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Abstract11

1. Resource-selection and step-selection analyses allow researchers to link animals to their12

environment and are commonly used to address questions related to wildlife management13

and conservation efforts. Step-selection analyses that incorporate movement characteristics,14

referred to as integrated step-selection analyses, are particularly appealing because they allow15

modeling of both movement and habitat-selection processes.16

2. Despite their popularity, many users struggle with interpreting parameters in resource-selection17

and step-selection functions. Integrated step-selection analyses also require several additional18

steps to translate model parameters into a full-fledged movement model, and the mathematics19

supporting this approach can be challenging for biologists to understand.20

3. Using simple examples, we demonstrate how weighted distribution theory and the inhomoge-21
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neous Poisson point-process model can facilitate parameter interpretation in resource-selection22

and step-selection analyses. Further, we provide a “how to” guide illustrating the steps23

required to implement integrated step-selection analyses using the amt package.24

4. By providing clear examples with open-source code, we hope to make resource-selection and25

integrated step-selection analyses more understandable and accessible to end users.26

Keywords: habitat selection, inhomogeneous Poisson point-process, integrated step-selection27

analysis, resource-selection function, spatial hazards, step-selection function, telemetry, relative28

selection strength29

Introduction30

New technologies (e.g., improved Global Positioning System [GPS] collars) and advances in remote31

sensing have made it possible to collect animal location data on unprecedented spatial and temporal32

scales (Kays, Crofoot, Jetz, & Wikelski, 2015; Robinson et al., 2020), which in turn has fueled33

the development of new methods for modeling animal movement and for linking individuals to34

their environments (Guisan, Thuiller, & Zimmermann, 2017; Hooten, Johnson, McClintock, &35

Morales, 2017). Two of the most popular approaches for analyzing telemetry data, resource-selection36

and step-selection analyses, compare environmental covariates at locations visited by an animal37

(“used locations”) to environmental covariates at a set of locations assumed available to the animal38

(“available locations”) using logistic and conditional logistic regression, respectively (Boyce &39

McDonald, 1999; Fortin et al., 2005; Thurfjell, Ciuti, & Boyce, 2014). These methods are widely40

available in most statistical software packages, and thus, they provide a robust and easy-to-implement41

framework for analyzing habitat-selection patterns; note, here and elsewhere, we have used the term42

habitat-selection rather than resource-selection to highlight our broader interest in modeling the43

effects of a diverse set of environmental variables (e.g., those capturing risks and environmental44

conditions in addition to resources), but we will often use these terms interchangeably. Despite45

their popularity, our collective experience has been that most users struggle to interpret parameters46

in these models. Further, it seems that papers attempting to address this issue have had limited47

success, and in some aspects may have increased confusion (see e.g., Keating & Cherry, 2004;48

Johnson, Nielsen, Merrill, McDonald, & Boyce, 2006; Lele, Merrill, Keim, & Boyce, 2013; Avgar,49
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Lele, Keim, & Boyce, 2017; Chamaille-Jammes, 2019).50

Here, we highlight how point-process models and weighted distribution theory provide simple and51

effective frameworks for interpreting regression parameters in resource-selection and step-selection52

analyses. In the sections that follow, we begin by reviewing recent research connecting resource-53

selection functions to point-process models and weighted distribution theory. Using these connections,54

we demonstrate correct interpretation of parameters using simple examples of models fit to GPS55

locations of fisher (Pekania pennanti) from upstate New York (LaPoint et al., 2013a, 2013b). We56

then provide a short review of step-selection analyses, including their history and methods for57

parameter estimation. Step-selection analyses are particularly appealing because: 1) they provide58

an objective method for defining habitat availability in terms of movement constraints; 2) they59

relax the assumption that locations are statistically independent; and 3) by including movement60

characteristics (e.g., functions of step length and turn angle) as predictors, they provide a means to61

model both movement and habitat selection processes (termed an integrated step-selection analysis62

by Avgar, Potts, Lewis, & Boyce, 2016). Recognizing that many biologists may find the mathematics63

supporting integrated step-selection analyses intimidating, we aim to provide a “how to” guide64

demonstrating the steps required to implement the approach using the amt package (Signer, Fieberg,65

& Avgar, 2019). This demonstration is expanded upon using coded examples in the supplementary66

appendices, which we encourage the reader to explore. We end with a short discussion highlighting67

challenges related to statistical dependencies and model transferability.68

Resource-Selection Analyses69

Logistic Regression70

Much of the confusion surrounding the interpretation of parameters in resource-selection analyses71

can be attributed to the use of logistic regression in a non-standard way. Logistic regression is most72

easily understood as a model for binary random variables that can take on one of two values (073

or 1) with probability that depends on one or more explanatory variables (Hosmer, Lemeshow, &74

Sturdivant, 2013).75

Consider, for example, a prospective study designed to infer how various environmental characteristics76
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influence whether a habitat patch will be used by one or more animals. In this case, we may randomly77

select n habitat patches and monitor them to determine if they are used (yi = 1) or not (yi = 0) for78

i = 1, 2, . . . , n. Logistic regression allows us to model the probability that each patch will be used,79

P (yi = 1) = pi, as a logit-linear function of patch-level predictors (Xi1, . . . , Xip) and regression80

parameters (β1, . . . , βp):81

yi ∼ Bernoulli(pi)

logit(pi) = log
(

pi
(1− pi)

)
= β0 + β1Xi1 + . . . βpXip

After having fit a model, we can exponentiate the regression coefficients, exp(βk), to quantify how82

the odds of use, p/(1− p), change as we increase the kth predictor by 1 unit while holding all other83

predictors constant. We can also use the inverse-logit transformation (eqn. (1)) to estimate the84

probability that a patch will be used, given its set of spatial predictors:85

pi = exp(β0 + β1Xi1 + . . . βpxip)
1 + exp(β0 +Xi1β1 + . . . Xipβp)

(1)

The logit transformation ensures that p will be constrained between 0 and 1 for all values of the86

predictor variables.87

Contrast this approach with how logistic regression is used to study habitat selection. In a typical88

habitat-selection study, logistic regression models are fit to separate samples of used and available89

sample units, groups that are not mutually exclusive (i.e., available habitat patches may also be90

used). We will refer to the combined locations as use-availability data. In this case, yi is no longer a91

Bernoulli random variable since pi depends on the ratio of used to available points (which is under92

control of the analyst). Further, most analyses of telemetry data involve point-level sampling in93

continuous space rather than discrete sample units. In this case, the probability associated with any94

point is necessarily 0 to ensure the distribution integrates to 1 over all of available space. Thus, it is95

perhaps not surprising that there has been considerable confusion and controversy surrounding the96

use of logistic regression with use-availability data (e.g., Keating & Cherry, 2004; Johnson et al.,97
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2006; Chamaille-Jammes, 2019).98

Various arguments have been constructed to justify the use of logistic regression when analyzing99

use-availability data (Manly, McDonald, Thomas, McDonald, & Erickson, 2002; Johnson et al.,100

