stimulated cells shows
a non-monotonic dependence, which we name the fractional paradoxical effect. Bottom: The fractional paradoxical effect is a
signature of models that fit the data, and occurs for all values of the contrast. Simulations of the fully nonlinear system (green)
are in good agreement with calculations from the HFA (turquoise). c) Linking response and stability across models. A fully
nonlinear system can be linked to a HD system of lower complexity via the HFA. The mean response to a partial perturbation
in the HFA can be mapped to the response of a PV sub-population in a LD system with two PV populations, a perturbed one
(red) and an unperturbed one (green) see, Eq. (S106). d) Top: Mean response of the perturbed PV population as a function
of the value of the outlier eigenvalue for different fractions of perturbed PV cells for the fully nonlinear system (green) HFA
(blue colors) and the equivalent 5D system (purple orange palette). The mean responses become negative when the maximum
eigenvalue crosses zero, indicating instability of the non-perturbed sub-circuit. Bottom: Mean response of the perturbed PV
population as a function of the value of the outlier eigenvalue in the equivalent 5D model obtained from different models that
fit the data, for different values of the contrast.
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Inferring circuit modulations

We derived explicit expressions for the mean and the variance of the response to heterogeneous perturbations,
in which each cell is perturbed differently (see Eq. S119). This expression, which implicitly depends on the
contrast via the population’s gain, allows us to mathematically map the parameters (mean and variance) of the
perturbations to the mean and variance of the response distributions, under Gaussian assumption, which can be
measured experimentally. We then asked, if we assume that locomotion is an heterogeneous perturbation that
affects each cell-type population differently, can we infer the nature of this perturbation from data? In order to do
so, we computed the difference between each cell’s activity in the locomotion and the stationary condition (Fig.
7 a), and found the best Gaussian fit for each case (dashed line). Next, we used the derived expressions to fit the
distributions of locomotion modulations, and infer the perturbations which would result in activity changes that
mimic the effect of locomotion (Fig. 7 b). Specifically, assuming that the effect of locomotion was a cell-type
specific, Gaussian-distributed perturbation whose mean and variance depends linearly on the stimulus contrast, we
fit the mean and variance of locomotion-induced modulations with the explicit expressions (Fig. 7 c, left panels).
This fit allowed us to infer, for each model in the family of models that fit the stationary data (see Fig. 2) which
is the cell-type specific mean and variance of the inputs that would mimic the effect that locomotion has in the
activity (Fig. 7 c, right panels).

We found that, consistent with previous findings28, in the absence of visual stimulation, the mean change in activity
is only significantly positive for VIP and PV cells (stars in Fig. 7 a and c) whereas that of E and SOM cells is not.
Interestingly, we find that the perturbations that would account for the observed locomotion effects have a large
mean and variance in VIP and surprisingly, also in SOM, but less so in E and PV. This method allows us to infer
modulations to the population’s activity that are not apparent form the data and that would be unattainable without
explicit expressions.
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values of the stimulus contrast. Stars in the top right corner indicate when mean is significantly different from zero (p<0.0001,
t-test). Dashed lines indicate best Gaussian fits. Solid lines are fits from the explicit expressions (see Eqs. S113 and S111)
b) Scheme of how to infer the cell-type specific perturbations (Gaussians of mean gα and standard deviation gα for α =
{E,PV,SOM,VIP}) that give rise to the distribution of ∆ activity (with mean µα and standard deviation ∆α ). By fitting these
last expressions to data, the inputs can be inferred. c) Mean of ∆ activity and standard deviation of ∆ activity as a function of
contrast. Dashed lines are the data (E in black, PV in blue, SOM in orange and VIP in dark red), with stars in matching colors
when the mean is significantly different from zero (p<0.0001, t-test). Full lines indicate fits as described in b, for the family of
models that fit the stationary data. The mean (g) and the standard deviation (d) of the inferred perturbation are shown in the left
panels.
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Discussion

Contemporary optogenetic perturbation protocols allow for precise manipulations of cell-type specific neuronal
activity down to the single neuronal level, but it remains an open problem how best to read out circuit properties
from such experiments.

In order to inform future perturbation experiments, we developed a framework that allows us to accurately describe
the activity as a function of the stimulus, make experimentally testable predictions, and shed light on mechanisms
underlying the control of neuronal activity and the influence of behavioral modulations. Specifically, we built
a family of mathematically tractable high-dimensional models that can reproduce the distributions of activity of
each cell-type’s population in response to multiple stimulus contrasts. Building on recent developments on random
matrix theory, we devised a theoretical approach that allowed us to derive closed expressions for the mean and
variance of the distributions of responses to heterogeneous and partial optogenetic perturbations that are evaluated
with the parameters inferred from the data.

We report four main findings. First, we found that there are hidden symmetries in the response matrix which
enforce the responses to a SOM and a VIP perturbation to be of opposite sign and proportional, with the same
proportionality constant across cell types. Second, we showed that a paradoxical response of any-given cell-type
– its negative steady-state response to positive stimulation, or vice versa – implies that the circuit would be
unstable without that cell-type, i.e. if that cell-type’s activity were frozen. In the low-dimensional case, this finding
generalizes the well-established concept of inhibition stabilized networks, and extends it to high-dimensional (HD)
models. When VIP interneurons project only to SOM neurons, as appears approximately true empirically11,13,19,
we found that a paradoxical response of SOM interneurons implies instability of the E-PV sub-circuit. Given that
in all our models the only cell-type that shows a paradoxical response is PV, we conclude that our family of models
is PV-stabilized. Thirdly, we found that responses to partial perturbations are described by mixtures of Gaussian
distributions whose mean and variance we were able to compute exactly. When the models have a paradoxical
response to a full population perturbation, then these models will exhibit a fractional paradoxical effect to partial
perturbations; namely, the fraction of PV cells showing a paradoxical response will be a non-monotonic function
of the fraction of perturbed PV cells. We predict that all models that fit the data display a fractional paradoxical
effect of PV for all values of stimulus contrast. , and we predict that the effect can be detected through holographic
optogenetic experiments. We find furthermore that whenever the mean value of the perturbed population’s response
becomes negative, the sub-circuit without the perturbed cells loses stability. Finally our theoretical framework
allowed us to compute the inputs to V1 that would elicit a response akin to that generated by locomotion. We
predict that, intriguingly, strong inputs to both SOM and VIP but not PV mediate locomotion-dependent changes
in V1 activity.

To our knowledge this is the first time that a dynamical system model has accounted for the entire distribution
of responses to stimuli of multiple cell types. Our approach depends on two things. First, the use of recurrent
neuronal models15,16,33 for which mean-field equations allow us to compute, for a given set of network parameters,
the mean and variance of the activities and the mean and variance of the inputs (Eqs. S38, S40). Second, an
explicit expression for the distribution of activities in these models17 that can be fit to the data, allowing an explicit
expression for the goodness of fit of the model to the data activity distributions. With suitable simplifications,
analogous methods could be used to fit models of multi-cell-type spiking networks, or to extend the model
to account for other prominent cell-type-specific biological features, such as cell-type-specific gap-junctions or
dynamic synapses as found in the mouse cortex19.

By fitting the activity of each interneuron type in response to contrast manipulations, we uncovered key features
of the synaptic connectivity observed in mouse V111,13,19 (Figs. 2, compare Fig. 9): the lack of recurrence within
the VIP and SOM populations, and the small values of the projections from VIP to E and PV. We found that
when recurrent excitation is sufficiently strong these features are independent of all other fitting choices, and thus
demonstrate that features of the dynamics implicitly carry information about the connectivity. We focused on small
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stimulus sizes in order to avoid the treatment of longer-range circuits evoked by larger stimulus sizes5,20,34, which
would presumably require models with spatial structure35. Such models could in principle offer further constraints
to the synaptic structure found here.

Our mathematical analysis resulted in a number of insights on the response to weak, cell-type-specific
perturbations. In HD models in which VIP only projects to SOM, using the homogeneous fixed-point
approximation (HFA), the mean response of all cell-types to small perturbations to SOM or to VIP are perfectly
anti-correlated, independent of stimulus configuration or parameter choice. The mean responses of E, PV, or SOM
cells to perturbation of SOM are proportional (with the same negative proportionality constant) to their responses
to perturbation of VIP (Eqs. 1,S13). This mathematical prediction of Hidden Response Symmetries therefore held,
using the HFA, in the mean responses of the models that fit the data with remarkable fidelity (Fig. 4), and we
found it to hold approximately for fully nonlinear systems (without the HFA). Furthermore, we conjectured and
confirmed that given the nature of the circuit, these symmetries would hold at the single cell level in HD models
(Fig. 4d), so we would expect them to hold in in vivo optogenetic experiments. This prediction, showing with
great generality that the independent manipulation of the activity of these interneurons elicits opposite effects on
the network state, is in close accord with observations of SOM-VIP competition as has been observed in responses
to multiple stimuli, or to behavioral or artificial manipulations26,27,36, and establishes that tailored, simultaneous
perturbations to SOM and VIP could largely cancel external inputs.

