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Abstract 1 

In genomics-scale datasets, loci are closely packed within chromosomes and hence provide 2 

correlated information.  Averaging across loci as if they were independent creates 3 

pseudoreplication, which reduces the effective degrees of freedom (df’) compared to the nominal 4 

degrees of freedom, df.  This issue has been known for some time, but consequences have not 5 

been systematically quantified across the entire genome.  Here we measured pseudoreplication 6 

(quantified by the ratio df’/df) for a common metric of genetic differentiation (FST) and a 7 

common measure of linkage disequilibrium between pairs of loci (r2).  Based on data simulated 8 

using models (SLiM and msprime) that allow efficient forward-in-time and coalescent 9 

simulations while precisely controlling population pedigrees, we estimated df’ and df’/df by 10 

measuring the rate of decline in the variance of mean FST and mean r2 as more loci were used.  11 

For both indices, df’ increases with Ne and genome size, as expected.  However, even for large 12 

Ne and large genomes, df’ for mean r2 plateaus after a few thousand loci, and a variance 13 

components analysis indicates that the limiting factor is uncertainty associated with sampling 14 

individuals rather than genes.  Pseudoreplication is less extreme for FST, but df’/df  ≤0.01 can 15 

occur in datasets using tens of thousands of loci.  Commonly-used block-jackknife methods 16 

consistently overestimated var(FST), producing very conservative confidence intervals.  17 

Predicting df’ based on our modeling results as a function of Ne, L, S, and genome size provides 18 

a robust way to quantify precision associated with genomics-scale datasets. 19 

 20 

Keywords:  degrees of freedom; linkage disequilibrium; FST; Ne; genome size; jackknife 21 

variance; simulations  22 
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1 | INTRODUCTION 23 

 24 

It is now relatively easy to generate data at tens or hundreds of thousands of single-25 

nucleotide polymorphism (SNP) markers for non-model species, even in the absence of a 26 

reference genome (da Fonseca et al. 2016; Van Wyngaarden et al. 2017; Aguirre et al. 2019; 27 

Choquet et al. 2019; Minias et al. 2019).  This opens up vast new opportunities for researchers 28 

but also creates a host of analytical challenges, including ascertainment bias (Rosenblum and 29 

Novembre 2007; Albrechtsen et al. 2010), phylogenetic inference (Leaché et al. 2015), 30 

genotyping errors and missing data (Gautier et al. 2013; Graffelman et al. 2015; Huang and 31 

Knowles 2014), and effects of selection (Foll and Gaggiotti 2008; Wolf and Ellegren 2017). 32 

One topic that has not received sufficient attention with respect to genomics data for non-33 

model species is pseudoreplication—lack of independence among datapoints that reduces the 34 

total information content.  Statistical inference in biology is challenging because biological 35 

systems are complex, variable, and subject to measurement and sampling errors.  Replication is 36 

generally necessary to ensure that apparently-interesting results are not due to small sample sizes 37 

and chance.  But true replication (which produces multiple independent datapoints) is difficult to 38 

achieve, and flaws of experimental design and/or statistical inference that lead to 39 

pseudoreplication and overly-optimistic estimates of statistical significance have been found to 40 

be widespread in ecology and evolutionary biology (Hurlbert 1984; Ramage et al. 2013; Aarts et 41 

al. 2014; Colegrave and Ruxton 2018; Lin et al. 2019). 42 

In the present context, we are interested in use of genetic data to draw inferences about 43 

key genetic parameters in real populations of non-model species.  For decades, most studies were 44 

limited to a few dozen genetic markers, and it was routinely assumed that each marker was 45 

independent—or if not, that departures from independence were small enough to be safely 46 

ignored.  This assumption is no longer tenable in the age of genomics.  Most species have at 47 

most a few dozen chromosomes (Table 1), so in contemporary datasets a typical chromosome 48 

contains thousands of markers—a situation which guarantees that pseudoreplication occurs. 49 

  Here we focus on two widely-used genetic metrics:  FST, a measure of differentiation 50 

among populations; and r2, a measure of linkage disequilibrium (LD) at pairs of loci.  Inter-locus 51 

sampling variances for both of these metrics are large, so a high degree of replication is required 52 

to obtain reliable estimates of the mean.  Let 𝐹̂𝑆𝑇(𝐿) be the estimate of mean FST based on data for 53 

L diallelic loci, and let 𝑟̂2
(𝐿) be the two-locus analogue for LD based on n = L(L-1)/2 pairs of L 54 

loci, where the ‘^’ indicates an estimate.   In statistical theory, if one has k independent 55 

observations of a random variable x with standard deviation σ, the standard error of the estimate 56 

of mean(x) is 𝜎𝑥̅ = 𝜎/√𝑘.  The genetic metrics of interest here also have the property that their 57 

variances are proportional to 1/k, assuming the data points are independent (Lewontin and 58 

Krakauer 1973; Hill 1981).   59 

In population genetic studies, two general sources of replication are available:  one can 60 

sample multiple individuals from each population, and one can sample multiple loci from each 61 

individual.  Often the number of individuals that can be sampled is limited by population size or 62 

logistical constraints, in which case the only feasible method to increase precision is by 63 

increasing the number of loci.  Easy access to genomics-scale datasets has made it possible to 64 

vastly increase the number of loci sampled per individual—but to what extent do these genes 65 

provide independent information about population-level parameters of interest?   66 