2006; Aarts, MacKenzie, McConnell, Fedak, & Matthiopoulos, 2008), but a significant breakthrough101

came when Warton & Shepherd (2010) made a connection between logistic-regression and an102

inhomogeneous Poisson point-process (IPP). An IPP is a model for random locations or events in103

space, where the expected spatial density of the locations depends on spatial predictors (see next104

section, Inhomogeneous Poisson Point-process Model). Warton & Shepherd (2010) showed105

that as the number of available points is increased towards infinity, the slope parameters in logistic106

regression models will converge to the slope parameters in an IPP model. Interestingly, several107

other popular approaches for analyzing species distribution data, including MaxEnt (Phillips &108

Dudík, 2008; Elith et al., 2011), weighted distribution theory with an exponential link function109

(Lele & Keim, 2006), and resource utilization functions (Millspaugh et al., 2006), have been shown110

to be equivalent to fitting an inhomogeneous Poisson point-process model (Warton & Shepherd,111

2010; Aarts, Fieberg, & Matthiopoulos, 2012; Fithian & Hastie, 2013; Hooten, Hanks, Johnson, &112

Alldredge, 2013; Renner et al., 2015).113

Instead of focusing on pi, as is typical in prospective studies, logistic regression applied to use-114

availability data should simply be viewed as a convenient tool for estimating coefficients in a115

resource-selection function, w(x;β) = exp(Xi1β1 + . . . Xipβp) (Boyce & McDonald, 1999; Boyce et116

al., 2002). As we will see in the next section, this expression is equivalent to the intensity function117

of an IPP model, but with the intercept (the log of the baseline intensity) removed; the baseline118

intensity gives the expected density of points when all covariates are 0. Because resource-selection119

functions do not include this baseline intensity, they are said to measure “relative probabilities120

of use” or, alternatively, said to be “proportional to the probability of use” (Manly et al., 2002).121

Although the term probability of use sounds appealing, it is important to remember the challenges122

with defining probability at the point-level. Further, although probability of use is easily defined for123

discrete sample units (e.g. grid cells), these probabilities should increase with the size of the spatial124

unit and also with the study duration (Lele & Keim, 2006; Lele et al., 2013). Thus, with telemetry125

studies, it seems more natural to model spatial (or spatio-temporal) “hazards” or rates of use in126
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continuous space (and time), from which “probability of use” can be determined by integrating these127

hazards over whatever spatial (and temporal) unit is deemed appropriate. Point-process models128

allow us to do just that!129

Inhomogeneous Poisson Point-Process (IPP) Model130

The IPP model provides a simple framework for modeling the density of points in space as a131

log-linear function of spatial predictors through a spatially-varying intensity function, λ(s):132

log(λ(s)) = β0 +X1(s)β1 + . . . Xp(s)βp (2)

where s is a location in geographic space, and X1(s), . . . , Xp(s) are spatial predictors associated with133

location s. The intercept, β0, determines the log-density of points (within a small homogeneous area134

around s) when all Xi(s) are 0, and the slopes, β1, . . . , βp, describe the effect of spatial covariates on135

the log density of locations in space. The IPP model can be understood by listing its key features136

and assumptions, namely:137

1. The number of locations in an area G, nG, is given by a Poisson random variable with mean138

µG =
∫
G λ(s)ds.139

2. Locations are independent (any clustering can be explained by spatial covariates).140

If all available spatial predictors are measured only at a coarse scale (e.g., at a set of gridded or141

rasterized cells), then fitting the IPP model is equivalent to fitting a Poisson regression model (Aarts142

et al., 2012). Specifically, one may treat the counts, yi, in n discrete spatial units (i = 1, . . . , n), as143

a set of independent Poisson random variables with means = λ(si)|Gi| where λ(si) is given by eqn.144

(2) and |Gi| is the area of grid cell i. Note that log(E[yi]) = log(λ(si)|Gi|) = log(λ(si)) + log(|Gi|);145

thus, the log-link used in Poisson regression implies the area, |Gi|, should be included as an offset146

(a predictor variable with with regression coefficient fixed at a value of 1).147

When spatial predictors are available at the point-level, as will be the case whenever constructing148

“distance to” predictors (e.g., distance to nearest road, water source, etc), it will be advantageous149

to model the locations in continuous space. In telemetry studies, the absolute density of points150
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will be determined by the frequency and duration of data collection. Thus, β0 will not be of151

biological interest, and it will be appropriate to focus efforts on estimating and interpreting the152

slope coefficients, β1, . . . , βp, which determine relationships between the spatial covariates and the153

relative density of locations throughout the study area (Fithian & Hastie, 2013). As is the case with154

linear and generalized linear models (e.g., Poisson regression), we can estimate parameters using155

maximum likelihood. This technique requires writing down an expression, called the likelihood, that156

captures the data generating mechanism in terms of one or more parameters. With telemetry data,157

it makes sense to work with the conditional likelihood of the IPP model (Aarts et al., 2012), i.e.,158

the likelihood of the observed locations in space, conditional on there being n observed locations in159

total. The conditional likelihood is given by:160

L(β1, . . . , βp|s1, . . . , sn) =
n∏
i=1

λ(si)∫
s∈G λ(s)ds (3)

where the product is over the n observed locations, λ(si) is the intensity function evaluated at161

observation i, and the integral in the denominator evaluates the intensity function over the spatial162

domain of interest (Cressie, 1992; Aarts et al., 2012). If we plug λ(si) = exp(β0 + X1(si)β1 +163

. . . Xp(si)βp) into eqn. (3), β0 will cancel from the numerator and denominator, leaving us with:164

L(β; s1, . . . , sn) =
n∏
i=1

exp(X1(si)β1 + . . . Xp(si)βp)∫
s∈G exp(X1(si)β1 + . . . Xp(si)βp)ds

=
n∏
i=1

w(x(si);β)∫
s∈Gw(x(s);β)ds (4)

where w(x(s);β) = exp(β1x1(s) + . . . βpxp(s)) is our resource-selection function.165

The binomial likelihood associated with logistic regression differs from eqn. (4), but Warton &166

Shepherd (2010) showed that logistic regression estimators of slope coefficients converge to the those167

of the IPP model as the number of available points increases toward infinity. Thus, the connection168

to the IPP model addresses a common question that arises when estimating resource-selection169

functions, namely, “how many available points do I need?” The exact answer depends on how170

difficult it is to estimate the integral in the denominator of eqn. (4); the recommendation we offer171

is to increase the number of available points until the estimated slope coefficients no longer change172

much. Fithian & Hastie (2013) later showed that the convergence results of Warton & Shepherd173
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(2010) hold only if the model is correctly specified, but assigning “infinite weights” to available points174

ensures the results hold more generally. Therefore, when fitting logistic regression or other binary175

response models (e.g., boosted regression trees) to use-availability data, we also suggest assigning a176

large weight (say 1000 or more) to each available location and a weight of 1 to all observed locations177

(larger values can be used to verify that results are robust to this choice). For a coded example in R178