Inhibition stabilization is well-defined in circuits with multiple interneuron types25,30, but how each interneuron
type contributes to circuit stabilization, and the link between stabilization and response to perturbations, has
not been entirely understood8 (see also9). In this work, we offer a perspective that links the response of a
perturbed population to the stability of the sub-circuit without that population, generalizing the notion of inhibition
stabilization.In particular, if the sub-circuit without any given population is stable, then that population will not
respond paradoxically to a perturbation. Conversely, if the population’s response is paradoxical, the sub-circuit
without it is unstable. Because the distribution of eigenvalues of the Jacobian of the HD network in the HFA has
outliers given by the LD system (as expected theoretically31), we can generalize any theoretical finding of the LD
system to the mean of the HD system under the HFA.

In our family of models, we find evidence in support of PV being the main circuit stabilizer (Fig. 5): its mean shows
a paradoxical response (as in experiments,4,8), indicating that the circuit without the PV population is unstable.
This instability is consistent with experimental observations20 and theoretical considerations9. The majority of
models we analyzed did not show a SOM paradoxical response, consistent with the E-PV subcircuit being stable
(Eq. S12). Nevertheless, we don’t necessarily expect this insight to hold for all experimental configurations: in
situations in which lateral recurrence through somatostatin interneurons plays a major role5,20,34, it remains to be
investigated how stabilization is performed across cortical space.

We find that an inhibitory cell type for which most or all cells respond negatively to a full perturbation (a
paradoxical response) will show a fractional paradoxical effect in its responses to partial perturbations: With
increasing fraction of stimulated cells of the given type, the fraction of cells of that type that respond negatively
changes non-monotonically, first decreasing and then increasing. This is a very robust effect, independent of
model details and evident in the many thousands of HD models that fit the data. It depends only on the facts that,
when only a small fraction of cells are stimulated, the stimulated cells respond positively and the unstimulated
negatively, so that most of the cells respond negatively; as the fraction stimulated increases, more cells become the
positive-responding stimulated cells, causing the fraction responding negatively to shrink; but also, the responses
of stimulated cells decrease and ultimately become largely or entirely negative, causing the fraction responding
negatively to increase again.

Finally, we investigate the effect of locomotion on V1 activity. We consider the change in activity induced by
locomotion, and regard those distributions as the response to an unknown perturbation (Fig. 7). Because we can
access explicit expressions for the response to perturbations, we are able to fit these distributions and infer the
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inputs to the network that would mimic this behavioral change in activity. Surprisingly, we find that the effect
of locomotion is not only mediated by VIP28 but that equally strong and equally wide inputs to SOM are needed
to account for this effect. Remarkably, in the absence of visual stimulation, the inputs to E and PV are small,
meaning that the inputs to SOM and VIP have canceling effects in pyramidal cells, whose mean change in activity
with locomotion is non-significant in the absence of visual stimulation (Fig. 7a and37).

One weakness of our current approach is that heterogeneity in the opsin expression and the heterogeneity in
responses that contributes to heterogeneity of the linearized weights are not distinguished (Eq. S119), precluding
an understanding of their interaction. In our system, because the variance of the response to perturbations is linear
in the variance of the heterogeneity (Eq. S111), increased heterogeneity in the expression will tend to smear out
the distribution of responses in this system. Future experiments that are able to control the number of perturbed
cells, possibly through holographic manipulations of local circuits, will be able to determine the validity of this
prediction.

Finally, all the work presented here is concerned with steady-state responses and perturbations. It is conceivable
that temporal driving of the models developed here will have particular spectral signatures and dependencies on
visual stimulation38,39. Similar methods to the ones utilized here may be useful to explore temporal fluctuations
around the fixed points. This work has thus laid foundations upon which a number of wider issues may be
addressed, such as the reproducibility of contrast modulations of the population’s spectral signatures found in
the monkey40 and the mouse41 visual cortex and the corresponding predictions for cell-type-specific temporal and
spectral responses.
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inputs that are Gaussian distributed has an explicit mathematical form 17 (Eq. (S44)). We used it to fit that form to each of
the distributions of activity for a given cell-type at a particular value of the stimulus contrast. A mean field model, with the
appropriate parameters should be able to recapitulate the distributions of activity of all cell-types at all values of contrast. To
find them, we generate high-D models by sampling from prior distributions of parameters given by the LD model fit (see
Fig. 2), and compare them to the fitted data distributions using an error function, given by the sum of the Kullback-Leibler
divergences of the distributions given by the model (Pα

mf) and the data (Pα
c ) for all cell-types and contrast values, which can be

found explicitly. By only accepting models with error less than a threshold of 0.5 (top 0.005%), we build a family of suitable
models. b) Example of a parameter configuration within the threshold. Data (histogram, colored bars) and data fits (solid
colored line) are in good agreement with the mean-field theory distributions (dashed gray line) and the simulations of the full
high-D model (gray bar histogram).
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Figure S1 Outline of this paper. a-b) LD circuit: Multi cell-type circuit describing the population activity of E, PV,
SOM, and VIP cells when presented with stimuli of different contrasts. By using non-negative least squares (NNLS) we
find the parameters to describe the circuit’s contrast response. Results in Fig. 2. c) Assuming that VIP only projects to
SOM and SOM does not project to itself, we find relations between stability and responses to optogenetic perturbations and
find hidden structure in the response matrix. These findings are applied to the models that fit the data. Results in Fig. 4 d-e)
high-dimensional model: When all the cells of one population connect to the cells of the other population with the same strength
(no disorder), the high-dimensional circuit describes the same dynamics as the circuit described in (a) given that the parameters
are chosen appropriately. Inclusion of disorder changes that mean activity. f) We use approximate bayesian inference (ABC)
to fit the high-dimensional system. Firstly, given that the models we use have an analytical expression for the distribution of
activity, we use it to separately fit the distribution of activity of each cell-type and each stimulus condition. Secondly, we build
MF models with parameters sampled from a distributions with priors obtained from the NNLS analysis. By minimizing the
Kullback-Leibler divergence 42 between these two sets of distributions (the one obtained from the data and the one obtained
from the MF family), we find the models that best approximate the distribution of all cell-types at all contrasts with a single
parameter set. g-h) Analytical expressions for the distribution of responses to optogenetic perturbations are available for linear
systems. Through an approximation, we linearize the high-dimensional system around the HFP and use existing mathematical
expressions to compute the entire distribution of responses to an arbitrary pattern of optogenetic stimulation.

We develop a three-stage program for the prediction of responses to weak optogenetic perturbations of circuits
with multiple inhibitory types (Fig. S1). In a first stage, we use non-negative least squares (NNLS)23,26,43,44 (see
Eq. S5)to fit a Low-dimensional (LD) dynamical system to the mean responses observed experimentally in all
four cell types (excitatory(E), PV, SOM, VIP) in mouse layer 2/3 to stimulation by a small (5 degree diameter)
visual stimulus of varying contrast. These fits make predictions about the mean connection strengths between
neurons of any two given cell types, (Fig. S1b), which allows a mathematical understanding of the response to
perturbations to different cell-types (Fig. S1c). In a second stage, we build a family of HD models, with different
numbers of cells per population. For that, we work with a HD rate model15 (Fig. S1d-e, see Eq.S40). In this
model, the distribution of activity has a tractable analytical form17 (see Eq. S44) that depends on the mean and
variance of the input currents to each population. We can obtain that mean and variance for each by fitting that
distribution to the data via maximum likelihood, but that is not sufficient to build a model: we need a way to find
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model parameters (e.g., means and variances of connection strengths) that will generate the mean and variance of
the input currents and the firing rates self-consistently for all stimulus conditions and all cell-types. Working from
the other direction, given a HD model and its parameters, we can use MF theory15 to self-consistently find the
activity distributions that result for a given stimulus. Finally, in order to find the parameters of HD models that fit
the experimental data, we use a the distance between the fit to the data distribution and the distribution obtained by
the MF solutions of a given model (Fig. S1f, and see Eq. S46). By choosing a suitable threshold on this distance
(0.45)45, we find HD models whose distribution of activity and dependence on stimulus contrast reproduce those
observed experimentally. In the final stage, we use theoretical results on random matrices18 which allow us to
analytically compute the distribution of neuronal responses to patterned optogenetic perturbations under a suitable
approximation (Fig. S1h) and determine its relation to the predictions in the LD circuit (Fig. S1g).