We encounter two kinds of pseudoreplication we need to be concerned with.  First, if loci 67 

do not freely recombine, information they provide is correlated, so (for example) var(𝐹̂𝑆𝑇(𝐿)) does 68 
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not decline as fast with addition of more loci as would be the case if the loci were independent.  69 

The total information content of a dataset is constrained by the amount of recombination.  This 70 

constraint means, for example, that even with many millions of SNPs available in human genetic 71 

datasets, it is not possible to confidently resolve distant familial relationships with genetic data 72 

alone (Thompson 2013).  Pseudoreplication due to lack of independent assortment applies both 73 

to 𝐹̂𝑆𝑇 and 𝑟̂2.  Analyses of LD also generate a second kind of pseudoreplication, caused by 74 

overlapping pairs of loci.  The approximately L2/2 different pairs of loci are not independent 75 

because each locus occurs in L-1 pairwise comparisons. 76 

Problems related to this lack of independence have not been quantified in any systematic 77 

way for non-model species.  For such species, a typical experimental design involves orders of 78 

magnitude more SNP loci than individuals, and if any detailed genomic mapping information is 79 

available, loci typically can only be placed on short genomic scaffolds rather than full 80 

chromosomes.  In this study we investigate how much precision is reduced by pseudoreplication, 81 

compared to what it would be if the assumption of independence were completely satisfied.  82 

Assuming one has data for L diallelic (SNP) loci, the number of datapoints (and the nominal 83 

degrees of freedom, df, associated with the overall estimate) is L for FST and n ≈ L2/2 for the LD 84 

analyses.  Pseudoreplication causes the actual (effective) df’ (L’ or n’) to be less than the total 85 

number of datapoints (Cox 1984; Giesbrecht 2006).  The key question thus can be framed as 86 

follows:  How much smaller is the effective df than the nominal df, and how does the df’/df ratio 87 

depend on aspects of experimental design (number of individuals (S) and loci sampled) and 88 

uncontrollable parameters of the population(s) of interest (genome size or number of 89 

chromosomes, C, and effective population size, Ne)?  The ability to estimate L’ or n’ would allow 90 

an unbiased evaluation of precision and facilitate placing accurate confidence bounds on 91 

estimates of key population genetic parameters. 92 

For species (including humans) with reference genomes and linkage map, these 93 

dependencies have been addressed to some extent, particularly with respect to multiple testing 94 

(Nyholt 2004; Pe’er et al., 2008; Galwey 2009).  A popular approach is to use a weighted, block-95 

jackknife that breaks up the genome into blocks of contiguous loci and leaves each block out in 96 

jackknife fashion (Busing et al. 1999).  LD pruning (Purcell et al. 2007)—excluding loci to 97 

reduce LD—can also be used to generate sets of loci that act more independently and thus reduce 98 

prereplication.  These approaches, however, require detailed mapping information, and even so 99 

they only deal with correlations of the original variables.  To evaluate the second type of 100 

pseudoreplication noted above, it is necessary to consider second-order correlations—that is, the 101 

degree to which r2 (locus 1 × locus 2) is correlated with r2 (locus 1 × locus 3) and r2 (locus 2 × 102 

locus 3). In theory n’ could be calculated this way, but it would require one to specify the 103 

relevant covariance matrix, and with ≈L2/2 pairwise correlations of loci the covariance matrix of 104 

these correlations has ≈L4/8 elements.  For a dataset with 1.5 million SNPs, calculating n’ 105 

therefore would require one to specify over 6.3×1023 elements in the covariance matrix—more 106 

than Avogadro’s number!  Not surprisingly, we are not aware of any attempts to do this. 107 

The objectives of this paper are to develop model-based approximations of df’, and to 108 

provide general guidance – given known or measurable covariates (C, L, S, Ne).  Our approach to 109 

quantifying the degree of pseudoreplication involves simulating a large number of replicate 110 

populations, and for each replicate we calculate mean values for both of the genetic indices (𝑟̂2
 , 111 

𝐹̂𝑆𝑇).  Observed variances of the multilocus metrics across replicates allow us to calculate the df’ 112 

associated with samples of individuals and gene loci.  This process was repeated for several 113 

evolutionary scenarios involving different combinations of C and Ne.  114 
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We have the following general expectations: 115 

1) As more loci are packed into a fixed number of chromosomes, the number of loci per 116 

chromosome increases, minimum distance between a new locus and existing loci shrinks 117 

(Figure S1), and the marginal increase in information content provided by each new locus 118 

declines. Therefore, we expect that as the ratio L/C increases, pseudoreplication will 119 

increase and the ratio of effective to nominal df will decrease for both metrics.  In 120 

addition, the rate of decay of LD with distance between loci increases with effective 121 

population size (Figure S2).  So, we expect that, for a given L/C ratio, n’ will be smaller 122 

for populations with smaller Ne.  These effects, however, have not been quantified across 123 

the entire genome. 124 

2) It seems intuitive that the magnitude of LD increases with the number of loci, but that is 125 

not actually the case.  Each new locus increases opportunities for that locus to be in LD 126 

with existing loci, but this is balanced by new pairwise comparisons with loci on different 127 

chromosomes.  As a result, the probability that any two randomly-chosen loci will be in 128 