(R Core Team, 2019), see section Interpreting Parameters in Resource-Selection Functions179

and Supplementary Appendix A.180

Weighted Distributions181

Weighted distribution theory provides another way to interpret parameters in resource-selection182

functions (Lele & Keim, 2006; Johnson, Thomas, Ver Hoef, & Christ, 2008). Let:183

• u(x) = the frequency distribution of habitat covariates, x, at locations used by our study184

animals.185

• a(x) = the frequency distribution of habitat covariates, x, at locations assumed to be available186

to our study animals.187

We can think of the resource-selection function, w(x;β), as providing a set of weights that takes us188

from the distribution of available habitat to the distribution of used habitat:189

u(x) = w(x, β)a(x)∫
z∈E w(z, β)a(z)dz (5)

The denominator of eqn. (5) ensures that the left hand side integrates to 1 and thus, u(x) is a proper190

probability distribution; the variable z here is just a dummy variable used to allow integration191

over the frequency distribution of our environmental covariates. Because these distributions are192

written in terms of the habitat covariates, x, instead of geographical locations, we say that model is193

parameterized in environmental space (E) (Hirzel & Le Lay, 2008; Elith & Leathwick, 2009).194

To show that weighted distribution theory is consistent with the IPP formulation discussed above,195

we can rewrite eqn. (5) in geographic space (G):196
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u(s) = w(x(s), β)a(s)∫
g∈Gw(x(g), β)a(g)dg , (6)

where the denominator integrates over a geographic area, G, that is assumed to be available to197

the animal and g is a dummy variable for integration. Here u(s) is equivalent to the utilization198

distribution encountered in the literature on probabilistic estimators of animal home ranges (Van199

Winkle, 1975; Worton, 1989; Signer & Fieberg, 2020) and tells us how likely we are to find an200

individual at location s in geographic space. The utilization distribution, u(s), depends on the201

environmental covariates associated with location s, through w(x(s);β), and the distribution of202

available locations in geographic space, a(s). Typically, a(s) is assumed to be a uniform distribution203

within the geographical domain of availability, G (e.g., the individual’s home range, the population’s204

range, or the species range depending on the hierarchical level of habitat selection of interest;205

Johnson, 1980), and all areas within G are assumed to be equally available to the organism. Hence,206

a(s) is typically a constant, 1/|G|, that cancels from the numerator and denominator. Then, if we207

let w(x(s);β) = exp(xβ), we end up with the conditional likelihood of the Inhomogeneous Poisson208

process model (eqn. (4)) (Aarts et al., 2012).209

Interpreting Parameters in Resource-Selection Functions210

To demonstrate how the IPP and weighted distribution theory frameworks help with interpreting211

parameters in fitted resource-selection functions, we now consider a simple example using 3,004212

locations of a fisher named Lupe tracked as part of a larger telemetry study (LaPoint et al., 2013a,213

2013b). These data are publicly available and have been featured in a workshop highlighting214

Movebank’s Env-DATA system for annotating locations with environmental covariates (Dodge et215

al., 2013; Fieberg et al., 2018). The location data were combined with available points sampled216

randomly from within a minimum convex polygon (MCP) formed using Lupe’s locations. The217

used and available locations were then transformed to a projected coordinate reference system218

(NAD83 / Conus Albers) and annotated with environmental variables measuring population density219

(University & CIAT, 2005), elevation (U. S. / Japan ASTER Science Team, 2009), and landcover220

class (Defourny et al., 2009). The original landcover data were grouped to form a variable named221

landuseC with the following categories: forest, grass and wet (Fig. 1). We created centered222
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(mean = 0) and scaled (SD = 1) variables labeled elevation and popden from the original elevation223

and population density variables. We also created an indicator variable, case_, taking on a value of224

1 for all used points and 0 for all available points (later, we discuss how to choose the number of225

available points).226

For ease of interpretation, we will begin by assuming the effects of elevation, population density, and227

landcover class are additive and linear on the log scale (eqn. (2)). Later, we will discuss how we can228

relax these assumptions using interactions to allow the effect of covariates to depend on the value229

of other habitat covariates and polynomials or splines to to relax the assumption of linearity. We230

assign a weight of 5000 to the available locations and a weight of 1 to all observed locations (Fithian231

& Hastie, 2013). We can then fit a weighted logistic regression model using the glm function in R:232

Lupe.dat$w <- ifelse(Lupe.dat$case_==1, 1, 5000)

RSF.Lupe <- glm(case_ ~ elevation + popden + landuseC,

data = Lupe.dat,

weight = w,

family = binomial)

Before interpreting the coefficients, it is important to make sure we have included a sufficient number233

of available points to allow parameter estimates to converge to stable values. To evaluate parameter234

stability, we fit logistic regression models to data sets with increasing numbers of available points235

(from 1 available point per used point to 100 available points per used point; see Supplementary236

Appendix A for the code). The intercept decreased as we increased the number of available points237

(as it is roughly proportional to the log difference between the numbers of used and available238

points), but the slope parameter estimates, on average, did not change much once we included at239

least 10 available points per used point (Fig. 2). Further, as expected, estimates varied less from240

sample to sample as we increased the number of available points. Thus, we conclude that, in this241

particular case, having 10 available points per used point is sufficient for interpreting the slope242

coefficients. Using more available points reduces Monte Carlo error, however, so we will proceed243

with 100 available points per used point.244

Let’s consider the interpretation of the continuous covariates reflecting elevation and population245
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density (Table 1, Model 1 ). Qualitatively, we might infer from the positive coefficient for elevation246

and negative coefficient for popden that, all other things being equal, Lupe is likely to select247

locations at higher elevations and in areas of lower population density. But, how do we interpret248

these coefficients quantitatively? Consider the following two locations, both in the same landcover249

class and with the same associated population density, but differing by 1 unit in elevation (since250

we have scaled this variable, a difference of 1 implies that the two observations differ by 1 SD in the251

original units of elevation):252

• location s1: elevation = 3, popden=1.5, landuseC = wet253

• location s2: elevation = 2, popden=1.5, landuseC = wet254

Using eqn. (6), we can calculate the relative risk of Lupe using location 1 relative to location 2:255

u(s1)
u(s2) = exp(3βelevation + 1.5βpop_den + 0βgrass + 1βwet)a(s1)

exp(2βelevation + 1.5βpop_den + 0βgrass + 1βwet)a(s2) (7)

where we have dropped the integral from eqn. (6) because it appears in both the numerator and256

denominator (and thus, cancels out). Now, if both locations are equally available, then a(s1) = a(s2),257

and we have:258

u(s1)
u(s2) = exp(3βelevation) exp(1.5βpop_den + βwet)

exp(2βelevation) exp(1.5βpop_den + βwet)
= exp(βelevation) = exp(0.303) = 1.35 (8)

In epidemiology, exp(β) is referred to as a risk or hazard ratio. In the context of habitat-selection259

analyses, Avgar et al. (2017) refer to it as quantifying relative selection strength (RSS).260