2 Data Collection and Analysis

All the data presented here was collected by Daniel Mossing and forms the subject of another publication. Details
on the data collection will be provided elsewhere.

3 Low-dimensional circuit models

We consider a network of 4 units, each describing the activity rα of a particular cell-type population α , with
α = {E, PV, SOM, VIP} in layer 2/3 of the visual cortex of the mouse. The network integrates input currents zα

in the following way

τ
α ṙα =−rα + f (zα) zα =

(
n

∑
β

ω
αβ rβ +hα(c)

)
(S3)

where τα is the relaxation time scale, ωαβ is the connectivity matrix, and f (z) = []
ξ

+ is the activation function
with ξ = 2 unless otherwise specified. The inputs hα(c) are composed of a baseline input hb, a sensory-related
input hs(c). This last input is chosen to be proportional to the contrast c, for which hs(c) = hcc, with hc a contrast
independent variable to be fitted

hα(c) = hα
b +hα

c c (S4)

3.1 Data fitting

To simultaneously fit the rates of all four interneurons at all contrast values (six in total c = {0,6,12,25,50,100}),
we consider the steady-state equations corresponding to (S3). Since the recorded firing rates are positive and
non-vanishing, the inverse is well defined f−1(z) =

√
r and the nonlinear steady-state equation corresponding to

(S3) becomes a linear equation with respect to the connectivity parameters:

√
rα =

n

∑
β

ω
αβ rβ +hα(c) (S5)
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Eq. (S5) represents a system of linear equations Ax = y, where x is an unknown vector containing the flattened
connectivity matrix entries ωαβ and the input constants hα

b , hα
c , and hα

L4. The entries of the matrix A and the vector
y are the functions of the recorded firing rates at six contrast values. The matrix A has 24 rows: for each of the
six contrast values a set of four rows corresponds to the steady-state equations in (S5). The number of columns of
the matrix A is equal to the number of unknown connectivity and input constants. In the most general case, when
each four populations receive background and sensory related input, there are 24 unknowns and the matrix A has
24 columns. This case in which the number of equations (rows of A) and the number of parameters (all chosen
weights and inputs) are equal, the system Ax = y can be solved exactly. To be concrete, taking as an example the
case presented in the main text in which sensory inputs are linear in c and target only E and PV cells, we will have:

To the solve the system in this case, values of parameters that approximately solve the Eq. (S5) can be found by
computing the non-negative least squares (NNLS)46 solution.

The NNLS solution of Eq. (S5) constructed from mean firing rates, gives one set of connectivity and input
parameters x. To obtain distributions of connectivity and input parameters instead, we created surrogate contrast
responses sets by sampling from a multivariate Gaussian distribution with mean rα

ci
and standard error of the mean

sα
ci

. For each input configuration, we sampled 2500000 seeds to create these surrogate contrast response curves.
For each sample contrast response k, NNLS gave one connectivity and input parameter set. Using each parameter
set and the steady-state equations in (S5) we computed the fit r̂α(k) of the kth sample contrast response. Keeping
the stable solutions (negative eigenvalues, all time constants were chosen to be equal to 1), the likelihood of that
parameter set k

Lk = ∏
ci,α

1√
2πsα

ci

exp

{
−
(r̂α

ci
(k)− rα

ci
)2

2sα
ci

2

}
(S6)

defined a hierarchy for the contrast response samples. From the family of LD models that fit the data, we only
considered those that were ISN, and had a paradoxical response in PV interneurons. We did not enforce any
connectivity weights to be zero. Some of our models had also absent connections from SOM to VIP, we disregarded
those. Models shown in 2 a are the top 200 of the 700 models that later were used as prior seeds.

3.2 Linear response and paradoxical effects

The linear response matrix is defined as the steady state change in rate of a population α given by a change in the
input current h to population β

χαβ =
drα

dhβ

= (f′−1−ω)−1
αβ

f′ = δαβ f ′α (S7)

Where f ′α is the gain of population α at the considered steady state, f′ is the n= 4 diagonal matrix with elements f ′α ,
δαβ is a Kroenecker delta which is 1 only if α = β . Defining the diagonal matrix of time constants Tα β = δαβ τα ,
Eq. (S7) can be written as a function of the the Jacobian J = T−1(−I + f′ω)

χf′−1T =−J−1 →
τβ

f ′
β

χαβ =
−1

detJ
(−1)α+β Mαβ (S8)
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where Mαβ is the corresponding minor of the Jacobian. In particular, the diagonal entries of χ are

τα

f ′α
χαα =

−1
detJ

Mαα (S9)

Given that Mαα corresponds to the determinant of the Jacobian of the sub-circuit without the cell-type α , which
we call Jα , we find that:

τα

f ′α
χαα =

−1
detJ

detJα (S10)

For a system with n populations, stability of the full system requires that sign(detJ) = (−1)n. Stability of the
sub-circuit without α requires that sign(detJα) = (−1)n−1 . Given that the gain f ′α is always positive, if both
the entire circuit and the subcircuit are stable, then χαα > 0. Alternatively, if χαα < 0, and the cell-type α has a
paradoxical response, then the sub-circuit without it will be unstable. This does not depend on the dimension of
the system.

3.3 EI networks

Evaluating Eq. (S10) in the EI case we obtain the result from7

χII ∝ 1− f ′EωEE (S11)

which makes the parameter independent prediction that when recurrent excitation strong, the response of inhibition
is paradoxical, χII < 0 .

3.4 E-PV stability and SOM paradoxical response when VIP projects only to SOM

In the particular case in which VIP projects only to SOM, the Eq. S10 reduces to

τS

f ′S
χSS =

1
detJ

detJEP (S12)

Given that in a 2D system, the conditions for stability are the trace to be positive and the determinant to be positive,
and that the trace can be generally made positive by choosing a suitable large excitatory time constant, we say not
only that measuring the paradoxical response of SOM translates in E-PV being unstable, but that observing a
non-paradoxical response of SOM means that E-PV is stable given a suitable time constant.
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3.5 Hidden response symmetries (VIP projects only to SOM)

The values χαβ for the particular case in which the connections from the VIP population to the rest is exactly zero
can be found to satisfy the following relations, Hidden response symmetries.

χEV =− f ′Vω
SV

χES (S13)
χPV =− f ′Vω

SV
χPS (S14)

χSV =− f ′Vω
SV

χSS (S15)
χVV =− f ′Vω

SV ∗χVS + f ′V (S16)

χVS = f ′V(ω
VE

χES−ω
VP

χPS−ω
VS

χSS) (S17)

(S18)

This can be easily seen by explicitly writing the response matrix as

χαβ =
1
D

kαβ 1
D

=
det
(
T−1

)
det(−J)

(S19)

Where det(−J) is the determinant of the negative Jacobian of the full system, defined above Eq. (S8). Given that
the eigenvalues of J have to be negative for linear stability, det(−J) is always positive, and the above relations can
be instead written as a function of kαβ with

kES =− f ′E f ′S(ω
ES(1+ f ′Pω

PP)− f ′Pω
EP

ω
PS) (S20)

kEV = f ′E f ′S f ′Vω
SV(ωES(1+ f ′Pω

PP)− f ′Pω
EP

ω
PS) (S21)

kPS =− f ′P f ′S(ω
PS(1− f ′Eω

EE)+ f ′Eω
ES

ω
PE) (S22)

kPV = f ′P f ′S f ′Vω
SV(ωPS(1− f ′Eω

EE)+ f ′Eω
ES

ω
PE) (S23)

kSS = f ′S((1− f ′Eω
EE)(1+ f ′Pω

PP)+ f ′E f ′Pω
EP

ω
PE) (S24)

kSV =−ω
SV f ′V f ′S((1− f ′Eω

EE)(1+ f ′Pω
PP)+ f ′E f ′Pω

EP
ω

PE) (S25)

kVS =− f ′S f ′V

(
f ′E

(
ω

ES
ω

VE−
f ′P
∣∣ω0
∣∣

ωSV

)
+ω

VS(1− f ′Eω
EE)+ f ′P(ω

PP
ω

VS−ω
PS

ω
VP)

)
(S26)

kVV = f ′V( f ′E f ′P f ′Sω
SE(ωES

ω
PP−ω

EP
ω

PS)+(1− f ′Eω
EE)(1+ f ′Pω

PP)+ f ′E f ′Pω
EP

ω
PE + f ′E f ′Sω

ES
ω

SE) (S27)
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3.6 Transformation to firing rate effect on the linear response.