any particular LD association is independent of the number of loci, but it does depend on 129 

genome size and Ne (Waples et al. 2016).  Therefore, we expect that the first type of 130 

pseudoreplication for LD analyses will be inversely correlated with both Ne and C.  The 131 

second type of pseudoreplication arising from LD analyses—that caused by overlapping 132 

pairs of the same loci—has received little study.  However, we note that, of the ~L2/2 133 

pairwise comparisons of L loci, only L/2 are completely independent (non-overlapping), 134 

so the proportion of independent comparisons is 1/L.  Hence, we expect that this type of 135 

pseudoreplication will increase with the number of loci. 136 

We hope to find one or both of the following: 137 

a. Patterns in empirical variances across simulated datasets that allow us to provide 138 

general guidance for users interested in predicting df’, based on measurable or 139 

estimable covariates (C, L, S, Ne). 140 

b. Existing jackknife methods prove to be reliable at estimating precision for a given 141 

dataset. 142 

 143 

2 | METHODS 144 

 145 

Below we provide an overview of methods used; for more details, see Supporting Information.  146 

Table 2 summarizes notation. 147 

 148 

2.1 | Conceptual Framework 149 

 Our focus is on actual populations, each of which has a single, realized population 150 

pedigree (Wakeley et al. 2012; Ralph 2019).  To mimic sampling of individuals and genes from 151 

real populations, we combine efficient coalescent and forward simulation programs (SLiM, 152 

Messer 2013; and msprime, Kelleher et al. 2016) that allow control over multigenerational 153 

pedigrees in replicate populations (Haller et al. 2019).  Our experimental design explicitly 154 

models two major sources of uncertainty in estimating population-level parameters:  sampling of 155 

individuals and sampling of genes.  Both processes are important when evaluating uncertainty 156 

around parameter estimates. If replication only occurs across genes, estimates will converge on 157 

values determined by the pedigree of the observed individuals (Waples and Faulkner 2009; 158 

Wakeley et al. 2012; King et al. 2018).  In general, however, one wants to draw inference about 159 

the entire population, and uncertainty related to sampling individuals from the population cannot 160 
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be eliminated by intensive replication across genes.  161 

 162 

2.2 | Modeled Scenarios and Simulations 163 

 For 16 different evolutionary scenarios (combinations of effective size 164 

[Ne=50,200,800,3200] and number of chromosomes [C=1,4,16,64]), we simulated four separate 165 

ancestral populations of N=Ne diploid individuals for 10Ne generations under Wright-Fisher 166 

(WF) reproduction and ensured that each ancestral population fully coalesced.  The simulations 167 

modeled the process of recombination and mutation in realistic-sized genomes with distinct 168 

chromosomes. Genomes were simulated with varying numbers of chromosomes [1, 4, 16, 64], 169 

each of which was 50 Mb (5x107 bp) long, with a recombination rate of 10-8 per bp per 170 

generation. Each ancestral population then split into four daughter populations of size Ne, which 171 

evolved in isolation for enough generations that expected FST  ≈0.05-0.1, common values for 172 

natural populations of many species.  From this point, the models differed slightly for analyses of 173 

FST and LD.     174 

In the LD analyses, for each of the 4x4=16 population pedigrees, we created eight non-175 

overlapping sets of loci by adding mutations to gene trees present in the population pedigree 176 

(Figure 1).  Gene trees reflect the evolutionary history of genes and haplotypes back in time.  For 177 

each scenario, the 4x4x8 hierarchical design produced 128 replicate populations with up to 75K 178 

diallelic loci (up to 100K loci for Ne=3200).  From each replicate population, we took four 179 

random subsamples of S=25,50,100 diploid individuals (only S≤50 for Ne=50), and data for each 180 

subsample were analyzed for L=100-75,000 loci.  Except for Ne=3200, we also took exhaustive 181 

samples of the population (S=Ne).  This experimental design allowed us to calculate two separate 182 

variance components: V1 (same individuals, different loci) and V2 (same loci, different but 183 

potentially overlapping samples of individuals) (Table 3).  Data from cells on the diagonal 184 

(different individuals and different loci) were used to calculate df’ for the LD analyses (n’), as 185 

described below.   186 

In the FST analyses, for each of the four ancestral populations, the four daughter 187 

populations shown in Figure1 allowed 6 pairwise comparisons among populations, for a total of 188 

24 two-population pedigrees (Figure S3).  Six mutational replicates of 200K loci were created 189 

for each pedigree, and eight samples for each of several different sizes were taken from each 190 

mutational replicate. 191 

The resulting distributions of minor allele frequency (MAF) followed the familiar U-192 

shaped pattern expected at mutation-drift equilibrium (Figure S4). In addition to the 193 

SLiM/msprime simulations that organize the genome into chromosomes, for LD we also modeled 194 

scenarios with unlinked loci and infinite Ne to provide insights into asymptotic behavior.  195 