Note that we would arrive at the exact same expression if we chose any two locations that differed261

by 1 unit of elevation and had the same values for popden and landuseC. Thus, exp(βelevation)262

quantifies the risk (or hazard) ratio of two locations that differ by 1 SD unit of elevation but263

are otherwise equivalent (i.e., they are equally available and have the same values of all other264

habitat covariates). If Lupe were to be presented with two such hypothetical locations, the model265

suggests she would be 1.35 times more likely to choose the one with the higher elevation. A similar266

interpretation can be ascribed to popden. Given two observations that differ by 1 SD unit of popden267
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but are otherwise equal, Lupe would be exp(−0.183) = 0.833 times as likely to choose the location268

with higher population density (or, equivalently, exp(0.183) = 1.20 times more likely to choose the269

location with the lower population density).270

What about the coefficients for the landcover categories? Looking again at the regression output271

(Table 1, Model 1 ), we see that grass has a negative coefficient and wet has a positive coefficient.272

It is tempting to infer that Lupe spends most of her time in wet areas and rarely spends time in273

grassy habitats. As Figure 1 makes it clear, however, these inferences are not exactly correct. First,274

it is important to understand how categorical predictors are encoded in regression models. There275

are a number of different ways to parameterize the effect of categorical variables and unfamiliar276

readers may want to work through an introductory regression text (e.g., Chapter 6 of Kéry (2010)).277

The default coding in R is to treat one of the levels (whichever comes first alphabetically) as a278

reference level and then to create a set of dummy variables that contrast the remaining levels of279

the categorical variable with this reference level. In our case, forest is the reference level. The280

coefficients associated with grass and wet represent contrasts between these land cover classes and281

the forest class.282

Let’s again consider 2 locations, this time assuming they have the same elevation and population283

densities, but with one location in wet and the other location in forest:284

• location s1: elevation = 2, popden=1.5, landuseC = wet285

• location s2: elevation = 2, popden=1.5, landuseC = forest286

The relative risk of an animal using location 1 relative to location 2 is given by (eqn. (6)):287

u(s1)
u(s2) = exp(2βelevation + 1.5βpop_den + 0βgrass + 1βwet)a(s1)

exp(2βelevation + 1.5βpop_den + 0βgrass + 0βwet)a(s2) = exp(βwet)
a(s1)
a(s2) (9)

Thus, assuming the two locations are equally available, we might infer that Lupe would be288

exp(0.250) = 1.28 times more likely to choose the wet location than the location in forest.289

Of course, we know from Figure 1 that forest and wet are not equally available on the landscape.290

The higher availability of forest habitat implies that Lupe is more likely to be in forest than291

wet. We could attempt to correct for differences in availability within the MCP surrounding Lupe’s292
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locations by multiplying our result by the ratio of habitat availability for wet relative to forest293

habitats (2.3% versus 95.7%; Fig. 1), giving us exp(0.250)(0.023)/(0.957) = 0.03. This calculation294

suggests we are (1/0.03 = 33) times more likely to find Lupe in forest than wet habitat. With295

this calcualtion we had to assume, perhaps naively, that the availability distributions for popden296

and elevation were the same in both wet and forest cover classes. In reality, if Lupe decides to297

move from forest to wet, it is likely that she will experience a change in elevation and popden298

too (i.e., these factors will not be held constant). To quantify the relative risk of finding Lupe in299

forest versus wet habitat, while also accounting for the effects other environmental characteristics300

that are associated with these habitat types, we can use integrated hazards – i.e., we can integrate301

the spatial utilization distribution, u(s), over all forest and wet habitats:302

u(s, s ∈ forest)
u(s, s ∈ wet) =

∫
G u(s)I(s ∈ forest)ds∫
G u(s)I(s ∈ wet)ds (10)

where I(s ∈ forest) and I(s ∈ wet) are indicator functions equal to 1 when location s is in forest303

or wet, respectively (and 0 otherwise). We can estimate this ratio using:304

û(s, s ∈ forest)
û(s, s ∈ wet) =

∑na
i=1 ŵ(x(si); β̂)I(si ∈ forest)∑na
i=1 ŵ(x(si); β̂))I(si ∈ wet)

. (11)

where the sum is over the distribution of available locations.305

This ratio is also equal to 33, which agrees with the observed data; Lupe was found in forest habitat306

33 times more often than in wet habitat (see Supplementary Appendix A for code demonstrating307

how to calculate these quantities in R). Thus, we conclude Lupe is 33 times more likely to be found308

in forest than wet habitat, assuming she restricts her movements to the MCP surrounding her309

observed locations and all of this MCP is equally available to her.310

Before moving on, it is important to note that naively-adjusted (multiplying by availability of wet311

and forest habitats) and integrated-hazards (i.e., adjusted) risk ratios will not always agree. In312

fact, we find that they differ when comparing the risk of finding Lupe in wet versus grass habitat,313

with the integrated-hazards risk ratio better agreeing with the observed data (see Supplementary314

Appendix A). Somewhat related, Avgar et al. (2017) suggested calculating average effects for315
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continuous predictors, X, by comparing the change in relative risk from increasing X by 1 unit316

(to X = x+ 1) to the average value of w(x(s);β) for all locations s with x(s) = x. These average317

effects will also be influenced by cross-correlations among predictor variables included in the model.318

Instead of integrating u(s) over discrete cover types, we could integrate over a specific geographic319

area. In addition, we could choose to change the area of interest (and thus, area of integration)320

from G to G̃. This approach makes it possible to use the same integrated hazards approach (i.e.,321

eqn. (11)) to project how Lupe would spend her time in a novel environment (referred to as an322

“out-of-sample” prediction). Out-of-sample predictions often suffer from poor accuracy, especially323

when compared to “in sample” predictions, i.e., predictions for the same area and time frame from324

which the original data were collected (Torres et al., 2015; Yates et al., 2018). We return to this325

important point in the discussion section.326

Let’s next consider what happens if we change the reference level of the land cover variable from327

forest to wet (Table 1, Model 2 ).328

Lupe.dat <- within(Lupe.dat,

landuseC1 <- relevel(landuseC, ref = "other"))

RSF.Lupe2 <- glm(case_ ~ elevation + popden + landuseC1,

data = Lupe.dat,

weight = w,

family = binomial)

The coefficients for elevation and popden do not change. Note, however, that the coefficient for329

forest is negative despite Lupe using forest more than its availability (i.e., u(s, s ∈ forest) >330

a(s, s ∈ forest)) and Lupe spending more than 95% of her time in the forest! What is going on?331

Remember, the coefficients for categorical predictors reflect use:availability ratios for each level of332

the predictor relative to the use:availability ratio for the reference class. The coefficient for forest333

is negative because the use:availability ratio for forest is less than the use:availability ratio for334

the reference class, wet (see Fig. 1). Depending on the reference level, it is possible to have a335

positive (negative) coefficient even when that landcover class is used more (less) than its availability.336