To understand how the conclusions derived here would be modified by considering firing rates instead of
deconvolved calcium imaging data we follow47, where it is reported that calcium activity ∆F

F and firing rates

can be related via a linear relationship. In general, given a power law input-output function f (z) = []
ξ

+, we can
define a class of equivalent models by redefining activity together with weights and inputs

rnew =Aξ r (S28)

W new =AWA−ξ (S29)
hnew =Ah (S30)

Where A is the diagonal transformation matrix from calcium activity r to firing rates rtextnew. The Jacobian and
the linear response matrix of this new system are related by:

Jnew = Aξ JA−ξ Rnew = Aξ RA−1 (S31)

In particular given that the new and old Jacobian are related by a similarity transformation, this change of variables
(or the equivalence class) will not change the stability. The the linear response can have re-scaled values but will
preserve sign, and the Hidden response symmetries equations will be re-scaled.

4 High-dimensional circuit models

In this section we describe the high-dimensional network models. The network has n = 4 populations with Nα

neurons in each population α = {E,PV,S,V}. We denote the fraction of neurons in each population by qα =Nα/N,
where N is the total amount of neurons in the network. We took this fraction to be q = [0.8,0.1,0.05,0.05] as is
approximately in biology10. The steady-state activity rα

i of the unit i in the population α is given by:

rα
i = f (zα

i ) zα
i =

(
n

∑
β

Nβ

∑
j

wαβ

i j rβ

j +hα
i

)
(S32)

Whereby f (z) = []
ξ

+ with ξ = 2 represents the transfer function of the neuronal populations. The connectivity
elements wαβ

i j are Gaussian distributed with mean and variance defined by:

〈wαβ

i j 〉= wαβ/N 〈(wαβ

i j )2〉−〈wαβ

i j 〉
2 = σ

αβ 2
/N (S33)

The inputs to each unit hα
i are also Gaussian distributed with mean 〈hα

i 〉= hα
0 and variance 〈hα

i
2〉−〈hα

i 〉2 = (λ α)2.
The steady state Eq. (S32) can be re written as a function of the input to each cell :
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zα
i =

n

∑
β

Nβ

∑
j

wαβ

i j f
(

zβ

j

)
+hα

i (S34)

4.1 Set-up and mean field equations

In order to compute the mean and variance of the activity in each population self-consistently, we follow the
approach in Kadmon and Sompolinsky 15 . The input zα

i to a cell can be described as fluctuations around a mean:
zα

i = uα +δ zα
i . We define:

mα = 〈 f (zα
i )〉 (S35)

vα = 〈 f (zα
i )

2〉 (S36)
qα = Nα/N (S37)

By taking the mean and the variance of Eq. (S34) and incorporating the definitions above, we re-obtain the
self-consistent equations for the mean and the variance of zα

i , given by uα and ∆α

uα = ∑
β

wαβ qβ mβ +hα
0 (S38)

∆
α = ∑

β

(σαβ )2qβ vβ +(λ α)2 (S39)

where

mα =
1√
2π

∫
∞

−∞

f (uα +
√

∆α z)e−z2/2dz (S40)

vα =
1√
2π

∫
∞

−∞

f (uα +
√

∆α z)2e−z2/2dz (S41)

We observe that if there is no disorder, Eqs. (S38) and (S40) reduce to the Low-dimensional model from Eq. (S3)
with ωαβ = wαβ qβ and mα = rα .

4.2 Mean field perturbation

If L is a homogeneous optogenetic perturbation to the entire population α , the change in response of each cell is
given by

drα
i

dL
= f ′(uα +

√
∆α zi)

(
duα

dL
+

1
2
√

∆α

d∆α

dL
zi

)
(S42)
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Taking the average and using Eq. (S40), we find that the mean of the response distribution to laser perturbation is
given by the change in the mean activity of the population:

〈
drα

i
dL
〉= 1√

2π

∫
∞

−∞

f ′(uα +
√

∆α z)
(

duα

dL
+

1
2
√

∆α

d∆α

dL
z
)

e−z2/2dz (S43)

=
d

dL

(
1√
2π

∫
∞

−∞

f (uα +
√

∆α z)e−z2/2dz
)

=
dmα

dL

This equation relates how the mean of the distribution of responses to perturbation relates to the response of the
mean activity.

4.3 Data Fitting

To fit the system defined by Eqs. (S38,S40), we used that the distribution of activity of a population α with the
transfer function of the form f (z) = [z]ξ+ can be written (when assuming that inputs are Gaussian distributed) as a
function of the mean total input uα and its variance ∆α 17:

Pα(r) =
1√

2πr1−1/ξ ξ
√

∆α
e−

(r1/ξ−uα )2

2∆α Θ(r)+
1
2

(
1− erf

( uα

√
2∆α

))
δ (r) (S44)

Pα(r) = P+(r)Θ(r)+P0
δ (r) (S45)

Here, Θ and δ denote the Heaviside and delta functions, respectively.

To find the parameters that approximate the distribution of the experimentally recorded activity we use Eq. S44
with ξ = 2 and proceed as follows (Fig. 2a, see also Fig. 8): For each cell-type α and each contrast c, we fit the
analytical distribution of rates from Eq. (S44) to the distribution of experimentally recorded activity. We denote
the fit distribution by Pα

d (r,µα
d (c),∆

α
d (c)) (dashed lines in Fig. 8). The fitted distribution Pα

d provides us with an
estimate of the mean (µα

d (c)) and variance (∆α
d (c)) of the total input to each cell-type α and each contrast c. We

assume that the external input to the population α has the form hα = hα
b + hα

c c. To find which parameters wαβ ,
σαβ , hα and λ α best fit the data we proceed as follows: we do ABC search from prior distributions for the mean
and variance of the weights and inputs to this network to build multiple instances of Pα

mf(r,µ
α
mf(c),∆

α
mf(c)). The

priors for wαβ and hα
b and hα

c were Gaussian distributions with mean given by the parameters of the LD fits and
a 5% std. The priors for σαβ and λ α were chosen arbitrarily. The only dependence on contrast is through the
mean activity, the variance in the inputs was independent of contrast. We define an error that depends uniquely on
µα

d (c),∆
α
d (c),µ

α
mf(c),∆

α
mf(c). Specifically, we define the total error as the sum of the squared norm of the matrix

of the Kullback-Leibler divergences between these two distributions:

E = ∑
c

∑
α

D(Pα
d (c)||Pα

mf(c))
2 (S46)

where, and dropping temporarily the dependence on the contrast for ease of notation we have:
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D(Pα
d ||Pα

mf) =
∫

∞

−∞

Pα
d (r) log

Pα
d (r)

Pα
mf(r)

dr = P0,α
d log

P0,α
d

P0,α
mf

+
∫

∞

0+
P+,α

d (r) log
P+,α

d (r)

P+,α
mf (r)

dr = Iα
A + Iα

B (S47)

with

Iα
A =

1
2

erf
( µα

d√
2∆α

d

)
log

( erf
(

µα
d√

2∆α
d

)
erf
(

µα
mf√

2∆α
mf

)) (S48)

Iα
B =

1
2

(
1+ erf

(
µα

d√
2∆α

d

))
log

√
∆α

mf√
∆α

d
+

1
4∆α

mf

((
∆

α
d −∆

α
mf +

(
µ

α
d −µ

α
mf
)2
)(

1+ erf
( µα

d√
2∆α

d

))
+ (S49)√

2
π∆α

d
e
−

µα
d

2

2∆α
d

(
∆

α
d (µ

α
d −2µ

α
mf)+∆

α
mfµ

α
d

))
(S50)

Instead of following the gradient to find an optimal solution we keep the solutions that have a sufficiently small
error from the random sampling. Randomly sampling from these priors we obtained 500000 models whose
total KL divergence was 0.7. From those, we take the first 300 for most figures. This defines a family of
high-dimensional models (Fig. 2) with skewed distributions that are in good agreement with the calcium activity,
and capture not only the nonlinear dependence of the activity mean but also spreading out with increasing contrast.