 196 

2.3 | Genetic Indices 197 

For each replicate in each evolutionary scenario, we calculated 𝐹̂𝑆𝑇(𝐿) and 𝑟̂2
(𝐿) across 198 

variable numbers of loci or locus pairs.  LD analyses were conducted using both all pairs of loci, 199 

and only pairs on different chromosomes.  For each pair, the sample estimate of the squared 200 

correlation coefficient (𝑟̂2) was computed using the Pearson product-moment correlation of 201 

diploid genotypes.  After applying the sample-size adjustments implemented in LDNE (Waples 202 

and Do 2008), mean 𝑟̂2 can be used to estimate Ne.  Because this method assumes all loci are 203 

unlinked, use of all locus pairs leads to a predictable pattern of downward bias in 𝑁̂𝑒 that is 204 

inversely proportional to log(C) (Waples et al. 2016), whereas 𝑁̂𝑒 is unbiased when computed 205 
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only using pairs of loci on different chromosomes (Figure S5).  To reduce effects of rare alleles, 206 

within each sample we omitted loci with two or fewer copies of the minor allele. 207 

We used two methods for estimating the standardized variance of allele frequency among 208 

populations, FST.  Nei’s (1973) gene diversity method calculates GST = (HT-Hs)/HT, where Hs is 209 

the expected within-population heterozygosity (averaged across both populations) and HT is 210 

expected total heterozygosity, based on mean allele frequencies across both populations, without 211 

an adjustment for sample size.  Calculated this way, and with just two alleles at each locus, GST is 212 

identical to Wright’s (1951) FST (Nei and Chakravarti 1977); we refer to this estimator as 𝐹̂𝑆𝑇
𝑁𝑒𝑖.   213 

Another widely-used measure of population differentiation is the coancestry coefficient, θ 214 

(Cockerham 1969; Reynolds et al. 1983); the relationship between the two parameters is given 215 

by (Cockerham and Weir 1987) 216 

 𝜃 = 
𝑠𝐺𝑆𝑇

𝐺𝑆𝑇+𝑠−1
 ,          (1) 217 

where s is the number of subpopulations.  For s=2 (as considered here) this reduces to 218 

θ=2GST/(GST+1), which is close to 2GST if GST is small.  We considered Hudson et al.’s (1992) 219 

estimator 𝐹̂𝑆𝑇
𝐻𝑢𝑑𝑠𝑜𝑛 = 1-HW/HB, where HW and HB are the mean numbers of allelic differences 220 

within and between populations, respectively; the formula we used was Equation 10 in Bhatia et 221 

al. (2013).  Under conditions modeled here (two populations, equal sample sizes), 𝐹̂𝑆𝑇
𝐻𝑢𝑑𝑠𝑜𝑛 is 222 

identical to Weir and Cockerham’s (1984) 𝜃, or nearly so (Bhatia et al. 2013). 223 

Because performance of multilocus F statistics is generally better when they are 224 

computed as ratios of multi-locus means rather than means of single-locus ratios (Jorde and 225 

Ryman 2007; Bhatia et al. 2013), we evaluated both methods for calculating 𝐹̂𝑆𝑇
𝑁𝑒𝑖 (𝐹̂𝑆𝑇

𝐻𝑢𝑑𝑠𝑜𝑛 226 

already is a ratio of averages).  We considered three ascertainment schemes for identifying 227 

variable loci:  1) loci variable in at least one of the two populations; 2) loci variable in the 228 

ancestral population; 3) loci with overall MAF≥0.05 in the two samples combined. 229 

 230 

2.4 | Effective Degrees of Freedom and Effective Number of Loci   231 

For analysis of population differentiation, effective df was calculated from observed 232 

variances of 𝐹̂𝑆𝑇(𝐿) using the relationship ϕF=𝑉𝑎𝑟(𝐹̂𝑆𝑇)/ 𝐸2(𝐹̂𝑆𝑇) = squared coefficient of 233 

variation of 𝐹̂𝑆𝑇 (Lewontin and Krakauer 1973).  If 𝐹̂𝑆𝑇(𝐿) is based on L independent diallelic 234 

loci, the following relationship should hold:  ϕF=2/L.  Therefore, we computed df’ from the 235 

empirical variance of 𝐹̂𝑆𝑇(𝐿) as L’=2/ϕF.  L' can be interpreted as the number of independent loci 236 

that would be expected to produce the value of ϕF observed in the data (Cox 1984; Giesbrecht 237 

2006).  The ratio L’/L therefore provides an index of how much nonindependence has increased 238 

variance of the estimator.   239 

Many commonly-used estimators of FST and related quantities (Weir and Cockerham 240 

1984; Hudson et al. 1992; Patterson et al. 2012) include adjustments for sampling individuals 241 

and/or populations, and this complicates comparisons with theoretical expectations of the 242 

variance-to-mean ratio that depend on raw FST values.  This is why, for estimating L’, we used 243 

Nei’s (1973) gene diversity method, which does not include a sample-size adjustment.  For 244 

Hudson’s estimator, we measured the rate of decline in the variance of 𝐹̂𝑆𝑇(𝐿)
𝐻𝑢𝑑𝑠𝑜𝑛 as more loci 245 

were used in the analysis, and this provided an alternative way to quantify the degree of 246 

pseudoreplication.   247 

Hill (1981) showed that the relationship ϕr =2/n also applies to 𝑟̂2
(𝐿), under the 248 

assumption that all n pairwise comparisons of L loci are independent. Accordingly, we estimated 249 
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df’ for LD analyses as n’ = 2/ϕr.  Because the effective number of pairs of loci is not a very 250 

intuitive metric, in some cases (Figures 2 and 3) we presented LD results in terms of the effective 251 

number of loci (L’), which is the number of loci that would produce the actual observed variance 252 

of 𝑟̂2
(𝐿), if all the resulting locus pairs were independent.  To a good approximation, if n’ is the 253 

effective number of locus pairs, then the effective number of loci that would produce n’ is L’ ≈ 254 