Furthermore, it is possible for landcover class to be used frequently but have a negative coefficient.337
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We have seen many ecologists, including some that are very quantitatively skilled and familiar with338

habitat-selection models, make mistakes when interpreting coefficients associated with categorical339

predictors! This example also highlights the importance of plotting your data (e.g., Fig. 1) and340

considering habitat availability when interpreting regression coefficients. Plotting distributions341

of covariates for both used and available locations is one of the best ways to understand fitted342

habitat-selection models, and is a good strategy to use for both continuous and categorical predictors343

(Merow, Smith, & Silander, 2013; Fieberg, Forester, et al., 2018).344

Interactions Between Environmental Predictors345

Consider the distribution of elevation at used and available locations across the different habitat346

classes (Fig. 3). We see that there is a wider range of elevation in forest and wet habitat347

compared to grass habitat, and there is a clear association between elevation and landuseC, with348

higher median elevation at used locations in forest and grass habitat relative to wet habitat.349

Perhaps more importantly, we also see that values of elevation are higher, on average for used350

locations (compared to available locations) in forest and grass, whereas the opposite is true in351

wet habitat. Although we should be skeptical of interactions that we discover while exploring our352

data (i.e., interactions that were not specified a priori), an analyst may be tempted to include an353

interaction between elevation and landuseC. In Model 3 (Table 1), we revert to having forest354

as the reference level and include the interaction between elevation and landuseC.355

Lupe.dat <- within(Lupe.dat , landuseC <- relevel(landuseC, ref = "forest"))

RSF.Lupe3 <- glm(case_ ~ elevation + popden + landuseC + elevation:landuseC,

data = Lupe.dat,

weight = w,

family = binomial)

Using this syntax, R creates two new variables elevation:landuseCgrass equal to elevation356

when landuseC is grass and is 0 otherwise and elevation:landuseCwet equal to elevation when357

landuseC is wet and is 0 otherwise. The coefficients associated with these predictors quantify358

the change in slope (i.e., change in the effect of elevation) when the locations fall in grass or359

wet relative to the slope when the locations fall in forest. Starting from eqn. (6) and using the360
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estimates for Model 3 in Table 1, we can easily derive that the relative risk of choosing between two361

equally available locations that differ by 1 SD unit of elevation is equal to exp(0.313) = 1.37 when362

the two locations are in forest, exp(0.313 + 0.112) = 1.53 when the locations are in grass, and363

exp(0.313−0.499) = 0.83 when the locations are in wet habitat. Thus, we might conclude that Lupe364

would select for higher elevations when in forest or grass, but avoid higher elevations when in365

wet. Alternatively, we can consider how elevation changes Lupe’s view of the different landcover366

categories, noting that βgrass = −1.471 + 0.112elevation and βwet = 0.183 − 0.499elevation.367

Thus, we see that Lupe’s relative avoidance of grass (relative to forest) and selection for wet368

(relative to forest) both decline with elevation, and Lupe’s inherent ranking of these 3 habitat369

types will change as elevation increases.370

Non-Linear Effects and Other Considerations371

When building models, it is important to consider the functional relationships between different372

environmental characteristics and habitat use. For example, we may classify available predictors373

based on whether they represent resources (higher values are generally preferable), risks (lower374

values are generally preferable) or conditions (values that are not too high or too low are preferable)375

(e.g., Matthiopoulos et al., 2015). It is often useful to allow for non-linear effects of conditions376

by including quadratic terms or using a set of spline basis functions. In either case, we end up377

requiring multiple coefficients to capture how relative risk changes with the environmental predictor.378

Consider, for example, that we could include a quadratic term to model the effect of elevation.379

Estimating the relative risk for two locations, s1 and s2, that differ in their values of elevation but380

are otherwise equivalent would be straightforward using eqn. (6) - we would just need to calculate381

hazard ratios using coefficients for elevation and elevation2:382

u(s1)
u(s2) = exp(elevation(s1)βelevation + elevation(s1)2βelevation2)

exp(elevation(s2)βelevation + elevation(s2)2βelevation2) (12)

Lastly, we note that Avgar et al. (2017) provide simple formulas for calculating risk or hazard ratios383

under a number of different scenarios (e.g., models with quadratic polynomials, log-transformed384

covariates, and models with interactions). The log_rss function in the amt package (Signer et al.,385
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2019) relies on R’s generic predict function to aid the user in calculating the log of these hazard386

ratios for any combination of model structure and two alternative locations; its use is illustrated in387

Supplementary Appendix B. Understanding how these formulas are derived, however, helps build388

intuition and frees the user to construct estimators and estimation targets that capture relevant389

quantities of specific interest.390

Statistical Independence391

An important assumption of the IPP model, and hence, resource-selection functions, is that any392

clustering of spatial locations can be explained solely by spatial covariates. Strictly speaking, this393

assumption will almost never be met, particularly with modern-day telemetry studies that allow394

several locations to be collected on the same day. Telemetry observations close in time tend to395

also be close in space - i.e., telemetry observations exhibit serial dependence (Fleming et al., 2014).396

This serial dependence is likely to manifest itself in residual spatial autocorrelation that could be397

modeled using a spatial random effect or a spatial predictor constructed to account for the effects398

of movement constraints on habitat availability (Johnson, Hooten, & Kuhn, 2013). Models with399

spatial random effects are, however, more complicated and difficult to fit.400

Alternatively, if telemetry observations are collected at regular time intervals, then the locations401

may be argued to provide a representative sample of habitat use from a specific observation window402

(Otis & White, 1999; Fieberg, 2007). In these cases, it may be helpful to view our estimates of403

the parameters in our resource-selection function, β̂, as useful summaries of habitat use for tagged404

individuals during these fixed time periods. Nevertheless, the assumption of independence of our405

locations is clearly problematic and will lead to estimates of uncertainty that are on average too406

small. If we are primarily interested in population-level inferences, then we may choose to ignore407

within-individual autocorrelation when estimating individual-specific coefficients but use a robust408

form of SE that treats individuals as independent when describing uncertainty in population-level409

parameters (e.g., using a bootstrap; Fieberg, Vitense, & Johnson, 2020) or generalized estimating410

equations approach (e.g., Fieberg, Rieger, Zicus, & Schildcrout, 2009; Koper & Manseau, 2009;411

Fieberg, Matthiopoulos, Hebblewhite, Boyce, & Frair, 2010).412
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Step-Selection Functions413

Step-selection functions were developed to deal with serial dependence as well as temporally varying414

availability distributions resulting from movement constraints (Fortin et al., 2005; Thurfjell et al.,415

2014). Rather than treat locations as independent and identically distributed (with availability that416

does not depend on time), step-selection analyses model transitions or “steps” connecting sequential417

locations (∆t units apart) in geographical space:418

u(s, t+ ∆t)|u(s′, t) = w(x(s);β(∆t))φ(s, s′; γ(∆t))∫
s̃∈Gw(x(s̃, s′);β(∆t))φ(s̃, s′; γ(∆t))ds̃ (13)

where u(s, t+ ∆t)|u(s′, t) gives the conditional probability of finding the individual at location s at419

time t+ ∆t given it was at location s′ at time t, w(x(s);β(∆t)) is referred to as a step-selection420

function, and φ(s, s′; γ(∆t)) is a selection-independent movement kernel that describes how the421

animal would move in homogeneous habitat or in the absence of habitat selection (i.e., when422

w(x(s);β(∆t)) = a constant for all s). Note that we represent the parameter vectors (β and γ) as423

functions of the step duration (∆t). This notation reflects the fact that step-selection parameters424

are scale dependent (i.e., different ∆t’s will result in different estimates of β and γ; see Avgar et al.425