5 Analytical approach to linear response of disordered networks

5.1 Set up

We call the steady state solution of Eq. (S32) ∗rα
i and the steady state input ∗zα

i . The time evolution of the response
to a perturbation δhα

i , can be described by the dynamics of δ rα
i :

τ
α
i δ ṙα

i =−δ rα
i + f ′αi ·

(
n

∑
β

Nβ

∑
j

wαβ

i j δ rβ

j +δhα
i

)
f ′αi = f ′α(∗zα

i ) = f ′
(

n

∑
β

Nβ

∑
j

wαβ

i j
∗rβ

j +hα
i

)
(S51)

Switching from now onwards to matrix notation, we define: Fαβ

i j = δi jδαβ f ′αi , the diagonal matrix of derivatives,
where δ is the Kronecker delta, and f ′αi is the gain of neuron i in population α . The connectivity matrix W has
elements wαβ

i j . The steady state response to an arbitrary increase in the input given by δh will be:

δ~r = (F−1−W )−1 ~δh ~δ r = R~δh (S52)

Which defines the high-dimensional linear response matrix R=(F−1−W )−1. If we constrain the cell-type-specific
variance to be low rank, meaning that the block-wise variance of W (defined in Eq. (S33)) is written as (σαβ )2/N =
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να κβ/N, we can write W as the sum of a homogeneous component W0, with W0
αβ

i j = 1
N wαβ and a random

component ΠLJΠR, where J is a matrix with Gaussian distributed random numbers with zero mean and unit
variance, and ΠL and ΠR are non-random diagonal matrices:

W =W0−ΠLJΠR with ΠL = δi j
√

κα j ΠR = δi j
√

ν j (S53)

5.2 Homogeneous fixed point approximation (HFA)

The mathematical treatment we are going to outline later is only possible in linear system in which the disorder
does not affect the gain of each neuron. All the linear response calculations of the following sections will assume
that the linearized system can be written as

τ
α
i δ ṙα

i =−δ rα
i + f ′α ·

(
n

∑
β

Nβ

∑
j

wαβ

i j δ rβ

j +δhα
i

)
f ′αi = f ′α = f ′

(
n

∑
β

Nβ

∑
j

wαβ ∗rβ +hα

)
(S54)

What this means, is that, we solve the non-disordered system to compute f ′α and look at a linear disordered system
around the HFP.

5.3 Eigenvalue Spectrum of the Jacobian in the HFA

In31, it is shown that given a matrix with iid entries to which is added a low rank matrix, under conditions that are
satisfied in our models, the distribution of eigenvalues of the Jacobian in the HFA is going to follow the circular
law, except for a set of outlier eigenvalues. These eigenvalues are placed asymptotically in the same location as
the eigenvalues of the low rank added matrix. In our case, the Jacobian of the HD in the HFA will be

J =−I +FW0−FΠLJΠR (S55)

Where in this case Fαβ

i j = δi jδαβ f ′α , f ′α is the gain of the LD circuit, and W0
αβ

i j = 1
N wαβ as before. The non-trivial

eigenvalues of the low rank component of the Jacobian JLR = −I +FW0, are exactly the same as the eigenvalues
of the LD circuit Jacobian. This can be seen when considering the basis composed of n eigenvectors of the form
u(k) = 1√

Nk
(0, . . . ,0︸ ︷︷ ︸

∑
k−1
l=1 Nl

,1, . . . ,1︸ ︷︷ ︸
Nk

, 0, . . . ,0︸ ︷︷ ︸
N−∑

k
l=1 Nl

) and N−n orthogonal eigenvectors. In this basis, the non-zero entries of the

JLR are given by the Jacobian of the LD system.

5.4 General framework to compute the linear response in networks in the HFA

Using results from18 we find that in the special case of the HFA, f ′αi = f ′α described above, the mean linear
response matrix over different instantiations of the disorder is the linear response of the non- disordered case:

〈(F−1
HFA−W )−1〉J = 〈(F−1

HFA−W0 +ΠLJΠR)
−1〉J = (F−1

HFA−W0)
−1 = R0 (S56)
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This fundamental relation links the mean of the distribution of responses to the response of the non-disordered
system, its general in linear networks and works as a useful approximation in this case of study. Generally, in
experiments, we have a perturbation pattern δh describing the proportion of stimulation each neuron receive, and
a measuring vector δb, describing which are the neurons contributing (linearly) to the signal that we are going to
be monitoring s = ~δ r

ᵀ
δb. We compute the mean and variance of the signal s across different instantiations of the

disorder. By defining:

the measuring matrix B = δbδbᵀ (S57)
the optogenetic perturbation matrix Σ = δhδhᵀ (S58)

we can write the second moment of that measured signal s18:

〈s2〉= 〈(~δ r
ᵀ
δb)2〉= 〈~δ r

ᵀ
B~δ r〉= F +∆F (S59)

where

F = Tr(BR0
ΣR0ᵀ) ∆F =

1
N

Tr
(
BR0

ΠLΠLR0ᵀ)Tr
(
ΠRΠRR0

ΣR0ᵀ)
1− 1

N Tr
(
ΠRΠRR0ΠLΠLR0ᵀ

) (S60)

Where we used the definitions in Eq. (S53). We observe that in the absence of disorder, in which W =W0, ∆F = 0
and the recorded signal is given only by s = δbR0δhᵀ.

In the case in which we are interested in looking at single neuron statistics, we have δb= ei with ei = {0, ...,1, ...,0}
〈δ ri〉J = eiR0 ~δh where ei = {0, ...,1, ...,0} (S61)

Eq. (S61) means that for each neuron, the distribution of linear responses over different instantiations of the
connectivity has a mean given by the linear response in the absence of disorder (due to Eq. (S56)) and the variance
Λi given by

Λ
2
i = 〈δ r2

i 〉J−〈δ ri〉2J = 〈δ r2
i 〉J−F = ∆F (S62)

Equations (S56), (S59) and (S60) are general formulas of how to compute the mean and the variance of the linear
response distributions as a function of the optogenetic perturbation Σ and the observation matrix B. In the following
sections we will explicitly compute the mean response matrix R0 for both full and low rank connectivity and the
variance in different optogenetic perturbation configurations.

5.5 Computation of the response matrix R0 without disorder

For computing R0 (given by Eq. (S56)) we write the block-structured matrix W0 as a function of the
Low-dimensional system connectivity ωαβ = wαβ qβ . We choose the matrices U and V with columns given by
vectors uα = 1

Nα
δi∈α and vα = δi∈α , meaning that u(k) = 1

Nk
(0, . . . ,0︸ ︷︷ ︸

∑
k−1
l=1 Nl

,1, . . . ,1︸ ︷︷ ︸
Nk

, 0, . . . ,0︸ ︷︷ ︸
N−∑

k
l=1 Nl

) and similarly for v and

obtain
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W0 =V ωUᵀ (S63)

Where wαβ and qα were introduced in Eqs (S33) and (S37), respectively. To obtain R0 defined in Eq. (S56) we
are going to exploit the fact that this is a low rank matrix. Depending on whether ω is also low rank or not, we will
need to consider different strategies.

1) case of invertible ω

If ω is invertible, we can use the Woodsbury lemma to find a succinct expression for R0:

R0 =
(
F−1−W0

)−1
=
(
F−1−V ωUᵀ)−1

= F−FV
(
f′−ω

−1)−1
UᵀF (S64)

Introducing the notation αi as the population to which the neuron i belongs to, the entries of the response function
can be written as

R0
i j = δi j f ′αi

−
f ′αi

f ′α j

Nα j

[(
f′−ω

−1)−1
]

αiα j
(S65)

f′ was defined in Eq. (S7). We note that for this expression to be valid, ω needs to be invertible and in particular full
rank. We also note that this expression is given by two terms: the first one, private to each neuron, is only non-zero
if we are observing the same neuron that we are stimulating, while the second term, depends on which population
the stimulated neuron belongs to and which population the observed neuron belongs to, but is independent on
whether the perturbed neuron is the observed one.

We define Sαiα j , the sum of the linear response of a single neuron in population αi to a homogeneous input to the
neurons in population α j

Sαiα j = δαiα j f ′α j
− f ′αi

f ′α j

[(
f′−ω

−1)−1
]

αiα j
(S66)

Substituting Eq. (S66) into (S65), we obtain an expression for the linear response which will be useful in later
sections:

R0
i j = δi j f ′αi

+
Sαiα j

Nα j

−
δαiα j f ′α j

Nα j

(S67)

We point out that the Eq. (S66) is independent of N, and is finite in the limit of large N.
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2) case of rank-one ω

In the case of rank-one ω , we cannot invert ω in Eq. (S64) . Instead we write:

W0 =
vuᵀ

N
v ={1, ...,1, ...,1} (S68)

u ={w1, · · · ,w1︸ ︷︷ ︸
N1

,w2, · · · ,w2︸ ︷︷ ︸
N2

, · · · ,wn, · · · ,wn︸ ︷︷ ︸
Nn

} (S69)

Using Sherman–Morrison formula we find that

R0 = (F−1−W0)
−1 = F +

1
N

FvuT F

1− uT Fv
N

(S70)

Where the denominator is always positive given that D =
(

1− uT Fv
N

)
= det

(
F−1− vuT

N

)
det(F) = det(I−FW0).