√2n’ [the exact value is 0.5+√(0.25+2n’), but this simple approximation is much more intuitive].   255 

 256 

2.5 | Model Fitting 257 

We considered a wide range of covariates [Ne, C, S, L, and (for LD) n] as predictors of 258 

df’.  To account for potential non-linearities, we also considered transformed responses of these 259 

original variables (Table S1).  Because of asymptotic relationships between df’ and the predictor 260 

variables (Figure S6), we focused inference on fitting statistical models with asymptotes, rather 261 

than using linear models. The general function we used to parameterize the models was  262 

𝑓(𝑥) =  
𝑥

[
1

𝑝𝑟+
𝑥𝑟

𝑞𝑟]

1
𝑟

 ,       (2)   263 

where parameters p, q, and r control the shape of the function. When shape parameter r=1, this 264 

function takes the form of the familiar Michaelis–Menten equation (also known in fisheries as 265 

the Beverton–Holt stock recruitment model; Beverton and Holt 1957). We considered models 266 

with both covariates and transformed functions of covariates; these latter models treated each 267 

parameter (p, q, r) as linear functions of other predictors; e.g., 𝑝 = 𝑏𝐗, where 𝐗 is a design 268 

matrix of predictors and b are estimated coefficients. All models were fit in R (R Core Team 269 

2020) using maximum likelihood. We used Akaike’s Information Criterion (AIC) to evaluate 270 

which combinations of parameters were best supported. Additional details about model fitting 271 

are in Supporting Information.  272 

  273 

2.6 | Confidence Intervals 274 

To evaluate accuracy of our estimates of df’, for selected scenarios we generated many 275 

(>1000) new samples of individuals and loci, and for each sample we calculated 𝐹̂𝑆𝑇(𝐿) or 𝑟̂2
(𝐿) 276 

averaged over data for 500–5000 SNPs (for LD) or 5000–50000 SNPs (for FST).  We calculated 277 

confidence intervals (CIs) around these means using standard statistical theory (Equations S6 and 278 

S7).  Width of the CIs was calculated two ways, using: 1) our modeled estimates of df’; 2) a 279 

published jackknife method (Busing et al. 1999 for FST, Jones et al. 2016 for 𝑁̂𝑒 based on r2). 280 

 281 

 282 

3 | RESULTS 283 

 284 

3.1 | Linkage Disequilibrium 285 

 The four different ancestral populations produced modest differences in mean r2 when 286 

averaged across all descendant populations, and within each daughter population the eight 287 

mutational replicates also produced relatively small differences in mean r2 (Figure S7).  In 288 

contrast, daughter populations descended from the same ancestral population varied substantially 289 

in the mean magnitude of LD.  This result emphasizes the importance of accounting for recent 290 

population pedigrees in assessing variability of genetic indices and shows the sensitivity of LD-291 

based estimates of Ne to recent effective population size (Waples and Faulkner 2009). 292 

 293 
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3.1.1 | Effective degrees of freedom:  Table S2 gives our estimates of both n’ and L’ for r2 for 294 

every scenario we simulated.  We expected substantial effects of genome size and Ne on n’ and 295 

L’, and those expectations were borne out (Figure 2 shows results for L’; see Figure S8 for the 296 

same results in terms of n’).  For a given number of loci, L’ increased smoothly as the number of 297 

chromosomes increased from 1 to 64, with results for C = 64 being largely indistinguishable 298 

from those for unlinked loci (Figure 2, top).  The influence of effective size was even stronger: L’ 299 

increased systematically as Ne increased from 50 to 3200 (Figure 2, bottom); however, for large 300 

numbers of loci, L’ for Ne=3200 was still substantially lower than the L’≈ L that was found for 301 

Ne=∞.  With 5000 loci, var(r2) decreased by a factor of 5 when Ne increased four-fold from 50 to 302 

200, and the variance decreased by a factor of 68 when Ne increased 64-fold to 3200 (using data 303 

from Table S2 with S=25 and C=4).  In contrast, quadrupling the number of chromosomes (from 304 

1 to 4, with Ne fixed at 50) decreased var(r2) only by 2.5×, and a 64-fold increase in C reduced 305 

var(r2) only by 10×.   306 

Relatively speaking, sample size of individuals has less influence on L’: with C=16, a 307 

four-fold increase in S reduced var(r2) by only 1.9× for Ne=200 and by only 6% for Ne=800.  308 