(2016) for more details). Thus, we generally require observations to be equally spaced in time, and426

care must be taken when comparing inference from models fitted at different temporal resolution427

(but see Munden et al., 2020).428

As with resource-selection analyses, it is typical to model w(x(s);β(∆t)) as a log-linear function of429

spatial covariates and regression parameters, w(x(s);β(∆t)) = exp(X1(s)β1 + . . . Xp(s)βp). A key430

difference between resource-selection and step-selection analyses, however, is that the latter allow the431

available distribution to be time-dependent and equal to a(s, t+ ∆t) = φ(s, s′, γ(∆t)). Consequently,432

step-selection analyses allow explicit consideration of temporally dynamic environmental covariates,433

x(s′, t) and x(s, t+ ∆t) (and, possibly, environmental covariates measured along the path between434

these two locations). One option that often performs well and enhances interpretability is to include435

habitat covariates at the start of the movement step in the model for φ and habitat covariates436

at the end of the movement step in the model for w, resulting in a more general formulation:437

w(x(s, t+ ∆t);β(∆t))φ(s, s′; γ(∆t, x(s′, t))); we provide an example in Supplentary Appendix B.438
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Models for φ(s, s′; γ(∆t))439

Step-selection approaches build on an early idea by Arthur, Manly, McDonald, & Garner (1996)440

to model time-dependent availability via a circular buffer with radius R centered on the previous441

location. Rhodes et al. (2015) showed that this model is equivalent to assuming:442

φ(s, s′; γ(∆t)) =


1

πR2 , if ||s− s′|| ≤ R

0, otherwise
(14)

where ||s− s′|| is the Euclidean distance between locations s and s′, referred to as the step length.443

Rhodes et al. (2015) also demonstrated that circular buffers imply that individuals are more444

likely to move large distances than short distances since there is more area, and thus probability,445

associated with outer rings of the circle. Instead, they suggested using an exponential distribution446

to accommodate right-skewed step-length distributions and a tendency for animals to make shorter447

rather than longer movements:448

φ(s, s′; γ(∆t)) = λ exp(−λ||s− s′||)
2π||s− s′||

(15)

Rather than specify a model directly in terms of φ(s, s′; γ(∆t)), it is more common to see movement449

kernels specified in terms of the distribution of step lengths, d = ||s− s′||, and turn angles (changes450

in direction from the previous bearing), θ. In the sections that follow, we will let g(d; γd(∆t))451

and f(θ; γθ(∆t)) represent step-length and turn-angle distributions, respectively. Step-selection452

analyses frequently use either an exponential or gamma distribution for g(d; γd(∆t)). Turn angles453

may be assumed to be uniformly distributed as in Arthur et al. (1996) and Rhodes et al. (2015).454

Alternatively, circular distributions, such as the von Mises distribution or wrapped Cauchy or455

Weibull distributions, allow for a mode at 0 and can thus accommodate correlated movements (i.e.,456

sequential steps are assumed, on average, to follow in the same direction as the previous step).457

Although step-length and turn-angle distributions are typically assumed to be independent, animals458

commonly exhibit a mix of of temporally persistent movement behaviors, ranging between high-459

displacement movements (e.g., when traveling between habitat patches, migrating, or dispersing)460
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and low-displacement movements (e.g., during foraging or resting bouts). If positional data are461

collected more frequently than the occurrence of behavioral switches, we might expect a negative cross-462

correlation between step lengths and turn angles (moving far is likely to coincide with moving straight)463

and a positive auto-correlation between the current and previous step lengths and turn angles.464

Moreover, as implied by the more flexible formulation, w(x(s, t+ ∆T );β(∆t))φ(s, s′; γ(∆t, x(s′, t))),465

both step-length and turn-angle distribution may shift as a function of spatial and/or temporal466

covariates such as habitat permeability (e.g., elevation ruggedness, snow depth, or vegetation467

density), time of day, season, and predation risk (Avgar, Mosser, Brown, & Fryxell, 2013; Avgar et468

al., 2016). Thus, although φ is a “selection-independent” movement kernel, it may still depend on469

environmental or temporal covariates, and hence, may vary through space and time, resulting in470

both auto and cross correlations in step attributes.471

Cross-correlation between step lengths and turn angles is difficult to model with common statistical472

distributions, but could be accommodated using copulae (Durante & Sempi, 2010). Alternatively,473

one could resample (i.e., bootstrap) step length and turn angle pairs, (dt, θt), to preserve any474

correlation that is present in the data (Fortin et al., 2005). Although we generally find the bootstrap475

appealing (Fieberg et al., 2020), it has limitations in this context. In particular, the observed476

distribution of step lengths and turn angles will reflect both inherent movement characteristics of477

the species (captured by φ) as well as habitat selection (captured by w). Using the observed steps as478

a non-parametric model for φ without adjustment for the effect of w can result in biased estimates479

of β (Forester, Im, & Rathouz, 2009). We will return to this point in the next section. As mentioned480

previously (see Statistical Independence), and regardless of the source of correlation, it may481

be preferable to calculate robust SEs by treating individuals as the relevant sampling unit when482

performing population-level inference (e.g., Prima, Duchesne, & Fortin, 2017). Lastly, cross- and483

auto-correlations in step lengths and turn angles, as well as their dependencies on various temporal484

or environmental characteristics, could be modeled parametrically using an integrated step-selection485

function (Avgar et al., 2016). To do so, we need to include appropriate statistical interactions (e.g.,486

between concurrent and previous step lengths/turn angles and between these step-attributes and487

environmental or temporal covariates). We discuss this process further below, and provide examples488

in the Supplementary Appendix B. See also Prokopenko, Boyce, & Avgar (2017), Scrafford, Avgar,489
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Heeres, & Boyce (2018), and Dickie, McNay, Sutherland, Cody, & Avgar (2020).490

Estimation of Movement and Habitat-Selection Parameters491

Although it is possible to simultaneously estimate movement (γ) and habitat selection (β) parameters492

using maximum likelihood (e.g., Rhodes et al., 2015) or Bayesian methods (e.g., Johnson et al.,493