We obtain

R0
i j = δi j f ′α j

+
1
N

f ′αi
f ′α j

wα j

1−∑αk
qαk f ′αk

wαk

= δi j f ′α j
+

f ′αi
f ′α j

wα j

ND
(S71)

Again defining Sαiα j as the sum of the linear response of a single neuron in population αi to a homogeneous input
to the neurons in population α j

Sαiα j = δαiα j f ′α j
+Nα j

f ′αi
f ′α j

wα j

ND
(S72)

We note that the above expression is also finite in the large N limit. Using (S71) and (S72) we conclude that the
linear response R0

i j satisfies Eq. (S67) also in this case.

5.6 Response distribution to partial (homogeneous) perturbations: Mean term

In this section we consider fractional perturbations of neural populations, i.e. perturbations applied only to a
subset of neurons in each population. We derive a formula for the sum of the linear response of a single neuron
in a population αi to perturbations applied to fractions γα j of neurons in populations α j. Within each perturbed
population α j, we denote the set of perturbed neurons by Pα j . If we perturb γα j neurons in a population α j then
we find that the response of the neurons in population α j that were stimulated have a mean response that depends
on whether they were directly stimulated or not (see below).
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1) case of invertible ω

In the case of full rank ω (R0
i j is given by (S65)), if we perturb γη neurons in populations η the total perturbation

vector is given by δh = {δh1,δh2, · · · ,δhn}, where hη = {0, · · · ,0,1, · · · ,1︸ ︷︷ ︸
γη Nη

,0, · · · ,0}. Then we find that the

response of the neurons is given by

µi = ∑
j

Ri jδh j = f ′αi
δi∈Pαi

− f ′αi ∑
α j

γα j f ′α j

[(
f′−ω

−1)−1
]

αiα j
(S73)

The expression in Eq. (S73) can be represented as a sum of the mean responses of directly perturbed and non
perturbed neurons. The mean response of directly stimulated neurons is given by

µ
IN
i∈Pαi

= f ′αi
− f ′αi ∑

α j

γα j f ′α j

[(
f′−ω

−1)−1
]

αiα j
(S74)

whereas the neurons in α j that were not stimulated and the neurons from other populations follow the equation:

µ
OUT
i6∈Pαi

=− f ′αi ∑
α j

γα j f ′α j

[(
f′−ω

−1)−1
]

αiα j
(S75)

We note that these expressions critically depend on the sign of
(
f′−ω−1

)−1. To capture Eq. (S74) and Eq. (S75)
as a single equation we define a matrix

χ
γγγ =f′δp− f′

(
f′−ω

−1)−1 f′γγγ (S76)

=f′δp + f′ω
(

f′−1−ω

)−1
γγγ (S77)

=f′δp + f′ωχγγγ (S78)

where δp = 0 if we are describing the mean of the non-perturbed population and δp = 1 otherwise.

In the case when we study the paradoxical response, meaning that we perturb and record activity in the same
population we find that using ∑α j(f

′−1−ω)αiα j χα jαi = 1 (matrix times its inverse is the identity) we have that

[ωχ]
αiαi

=
χαiαi

f ′αi
−1. We rewrite (S73) as

µi = f ′αi
δi∈Pαi

+ f ′αi
γαi [ωχ]

αiαi
= f ′αi

δi∈Pαi
+ γαi(χαiαi − f ′αi

) (S79)

If the response is paradoxical in the Low-dimensional system (χαiαi < 0), the response distribution of non
stimulated neurons has a negative mean, and becomes even more negative if the fraction of perturbed increases. If
the above term is positive for a small fraction of perturbed cells, it can become negative when the fraction of the
perturbed cells increases. We denote the critical fraction of perturbed cells for which the response mean becomes
negative by γC

αi
and obtain
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0 <
f ′αi

f ′αi
−χαiαi

< γ
C
αi
< 1 (S80)

In Fig. 7, the fractional paradoxical effect occurs while the perturbed cells are not responding paradoxically.
Nevertheless, before the mean of the distribution of perturbed cells changes sign, the distribution itself shifts
left and therefore this critical fraction is different from the critical fraction for which the system is exhibiting a
fractional paradoxical effect.

2) case of rank-one ω

Ri j = δi j f ′α j
− 1

N

f ′αi
f ′α j

wα j

1−∑αk
qαk f ′αk

wαk

= δi j f ′α j
+

f ′αi
f ′α j

wα j

ND
(S81)

Identically as above, neurons that are directly stimulated will have a response given by

µ
IN
i = f ′αi

+ f ′αi ∑
α j

γα j qα j

f ′α j
wα j

1−∑αk
qαk f ′αk

wαk

(S82)

whereas the neurons in α j that were not stimulated and the neurons from other populations follow the equation:

µ
OUT
i = f ′αi ∑

α j

γα j qα j

f ′α j
wα j

1−∑αk
qαk f ′αk

wαk

(S83)

Critical fraction

In the case in which we only have and EI circuit, and we stimulate only the inhibitory population, we can see
that for inhibitory neurons in which w j is negative, the response of the neurons that were not stimulated is always
paradoxical (meaning that Eq. (S83) is always negative), but the response of those neurons that were stimulated
will only be paradoxical when µ IN

i < 0

1−∑
αk

qαk f ′αk
wαk

qα j f ′α j
|wα j |

< γ
C
α j

(S84)

First lets consider the case in which we have a fixed amount of neurons but we have an increasing amount of
populations n. Given that N = ∑αk

Nαk if we take Nαk = N/n then qαk = Nαk/N = 1/n. We find that the critical
fraction in (S84) is now

n−∑
αk

f ′αk
wαk

f ′α j
|wα j |

< γ
C
α j

(S85)
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We find that given a fixed sum of wi and fixed N, the fraction of stimulated neurons γk needs to increase linearly in
n to have a paradoxical response.

Comparison with Sadeh et al. 32

If now we would normalize the weights in Eq. (S68) as in32, meaning that w j/N→ w j/(N/n) (See Eq. 2 of their
paper), the above equation would be

1−∑
αk

f ′αk
wαk

f ′α j
|wα j |

< γ
C
α j

(S86)

Taking f ′αk
= 1 (linear network) we recover their result below Eq. 12 of their paper.

5.7 Response distribution to partial (homogeneous) perturbations: Variance term

From Eq. (S60) we know that the variance of the response is going to depend on the response of the system without
disorder R0. The goal of this section is writing R0 in the form expressed in (S67). We will first find the general
expression and then evaluate for particular cases: For that we write (S60) as

Λ
2 =

1
N

Tr
(
BR0

ΠLΠLR0ᵀ)Tr
(
ΠRΠRR0

ΣR0ᵀ)
1− 1

N Tr
(
ΠRΠRR0ΠLΠLR0ᵀ

) =
M.O
1−D

(S87)

Where the optogenetic targeting matrix Σ = δhδhᵀ. If we write δh = {δh1,δh2, · · · ,δhn}, where δhη is the
perturbation vector for the population η , then for each δhη we can write hη = {0, · · · ,0,1, · · · ,1︸ ︷︷ ︸

γη Nη

,0, · · · ,0}, meaning

that given n populations, there will be a vector with entries γη that tells us which is the fraction of neurons of each
population that we are stimulating. Each element of the optogenetic targeting matrix will then be:

Σ jk = ∑
η

∑
η ′

δα jη δαkη ′δk∈Pαk
δ j∈Pα j

(S88)

Observation: The optogenetic targeting matrix has entries in the off diagonal terms.

We write down here the final expression for the variance of the response of a single neuron in population αl while
perturbing a fraction γη of the population η (qη = Nη/N):

Λ
2
αl
=

(
f ′2αl

καl +
1
N

(
∑
η

κη

qη

S2
αlη
−

f ′2αl
καl

qαl

))∑
η

νη f ′η
2
γη(1− γη)qη +∑

η ′
νη ′

(
∑
η

Sη ′,η γη

)2

qη ′


1−∑

η

νη

(
qη f ′2η κη +

1
N

(
qη ∑

η ′

κη ′

qη ′
S2

ηη ′ − f ′2η κη

)) (S89)
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We observe that in the large N limit the expression reduces to:

Λ
2
αl
=

f ′2αl
καl

∑
η

νη f ′η
2
γη(1− γη)qη +∑

η ′
νη ′

(
∑
η

Sη ′,η γη

)2

qη ′


1−∑

η

νη qη f ′2η κη

(S90)

Which is independent of N iff γη is a finite fraction of the population. In the case in which a finite amount of
neurons k are stimulated , γη = k/Nη and the variance will vanish in the large N limt.