There was one notable exception, however: we found a qualitative difference in L’ between 309 

scenarios in which the entire population was sampled and those in which only a subset of 310 

individuals was analyzed (Figure 3).  With exhaustive sampling (S=N=Ne), L’ continues to rise, 311 

albeit increasingly slowly, as larger and larger numbers of loci are used to compute 𝑟̂2
(𝐿).  In 312 

contrast, for incomplete sampling (S<N), L’ rapidly plateaus once about 1000 loci are used, after 313 

which additional loci do little to increase precision.  As a consequence, for 10,000 SNPs L’ is 314 

only about 3% of the number of loci used (and about 3 orders of magnitude smaller than the 315 

number of pairwise comparisons; Table S2).  Furthermore, as long as the entire population is not 316 

exhaustively sampled, sample size has relatively little effect on L’ (Figure 3).  Samples of 317 

individuals were all drawn from the N=Ne individuals in the final simulated generation, and the 318 

variance associated with replicate hypergeometric samples is proportional to (N-S)/N.  A priori, 319 

therefore, we expected that L’ would increase smoothly with sample size.  Two factors likely 320 

explain the patterns actually observed. 321 

 First, larger samples produce less sampling error (Hill 1981; Waples 2006), which 322 

reduces both var(𝑟̂2) and mean(𝑟̂2).  Because n’ depends on ϕr which is the ratio of var(𝑟̂2) to 323 

[mean(𝑟̂2)]2, the net effect of increasing S is only a modest change in n’ and L’.  Second, the 324 

variance components analysis (Figure 4) shows that whereas V1 (variance among replicate sets of 325 

loci assayed on the same individuals) continues to decline rapidly with increasing numbers of 326 

loci, V2 (variance among different samples of individuals assayed for the same loci) does not 327 

decline much after about 500-1000 loci are used.  As a consequence, except for small numbers of 328 

loci, V2 dominates overall var(𝑟̂2
(𝐿)) and hence this component largely determines n’.  Although 329 

sampling a larger fraction of the population does reduce V2, the resulting variance still is much 330 

larger than V1 and still dominates n’ and L’.  Note also that the actual variance of 𝑟̂2
(𝐿) is smaller 331 

than the sum of V1 and V2 (Figure 4), which indicates that the two variance components must be 332 

negatively correlated to some extent.  In what follows, we focus on S<N, which is the most 333 

common scenario in studies of natural populations. 334 

Restricting LD analyses to pairs of loci on different chromosomes reduces the number of 335 

pairwise comparisons by the proportion 1/C, but this has little effect on n’, which is essentially 336 

the same regardless whether same-chromosome comparisons are allowed or not (Figure S9; the 337 

difference is a bit larger for small genomes, where linkage has a stronger effect).  Unless 338 

otherwise noted, all results presented are for all pairwise comparisons.   339 
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 The fact that LD results for unlinked loci approximate those for simulations with 64 340 

chromosomes, and that both scenarios show that L’ and n’ both fail to increase much after a few 341 

thousand loci are used (Figures 2 and S8, top), indicate that physical linkage is not the primary 342 

factor that reduces df’ for analyses involving LD.  The second factor relevant to two-locus 343 

analyses involves overlapping pairs of the same loci.  We expect that, if we have genotypes for 344 

four unlinked loci (w,x,y,z) and compute all six pairwise correlations, the correlation [w,x] will 345 

be independent of the correlation [y,z], but to what extent does the correlation [w,x] provide 346 

independent information to the correlation [w,y], since one locus is shared?   347 

To evaluate this factor, we simulated unlinked loci in many replicate populations and 348 

calculated r2 for each pair of loci in each replicate, across all Ne individuals in the population 349 

(see Detailed Methods in Supporting Information).  Then, across all replicates, we computed the 350 

squared correlation between r2 values that did and did not share one locus.  Results show that 351 

correlations between pairs of r2 values that did not share a locus were essentially 0, regardless 352 

how large or small Ne was (Figure S10).  This is also the result one obtains if one compares 353 

correlations between pairs of vectors of i.i.d. random variables, regardless whether the pairwise 354 

correlations being compared share one variable or not (data not shown).  However, when the data 355 

being compared are generated by a process mediated by a pedigree (as occurs during 356 

reproduction in finite populations), then the pairwise correlations are not independent when they 357 

share one variable, and the degree of non-independence is inversely related to Ne (Figure S10). 358 

 359 

3.1.2 | Confidence intervals:  For datasets with more than 1000 loci, the number of pairwise 360 

comparisons of loci is of order 106 or higher, in which case parametric CIs for 𝑁̂𝑒 that assume all 361 

datapoints are independent become vanishingly small (Figure 5).  Based on estimates of df’ 362 

obtained in this study, actual CIs for large numbers of loci are much wider, and this difference is 363 

important to understand to avoid misleading conclusions about precision. 364 

 Our results provide a basis for users to develop robust CIs for their own datasets.  The 365 

best model to predict n’ included several sets of covariates for each parameter in the Michaelis-366 

Menten asymptotic function (p,q,r). Parameter estimates, standard errors, and more details are 367 

included in Supporting Information and Tables S3 and S5.  When fit to the original data, the 368 

correlation between log(predicted n’) and log(true n’) was 0.997 (Figure S11).  When we 369 

evaluated performance of CIs for 𝑁̂𝑒 using Equation S5 based on these predicted n’ values, the 370 

fraction of 90% CIs that contained the true Ne was close to the expected 0.9 (data not shown).  371 

But a typical user will know covariate values only for the numbers of individuals and loci in their 372 

samples and will have to estimate Ne (from the genetic data, or elsewhere) and perhaps C (e.g., 373 

from a related species), and finally estimate n’ based on our modeling results.  Accounting for 374 

these additional sources of uncertainty reduced CI performance only slightly, such that overall 375 

coverage was 90% for S=100, 88% for S=50, and 87% for S=25 (Table 4).   376 

Performance of the Jones et al. (2016) jackknife method varied with sample size (Table 377 