2008), this is rarely done in practice as it would require custom-written code. Instead, it is common494

to use the following approach:495

1. Estimate or approximate φ(s, s′; γ(∆t)) using observed step lengths and turn angles, giving496

φ̂(s, s′; γ̂(∆t)).497

2. Generate time-dependent available locations by simulating potential movements from the498

previously observed location, u(t, s′). Similar to applications of RSFs, it is up to the user to499

decide how many available locations to sample for each used location, and, due to similar500

considerations (properly approximating the availability domain: a(s, t+ ∆t) = φ(s, s′; γ(∆t)),501

the more points the merrier.502

3. Estimate β using conditional logistic regression, with strata formed by combining time-503

dependent used and available locations.504

If we knew φ(s, s′, γ(∆t)) and could simulate directly from it (skipping step 1), then this approach505

would provide unbiased estimates of β (Forester et al., 2009). However, as mentioned in the previous506

section, estimating φ(s, s′; γ(∆t)) from observed steps without adjusting for w(x(s);β(∆t)) can lead507

to biased estimates of γ and β.508

Forester et al. (2009) considered the case where the step-length distribution, g(d, γd), is given by509

an exponential distribution with unknown parameter, λ. They showed that estimating λ directly510

from the observed distribution of step lengths (without adjusting for the effect of w(x(s);β)), and511

then proceeding with steps 2 and 3 results in a biased estimators of β, but that the bias (if g(d, γd)512

is given by an exponential distribution) is eliminated if log(dt) is included as a predictor in the513

model. Avgar et al. (2016) further showed that the coefficient associated with log(dt) could be514

used to modify λ̂, leading to an unbiased estimator of λ and thus, g(d, γd). In addition, they515

showed how similar adjustments could be used to obtain unbiased estimators of step-length (γd)516

and habitat-selection (β) parameters when the distribution of step lengths is given by a gamma,517
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half-normal, or log-normal distribution. Similarly, Duchesne, Fortin, & Rivest (2015) showed that518

including cos(θ) as a predictor can lead to unbiased estimators of turn angle parameters (γθ) when519

the distribution of turn angles follows a von Mises distribution. These adjustments are available520

in the amt package for the exponential, gamma, and von Mises distributions (Signer et al., 2019).521

Avgar et al. (2016) coined the term integrated step-selection analysis to emphasize that these522

results provide new opportunities to model both movement and habitat selection via tried and true523

statistical software for fitting conditional logistic regression models.524

In Supplementary Appendix B, we provide a “How to” guide for implementing an integrated525

step-selection analysis using the amt package in R (R Core Team, 2019; Signer et al., 2019).526

Conducting an integrated step-selection analysis requires, in addition to the 3 steps outlined in527

this section, that we add a fourth step that re-estimates the movement parameters in φ(s, s′; γ(∆t))528

using regression coefficients associated with movement characteristics (e.g., log(dt), cos(θ)). This529

last step adjusts the parameters in φ(s, s′; γ(∆t)) to account for the effect of habitat selection530

when estimating the movement kernel (Avgar et al., 2016); this step is unnecessary if no inference531

about movement is being made. Importantly, interactions may be included between movement532

characteristics (e.g., log(dt), cos(θ)) and environmental covariates, x(s′, t), to allow the movement533

kernel to depend on the environment. When interactions are included, step 4 results in a movement534

kernel, φ(s, s′; γ(∆t, x(s′, t))), that depends on the habitat the animal is in at the start of the535

movement step (Fig. 4).536

Interpretation of Parameters in an Integrated Step-Selection Analysis537

The habitat-selection parameters can be interpreted in the same way as parameters in resource-538

selection functions (i.e., as spatial hazards, assuming locations are equally available and differing539

in terms of a single habitat covariate). Hence, the ln(RSS) expressions in Avgar et al. (2017),540

and the log_rss function in amt, are suitable for calculating and interpreting the effects of the541

various habitat covariates. However, it is important to recognize that the used and available542

distributions in step-selection analyses are dynamic and non-uniform in space. In particular, they543

depend an individual’s current location and movement tendencies (as well as the observed time scale544

determined by ∆t; Barnett & Moorcroft, 2008; Signer, Fieberg, & Avgar, 2017). Thus, questions545
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that require integrating hazards over space (e.g., eqn. (10)) are more difficult to address, but may be546

computed using simulation modeling (Signer et al., 2017), by solving the master equation (formed by547

multiplying the right hand side of eqn. (13) by u(s′, t) and then integrating over G with respect to s′)548

for its steady state (Potts et al., 2014a, 2014b), or in some cases, by translating the fitted model into a549

partial differential equation model with analytical steady-state distribution (Potts & Schlägel, 2020).550

We also note that alternative modeling frameworks exist with parameters that directly describe551

long-term relative risk (e.g., Michelot et al., 2019b, 2019a; Michelot, Blackwell, Chamaillé-Jammes,552

& Matthiopoulos, 2020), but these methods are more computationally challenging to implement,553

and therefore, less likely to be widely used in applied settings. The amt package has a basic capacity554

to simulate the utilization distribution based on a parameterized integrated step-selection function555

(Signer et al., 2017), and we expect this approach to become more flexible in the near future.556

Using an integrated step-selection approach (e.g., as in Fig. (???)(fig:movekern)), it is also possible557

to draw ecological inference using the selection-free movement kernel. For example, the fitted558

step-length and turn-angle distributions can tell us how much more likely an animal is to take large559

versus small steps or to turn left or right relative to moving straight. We can also calculate moments560

of these distributions under different environmental conditions, which can be informative when our561

models include interactions between movement characteristics and environmental predictors. For562

example, we could calculate the expected selection-free displacement rates (and/or directionality)563

as function of local snow depth (that is, if snow depth was included in our model as an interaction564

with step length). To calculate these expected values we must first adjust the ‘tentative’ parameters565

used to sample available steps (e.g., if we use a gamma distribution, the tentative shape and scale566

parameters) using the coefficient estimates obtained for step length (and/or its transformation) and567

cos(turn angle). The details of how to carry on these adjustments are provided in Supplementary568

Appendix C and in Avgar et al. (2016). Once the selection-free movement parameters are obtained,569

one can use them to calculate various aspects of the (theoretical) distributions of step lengths and570

turn angles, such as the mean, the median, or the 95% confidence bounds (see Supplementary571

Appendix B for examples).572
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Discussion573

We have highlighted how connecting resource-selection functions to IPP models and weighted574

distribution theory helps with interpreting parameters in resource-selection functions using simple575

examples. We have also reviewed step-selection analyses and demonstrated how to estimate576

movement and habitat-selection parameters when conducting an integrated step-selection analysis577

using the amt package. So far, we have focused on interpreting results when analyzing data from a578

single individual. We end with a brief discussion addressing statistical dependencies, particularly579

when analyzing data from multiple individuals, along with issues related to model transferability580

and parameter sensitivity to changes in habitat availability and species population density.581