An interesting prediction is a nonlinear dependence of the variance of the populations with increasing fraction
of stimulated neurons. The expression Eq. (S90) has a nonlinear term in the fraction of stimulated neurons in
each population. When more than a single population is stimulated, there is also a term that nonlinearly mixes
the fraction of interacting neurons. This results in non trivial dependences of the variance with the fraction of
stimulated cells. Depending of the fraction of stimulated cells, the effect of increasing fraction of one-cell-type
stimulation can be to narrow down the distributions or to broaden them. We name this a second-order paradoxical
effect.

* Simplification: Non-structured variance

In the particular case in which the degree of disorder on the connectivity does not depend on the pre and the
postsynaptic cell-type, i.e. when κα = να = σ we obtain a simpler expression for the variance of the populations:

Λ
2
αl
= σ

2

(
f ′2αl

+∑
η

S2
αη

Nη

−
f ′2αl

Nαl

)∑
η

f ′η
2
γη(1− γη)qη +∑

η ′

(
∑
η

Sη ′,η γη

)2

qη ′


1−σ2 ∑η

(
qη f ′η 2 +qη ∑η ′ S2

η ,η ′
1

N
η ′
− 1

N f ′η 2
) (S91)

5.8 Response distribution to partial (homogeneous) perturbations: Full Distribution

So far we computed the mean and the variance of the distribution of neurons to partial stimulation, and found that
in the case in which γ is neither zero or one, i.e. in the case of partial stimulation, we will have a total distribution
that is a mixture of Gaussians with means

ρ
IN
αi

=
1√

2πΛαi

exp

{
−
(x−µ

IN
αi
)2

2Λ2
αi

}
(S92)

ρ
OUT
αi

=
1√

2πΛαi

exp

{
−
(x−µ

OUT
αi

)2

2Λ2
αi

}
(S93)

So the total distribution of responses is
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ραi = γαiρ
IN
αi

+(1− γαi)ρ
OUT
αi

(S94)

Where µ IN = RIN
j∈Pα j

and µOUT = ROUT
j∈Pα j

given by Eqs (S82, S83) for low rank ω or by (S74,S75) for invertible

ω , and a variance given by Eq. (S89)

5.9 Simple description of the fractional paradoxical effect

The fractional paradoxical effect can be intuitively understood in the system without disorder (the EI, low-rank
case of the non-disordered case was studied by32). In this case, the distribution of responses will be bimodal, with
two delta functions at the values given by Eq. (S79). The density then will be given by the limit of vanishing
variance of . (S94)

ραi(x) = (1− γαi)δ (x− γαi(χαiαi − f ′αi
))+ γαiδ (x− f ′αi

− γαi(χαiαi − f ′αi
)) (S95)

If the unit αi is paradoxical in the Low-dimensional system, then χαiαi < 0. The left peak will always be negative,
and for sufficiently small γαi the peak of the perturbed cells will be positive. As computed in Eq. (S80), for values
of γαi smaller than γC

αi
, the mean of the perturbed population will remain positive. In this range, increasing the

fraction of perturbed cells, will result in a decrease of the mass of negative responses 0
−∞ραi(x)dx like (1−δ ). In

the non-disordered case, as soon as γαi > γC
αi

, the mass of negative responses is unity. Given that when working
with the homogeneous approximation, the response of the non -disordered system is the mean of the response of
the disordered system, the intuitions here apply to the mean of the disordered case.

5.10 Fractional paradoxical effect and link to a 5D Low-dimensional system.

Here we show that the mean response of the perturbed population can be mapped to the response of a system with
5 dimensions, in which the αi population, that here for simplicity we take to be PV, is split in a perturbed and
non-perturbed population. We know that mapping a high-dimensional non-disordered network to a low D system
can be done by rescaling the weights according to the fraction of cells in that population. That manipulation will
not change the activity of either cell-type given that they receive the exact same input currents. The linear response
of that system in consideration is , χ5 is given by

χ
5 = [ f ′5

−1−ω5]
−1 =−I


ωEE−1/ f ′E ωEPγP ωEP(1− γP) ωES ωEV

ωPE ωPPγP−1/ f ′P ωPP(1− γP) ωPS ωPV

ωPE ωPPγP ωPP(1− γP)−1/ f ′P ωPS ωPV

ωSE ωSPγP ωSP(1− γP) ωSS−1/ f ′s ωSV

ωVE ωVPγP ωVP(1− γP) ωVS ωVV−1/ f ′V


−1

(S96)
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χ
5
pp = [ f ′5

−1−ω5]
−1
pp =

1
det
[
f′5−1−ω5

] det


ωEE−1/ f ′E ωEP(1− γP) ωES ωEV

ωPE ωPP(1− γP)−1/ f ′P ωPS ωPV

ωSE ωSP(1− γP) ωSS−1/ f ′s ωSV

ωVE ωVP(1− γP) ωVS ωVV−1/ f ′V


(S97)

χ
5
PP =

1
det
[
f′5−1−ω5

] ( −ω
PE det

 ωEP(1− γP) ωES ωEV

ωSP(1− γP) ωSS−1/ f ′s ωSV

ωVP(1− γP) ωVS ωVV−1/ f ′V

 (S98)

+(ωPP(1− γP)−1/ f ′P)det

 ωEE−1/ f ′E ωES ωEV

ωSE ωSS−1/ f ′s ωSV

ωVE ωVS ωVV−1/ f ′V

 (S99)

−ω
PS det

 ωEE−1/ f ′E ωEP(1− γP) ωEV

ωSE ωSP(1− γP) ωSV

ωVE ωVP(1− γP) ωVV−1/ f ′V

 (S100)

+ω
PV det

 ωEE−1/ f ′E ωEP(1− γP) ωES

ωSE ωSP(1− γP) ωSS−1/ f ′s
ωVE ωVP(1− γP) ωVS

 dotted(S101)

Each 3D determinant is minus the minor of the original 4D matrix (f′−1−ω). Using that

χ
5
PP =

1
det
[
f′5−1−ω5

] (ωPEMPE(1− γP)− (ωPP(1− γP)−1/ f ′P)MPP +ω
PSMPS(1− γP)−ω

PVMPV (1− γP)
)

(S102)

Where Mαβ are the minors of the original 4D matrix (f′−1−ω). Using that χαβ = 1
det(f′−1−ω)

(−1)αβ Mβα

χ
5
PP =−

det
(

f′−1−ω

)
det
[
f′5−1−ω5

](ωPE
χEP(1− γP)+(ωPP(1− γP)−1/ f ′P)χPP +ω

PS
χSP(1− γP)+ω

PV
χV P(1− γP)

)
(S103)

−
det
(

f′−1−ω

)
det
[
f′5−1−ω5

]([ωχ]PP(1− γP)−1/ f ′PχPP
)

(S104)

Using again the trick that [ωχ]
αiαi

=
χαiαi

f ′αi
−1

χ
5
PP =

det
(

f′−1−ω

)
det
[
f′5−1−ω5

](γP[ωχ]PP +1
)

(S105)

Given that the mean response of the perturbed population in a high-dimensional system, given by Eq. (S73) (and
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also Eq. S126) is χ
γγγ

PP = f ′P(γP[ωχ]PP +1
)
, we obtain that

f ′Pχ
5
PP =

det
(

f′−1−ω

)
det
[
f′5−1−ω5

]χ
γγγ

PP (S106)

And as both determinants are positive because of linear stability, this two things have the same sign. This
calculation, together with Eq. (2), tells us that whenever the mean of the perturbed population is positive, then
the sub-circuit without them will be unstable.

5.11 Response distribution to partial and non-homogeneous perturbations.

We now consider the case in which each population can not only received a perturbation that is partial, but this
perturbation is different for each neuron mimicking disorder in the ChR2 expression. More specifically we need
to recompute the expressions in equations (S59 , S60) for the case in which we have a perturbation vector δh =
{δh1,δh2, · · · ,δhn} instead of having entries like hη = {0, · · · ,0,1, · · · ,1︸ ︷︷ ︸

γη Nη

,0, · · · ,0}, has entries given by hη =

{0, · · · ,0,Dη

1 , · · · ,D
η

γη Nη︸ ︷︷ ︸
γη Nη

,0, · · · ,0}, where Dη

i ∼N (dη ,g2
η).