4), which is not surprising given that this method jackknifes over individuals.  For S=100 the 378 

method produced conservative 90% CIs that included the true Ne>93% of the time, indicating 379 

that n’ was generally underestimated.  Overall coverage was close to the expected 90% for S=50 380 

but only 87% for S=25, indicating a tendency of the jackknife method to overestimate precision 381 

for small samples.  Across all scenarios, most of the jackknife CIs that did not contain the true 382 

value were too high, meaning that the lower bound was larger than true Ne, and this effect was 383 

much stronger for smaller samples. 384 

Scatterplots of estimated n’ vs mean r2 for individual datasets (Figure S12) help to 385 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted June 15, 2021. ; https://doi.org/10.1101/2020.11.12.380410doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.12.380410


 

11 

 

explain performance of Jones’s jackknife method.  First, 𝑛̂’ varied considerably across replicates, 386 

spanning one order of magnitude for S=100 and more than two orders for S=25.  Second, for all 387 

scenarios we found a strong, negative correlation between 𝑛̂’ and mean r2.  Datasets with below-388 

average mean r2 consistently were estimated to have a relatively high n’ and hence relatively 389 

narrow CIs.  Relatively small r2 translates into a relatively large estimate of Ne, around which the 390 

CI was relatively narrow.  In combination, these factors produce an excess of large 𝑁̂𝑒 estimates 391 

whose lower CI bound is larger than true Ne, and this effect is exacerbated for small S.  Because 392 

n’ is an increasing function of Ne, estimates of n’ based on modeling results in this study also 393 

show a negative correlation between 𝑛̂’ and mean r2, but the range of 𝑛̂’ for the current study was 394 

about half that of the Jones jackknife method (Figure S12). 395 

 396 

3.2 | FST 397 

An initial sensitivity analysis (Figures S13-S14 and Supporting Information) showed that 398 

Nei’s weighted 𝐹̂𝑆𝑇
𝑁𝑒𝑖 performed better than the unweighted version, and ascertainment method 3 399 

performed better than the other options.  Therefore, results that follow apply to 𝐹̂𝑆𝑇
𝑁𝑒𝑖 and 𝐹̂𝑆𝑇

𝐻𝑢𝑑𝑠𝑜𝑛 400 

with a MAF cutoff of 0.05. 401 

With no pseudoreplication, variance of 𝐹̂𝑆𝑇(𝐿) should be inversely proportional to L; the 402 

actual rate of decline in var(𝐹̂𝑆𝑇(𝐿)) as the number of SNPs increases is shown in Figure 6.  For a 403 

scenario with Ne=200, C=4, and S=25, the decline is approximately log-linear up to L≈2x103, 404 

after which point addition of more loci does little to further reduce the variance.  For a scenario 405 

with larger Ne, S, and genome size, the rate of decline in var(𝐹̂𝑆𝑇(𝐿)) does not start to plateau until 406 

the number of loci is an order of magnitude larger (Figure S15).  Notably, in both scenarios 407 

var(𝐹̂𝑆𝑇
𝐻𝑢𝑑𝑠𝑜𝑛) declines at the same rate as var(𝐹̂𝑆𝑇

𝑁𝑒𝑖) (Figure 6). 408 

For a given sample size, mean values of the Nei and Hudson estimators are perfectly 409 

correlated with a common slope and sample-size specific intercepts (Figure S16); the slopes and 410 

intercepts, however, vary with mean 𝐹̂𝑆𝑇.  This linear relationship explains why the rate of 411 

decline in var(𝐹̂𝑆𝑇
𝐻𝑢𝑑𝑠𝑜𝑛) with increasing numbers of loci is nearly identical to that for var(𝐹̂𝑆𝑇

𝑁𝑒𝑖).   412 

 413 

3.2.1 | Effective degrees of freedom:  Table S4 gives our estimates of L’ for FST for every 414 

scenario we simulated. As with LD, we found that L’ for FST depends strongly on both Ne and 415 

genome size (Figure 7).  In contrast to the two-locus results, however, we found a clear FST 416 

asymptote for L’ only for smaller values of Ne and C; for larger values, L’ was still increasing 417 

after bringing 200K loci into the analysis.  We found a moderate effect on L’ of sample size of 418 

individuals, which became more pronounced for large numbers of loci (Figure S17).   419 

For a given number of loci, L’/L was considerably higher for FST than n’/n was for LD 420 

(Figure S18).  Nevertheless, in populations with small Ne and few chromosomes that are assayed 421 

for large numbers of loci, the effective df associated with mean FST can be two orders of 422 

magnitude or more smaller than the number of SNPs.  The variance components analysis for FST 423 

(Figure S19) produced a general pattern similar to that for LD (Figure 4), with one important 424 

difference.  For the same evolutionary scenario (Ne=200, C=16, S = 50), whereas V2 for LD 425 

rapidly diverges from V1 and starts to plateau after ~500-1000 loci, the divergence comes much 426 

later for FST, and V2 does not begin to level off until 104–105 loci are included.   427 

Figure 8 provides a detailed look at variation in 𝐹̂𝑆𝑇
𝐻𝑢𝑑𝑠𝑜𝑛 across 48 samples from each of 428 

two 2-population pedigrees that produced substantially different mean 𝐹̂𝑆𝑇(𝐿) values.  Within 429 

each pedigree, for each of eight samples of individuals, variation among six replicate samples of 430 
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L loci reflects variance component V1.   431 