Statistical Dependencies582

Earlier, we highlighted the importance of statistical independence as it applies to individual locations583

when estimating resource-selection functions. We also noted that step-selection analyses typically584

assume step lengths and turn angles are independent of each other and also over time, though it is585

possible to account for these correlations using appropriate interactions (e.g., between step length586

at time t and time t − 1, step length and turn angle both at time t). It would be nice to have587

multivariate distributions available that are capable of describing correlated step lengths and turn588

angles and any inherent autocorrelation. It is plausible, however, that models that allow movement589

parameters to vary by habitat type, using interactions between step length, turn angle, and habitat590

covariates, will be able to account for much of the autocorrelation and cross-correlation (between591

step lengths and turn angles) present in the data. Similarly, autocorrelation and cross-correlations592

may be accommodated by models that include a (possibly latent) behavioral state, with movement593

and habitat-selection parameters that are state-dependent (Nicosia, Duchesne, Rivest, Fortin, &594

others, 2017; Suraci et al., 2019).595

In addition to cross-correlation between step lengths and turn angles and serial dependencies,596

individuals living in different environments may exhibit different habitat-selection patterns and thus,597

repeated observations on the same set of individuals will induce further statistical dependencies.598

A simple strategy for dealing with repeated measures when individuals can be assumed to be599

independent is to fit models to individual animals and then treat the resulting coefficients as data600
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when inferring population-level patterns (Murtaugh, 2007; Fieberg et al., 2010). For example,601

sample means of the regression coefficients can be used to characterize average habitat-selection602

parameters. Estimating among-animal variability is trickier due to sampling error; naively ignoring603

sampling error will lead to a positive bias in estimates of among-animal variability, but more formal604

two-step methods can address this issue (Craiu, Duchesne, Fortin, & Baillargeon, 2011, 2016; Dickie605

et al., 2020). Alternatively, generalized linear mixed models with random coefficients can be used to606

quantify among-animal variability in resource-selection and step-selection analyses (Muff, Signer, &607

Fieberg, 2020).608

Although it is possible to conduct integrated step-selection analyses with hierarchical models609

containing random effects, we have much to learn about how these approaches perform in practice.610

For example, Muff et al. (2020) found that parameters describing among-animal variability in611

habitat-selection parameters were biased low when movement characteristics were included in612

the model. Mixed-effect models with random coefficients are also “parameter hungry”, requiring613

p(p+ 1)/2 variance and covariance parameters to be estimated, where p is the number of random614

coefficients. Models that allow all coefficients to be animal-specific and to covary are thus likely615

to be computationally challenging to fit and problematic for small data sets containing only a few616

individuals. For this reason, Muff et al. (2020) assumed coefficients did not covary in their applied617

examples. In the context of our fisher analysis, this equates to assuming that knowing an individual’s618

coefficient for popden tells us nothing about that animal’s parameters for elevation or landuseC619

variables. For categorical variables, it is natural to expect parameters to have a negative covariance620

(since, for example, spending more time in forest must come at the expense of spending less time621

in other landuse categories). Research evaluating the performance of mixed-effect step-selection622

analyses under various data-generating scenarios would be helpful for evaluating robustness to623

assumption violations (e.g., those regarding the distribution of random parameters).624

Sensitivity of Selection Coefficients to Species Population Density and Habitat625

Availability626

Before concluding, we feel it is important to briefly discuss the oft observed pattern of density627

and availability dependence in habitat-selection inference (Mysterud & Ims, 1998; Matthiopoulos,628
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Hebblewhite, Aarts, & Fieberg, 2011; Matthiopoulos et al., 2015). Density-dependent inference629

may be observed when the same analysis is applied to individuals or populations of the same630

species, under similar environmental conditions, but at different population densities. Availability631

dependence (also referred to as a “functional response”) may be observed when the same analysis is632

applied to individuals or populations of the same species, which experience different landscape-scale633

resource or habitat availabilities. For example, van Beest, McLoughlin, Mysterud, & Brook (2016),634

found that individual elk display availability-dependent resource-selection patterns (switching from635

selection to avoidance of certain habitats as function of the availability of these habitats within636

their home range), but that the strength of this functional response depended on elk population637

density. Such context dependencies are in fact so common that we do not know of a single instance638

where researchers were looking for them and failed to find them. Recently, Avgar, Betini, & Fryxell639

(2020) showed that such context dependencies in habitat-selection patterns are expected to emerge640

even under the simplest theoretical model of an Ideal Free Distribution (Fretwell, 1969). Thus,641

habitat-selection models often have poor predictive capacity when transferred across different study642

areas, or even within the same area over time (e.g., Torres et al., 2015). Yet, these differences may643

also be exploited; modeling frameworks that leverage data from multiple environments and across a644

range of population densities can potentially increase predictive capabilities (Matthiopoulos, Field,645

& MacLeod, 2019). As with any other attempt to model complex ecological data, critical evaluation646

of model performance for both within and out-of-sample data is essential (Fieberg, Forester, et al.,647

2018).648
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Tables873

Table 1: Regression coefficients (SE) in fitted resource-selection
functions fit to data from Lupe the fisher. Models 1 and 3 use
forest as the reference level, Model 2 uses wet as the reference
level. Model 3 includes interactions between elevation and
landcover classes.

Model 1 Model 2 Model 3

(Intercept) -13.168 -12.918 -13.171

(0.019) (0.107) (0.020)

elevation 0.303 0.303 0.313

(0.017) (0.017) (0.017)

popden -0.183 -0.183 -0.186

(0.021) (0.021) (0.021)

landuseCgrass -1.477 -1.471

(0.278) (0.278)

landuseCwet 0.250 0.183

(0.108) (0.116)

landuseC1forest -0.250

(0.108)

landuseC1grass -1.727

(0.297)

elevation:landuseCgrass 0.112

(0.380)

elevation:landuseCwet -0.498

(0.127)
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Figures874

Figure 1: Distribution of used and available locations among different landscape cover classes for a
fisher in upstate New York (LaPoint et al., 2013a, 2013b).
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Figure 2: Estimated parameters in fitted resource-selection functions using increasing numbers of
available points. Each dot represents an estimate from fitting a logistic regression model to 3004
GPS telemetry locations combined with a random sample of available points, with sample size given
by the x-axis (where 1 means 3004 available points and 100 means 300,400 available points).

38

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 26, 2020. ; https://doi.org/10.1101/2020.11.12.379834doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.12.379834
http://creativecommons.org/licenses/by-nc/4.0/


Figure 3: Distribution of elevation at used and available locations within each of 3 landcover types.
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Figure 4: Step-length and turn-angle distributions from an integrated step-selection analysis
applied to Lupe’s location data (see Supplementary Appendix B). The conditional logistic
regression model included interactions between movement characteristics (step length, log step
length, and cosine of of the turn angle) and the landuse category Lupe was in at the start of the
movement step. We see that Lupe tends to take larger, more directed steps when in grass and
slower and more tortuous steps in wet habitat.
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Supporting Information875

Supplementary Appendix A: AppA_RSF_examples.html, a tutorial demonstrating how to fit876

and interpret parameters in resource-selection functions.877

Supplementary Appendix B: AppB_SSF_examples.html, a tutorial demonstrating how to fit878

and interpret parameters and output when conducting an integrated step-selection analysis.879

Supplementary Appendix C: AppC_iSSA_movement.html, a description of methods used to880

adjust ‘tentative’ parameters in step-length and turn-angle distributions for the effects of habitat881

selection.882
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