The optogenetic targeting matrix Σ, instead of being given by Eq. (S88), will be in this case:

Σ jk = ∑
η

∑
η ′

δα jη δαkη ′δk∈Pαk
δ j∈Pα j

(Dαi
i )(D

α j
j ) (S107)

The expression for the perturbation to cell i will then be written as a mean given by the response that the network
would have in the absence of disorder in the connectivity and a variance computed via Eqs (S59 , S60). Specifically:

δ ri = ∑
j

R0
i jδh j +Λαiξi (S108)

= f ′αi
Di− f ′αi ∑

η

γη f ′η
[(

f′−ω
−1)−1

]
αiη

dη +Λαiξi (S109)

(S110)

where ξi ∼N (0,1) and Λαi is the generalization of Eq. (S89) to disordered perturbations, obtained by replacing
Eq. (S107) into (S87) ( we note that the only term that needs to be re-computed is the term M).
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Λ
2
αi
=

(
f ′2αi

καi +
1
N

(
∑
η

κη

qη

S2
αiη
−

f ′2αi
καi

qαi

))∑
η

νη f ′η
2
γη

(
(1− γη)d2

η +g2
η

)
qη +∑

η ′
νη ′

(
∑
η

Sη ′,η dη γη

)2

qη ′


1−∑

η

νη

(
qη f ′2η κη +

1
N

(
qη ∑

η ′

κη ′

qη ′
S2

ηη ′ − f ′2η κη

))
(S111)

In the large N limit, this equation reduces to

Λ
2
αi
=

f ′2αi
καi

∑
η

νη f ′η
2
γη

(
(1− γη)d2

η +g2
η

)
qη +∑

η ′
νη ′

(
∑
η

Sη ′,η dη γη

)2

qη ′


1−∑

η

νη qη f ′2η κη

(S112)

Which in the end means that the response of a neuron that belongs to the population αi will respond to the
optogenetic perturbation with a mean and a variance given by

µ
IN
αi

= f ′αi
dαi − f ′αi ∑

η

γη f ′η
[(

f′−ω
−1)−1

]
αiη

dη (S113)

µ
OUT
αi

=− f ′αi ∑
η

γη f ′η
[(

f′−ω
−1)−1

]
αiη

dη (S114)

Λ
2,IN
αi = f ′αi

2g2
αi
+Λ

2
αi

(S115)

Λ
2,OUT
αi = Λ

2
αi

(S116)

Analogously as before, we obtain a distribution of responses for the perturbed cells given by

ρ
IN
αi

=
1√

2πΛINaαi

exp

{
−
(x−µ

IN
αi
)2

2ΛIN
αi

2

}
(S117)

ρ
OUT
αi

=
1√

2πΛOUT
αi

exp

{
−
(x−µ

OUT
αi

)2

2ΛOUT
αi

2

}
(S118)

So the total distribution of responses is

ραi = γαiρ
IN
αi

+(1− γαi)ρ
OUT
αi

(S119)

5.12 Link to the Low-dimensional system linear response

The activity of the Low-dimensional system is equivalent to the mean of the non-disordered high-dimensional
system. Perturbing all the neurons in a population α j and then measuring the mean activity in the population αi
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should be equivalent to computing the linear response in the Low-dimensional system. To show this, we need to
show that i) the measuring vector δb = 1

Nα i
δi∈αi and δh is the optogenetic perturbation to all neurons in a given

population, then

χαi,α j =
1

Nαi
∑
i∈αi

(
∑
j∈α j

R0
i j
)
=Uᵀ

αiR
0Vα j (S120)

Inserting (S64) into the above expression we obtain:

χ =UᵀRV =Uᵀ(F−FV
(
f′−ω

−1)−1
UᵀF)V (S121)

=f′− f′
(
f′−ω

−1)−1 f′ (S122)

=
(

f′−1−ω

)−1
(S123)

Which is the definition of χ as in Eq. (S7). We also need to show that the variance vanishes for large N. Writing
Bi j =

1
N2

η ′
δαiα j δαiη ′ , and inserting it and Eq. (S81) into Eq. (S60) we find that :

Ληη ′ =
σ

2

N

(
∑
αi

S2
αiη ′

Nαi

)(
∑
αi

S2
αiη ′

Nαi

)

1− σ
2

N

(
∑αi Nαi f ′αi

2 +∑αi,α j S2
αi,α j

Nαi
Nα j
−∑αi f ′αi

2

) (S124)

This variance vanishes for large N, making the usage of the small circuit as a limit of the average behavior of the
large one rigorous for linear networks.

Low-dimensional representation of the linear response when perturbing a fraction γ

If we now do the average but instead of perturbing all cells in α j, we compute the mean response over those that
are perturbed, meaning γα j ∗Nα j .

We choose the matrices Ũ (like U above but instead of all ones for a population only has γαk ) and Ṽ with columns
given by vectors ũα = 1

Nα
δi∈Pα

and ṽα = δi∈Pα
, meaning that ũ(k) = 1

Nk
(0, . . . ,0︸ ︷︷ ︸

∑
k−1
l=1 Nl

,1, . . . ,1︸ ︷︷ ︸
αkNk

, 0, . . . ,0︸ ︷︷ ︸
N−∑

k
l=1 Nl

) and similarly

for ṽ.

χ
γγγ

αi,α j =
1

γαiNαi
∑

i∈Pαi

(
∑

j∈Pα j

R0
i j
)
=

Ũᵀ
αi

γαi

R0Ṽα j = Ũᵀ
αiR

0Ṽα j (S125)

Before we had UᵀFV = f′. Now, we define γγγ which is a diagonal matrix with entries γαk we have ŨᵀFṼ = f′. Its
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worth noting that ŨᵀFV = f′ but UᵀFṼ = γγγf′. Using that

χ
γγγ = ŨᵀRṼ =Ũᵀ(F−FV

(
f′−ω

−1)−1
UᵀF)Ṽ (S126)

=f′− f′
(
f′−ω

−1)−1 f′γγγ (S127)

=f′+ f′ω
(

f′−1−ω

)−1
γγγ (S128)

=f′+ f′ωχγγγ (S129)
(S130)

We notice that the PP element of this is

χ
γγγ

αiαi = f ′αi
+ f ′αi

[ωχ]αiαiγαi (S131)

= f ′αi
+ f ′αi

(
χαiαi

f ′αi

−1)γαi (S132)

= f ′αi
+ γαi χαiαi − f ′αi

γαi (S133)

(S134)

where we again used that [ωχ]
αiαi

=
χαiαi

f ′αi
−1 . This is the exact same expression as Eq. (S74).
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Nomenclature

αi Short for population to which cell i belongs

χ Linear response matrix of the Low-dimensional circuit

∆α Variance of the input to population α

κ and ν low rank vectors that compose σ

Λ2
α Variance in the population α

ω Low-dimensional connectivity matrix

ΠL Diagonal matrix with entries κ

ΠR Diagonal matrix with entries ν

Σ Optogenetic targeting matrix

σαβ matrix of the standard deviations of the weight matrix W

τ Time constant

ξ Power in a threshold power law input-output function

A Diagonal matrix with factors to transform calcium to rates

B Measuring matrix

c Contrast value, usually normalized to 1

E Error function

F Diagonal matrix with the derivatives of f at the fixed point of the high-dimensional circuit

f Input-output function /nonlinearity

f ′ Derivative of f

h External inputs to the network

J Jacobian

k Normalized entries of the Low-dimensional linear response matrix χ

mα Mean firing rate in population α for HD model

N Number of neurons in the HD system

n Number of populations (different cell-types) in the network

Nα Number of neurons in population α

Pα Distribution of activity over population α

qα Fraction of cells in population α : Nα/N

R Linear response of the HD system

r Activity, rα is the activity in population α
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R0 Linear response of the HD system in the absence of disorder

T Diagonal matrix of time constants

uα Mean input to population α

vα Second moment of the activity distributions in population α

W Weight matrix of the high-dimensional model

wαβ Mean connection strength form population β to population α

wαβ

i j Weight connecting neuron j in population β to neuron i in population α

W0 matrix of entries wαβ

z Input current

f′ Diagonal matrix with the derivatives of f at the fixed point of the Low-dimensional circuit

HD high-dimensional (i.e. N dimensional) model, with 4 populations

HFP Homogeneous fixed point

LD Low-dimensional (i.e. 4-dimensional) model
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