Our estimates of L’ for 𝐹̂𝑆𝑇(𝐿) can be used to estimate realistic variances for 𝐹̂𝑆𝑇(𝐿)
𝐻𝑢𝑑𝑠𝑜𝑛as 432 

follows:  (1) Given that L’ = 2/ϕF and ϕF = var(𝐹̂𝑆𝑇(𝐿)
𝑁𝑒𝑖 )/[mean(𝐹̂𝑆𝑇(𝐿)

𝑁𝑒𝑖 )]2, the variance of Nei’s 433 

multilocus estimator declines according to var(𝐹̂𝑆𝑇(𝐿)
𝑁𝑒𝑖 ) = var(𝐹̂𝑆𝑇(1)

𝑁𝑒𝑖 )/L’, where var(𝐹̂𝑆𝑇(1)
𝑁𝑒𝑖 ) is the 434 

variance among single-locus 𝐹̂𝑆𝑇 values and var(𝐹̂𝑆𝑇(1)
𝑁𝑒𝑖 ) = 2*[mean(𝐹̂𝑆𝑇(𝐿)

𝑁𝑒𝑖 )]2.  (2) Because 435 

var(𝐹̂𝑆𝑇(𝐿)
𝐻𝑢𝑑𝑠𝑜𝑛) declines at the same rate as var(𝐹̂𝑆𝑇(𝐿)

𝑁𝑒𝑖 ), var(𝐹̂𝑆𝑇(𝐿)
𝐻𝑢𝑑𝑠𝑜𝑛) = var(𝐹̂𝑆𝑇(1)

𝐻𝑢𝑑𝑠𝑜𝑛)/L’, where 436 

var(𝐹̂𝑆𝑇(1)
𝐻𝑢𝑑𝑠𝑜𝑛) is the variance of single-locus estimates and can be calculated from empirical data. 437 

 438 

3.2.2 | Confidence intervals:  The best model to predict L’ for FST was similar in form to that 439 

found for LD (Supporting Information).  When fit to the original data, the correlation between 440 

log(predicted L’) and log(true L’) was >0.99 (Figure S11).  CIs based on modeled estimates of 441 

var(𝐹̂𝑆𝑇(𝐿)
𝑁𝑒𝑖 ) obtained in this study contained the true value 89-95% of the time (mean 91.5%), and 442 

of those that did not, roughly equal numbers were too high and too low (Figure 9 and Table 5). 443 

Across all scenarios [Ne,C,L,S], we found three consistent patterns in block jackknife 444 

results, and each applied equally to the Nei and Hudson estimators.  (1) Block jackknife 445 

estimates of variance are positively correlated with mean 𝐹̂𝑆𝑇(𝐿)
𝑁𝑒𝑖  and mean 𝐹̂𝑆𝑇(𝐿)

𝐻𝑢𝑑𝑠𝑜𝑛 (Figure S20); 446 

(2) Virtually all block jackknife estimates exceeded the actual variances we calculated from our 447 

simulations (Figure 9 and Table 5); (3) Replicate samples generated using the same parameters 448 

produced block jackknife estimates of variance that ranged widely in magnitude (Figure S20), 449 

and this variation was greater for the larger block size (one chromosome) and smaller samples of 450 

individuals.  Because the 5Mb blocks showed less variation among replicates, we focus on those 451 

results.  Upward bias in the block jackknife estimates of variance produced overly conservative 452 

confidence intervals that almost always contained the true values of 𝐹̂𝑆𝑇(𝐿)
𝑁𝑒𝑖  and 𝐹̂𝑆𝑇(𝐿)

𝐻𝑢𝑑𝑠𝑜𝑛 (98-453 

100% coverage for 90% CIs for both Hudson and Nei estimators; Figure 9 and Tables 5 and S7).   454 

R code that allows users to predict df’ for their own data or other scenarios, for both FST 

and r2, is available at https://github.com/nwfsc-cb/pseudorep. 

. 455 

 456 

4 | DISCUSSION 457 

 458 

The common scenario considered in this paper involves a researcher who has collected 459 

data for large numbers of genetic markers in one or a few actual populations.  All real 460 

populations have a single multigeneration pedigree, and a typical goal is to use genetic methods 461 

to draw inferences about evolutionary process that helped shape that population pedigree.  Our 462 

primary interest is on quantifying uncertainty arising from two sources:  sampling genes, and 463 

sampling individuals.  We do this by simulating many replicate populations and measuring how 464 

fast variances of key genetic parameters decline as more loci are used and individuals are 465 

sampled.     466 

A substantial complication arises from the fact that the Wright-Fisher reproduction 467 

process is inherently stochastic and has many possible realizations.  As a consequence, replicate 468 

WF populations have different multi-generational pedigrees and different mean values for 469 

genetic indices like r2 and FST (Cockerham and Weir 1983; Waples and Faulkner 2009), and 470 

averaging across this sort of demographic variance would inflate our estimates of var(𝐹̂𝑆𝑇) and 471 

var(𝑟̂2) and bias results.  To avoid this complication, we used WF reproduction for the forward-472 
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in-time component of our simulations, but we took advantage of recently-developed methods 473 

(Haller et al. 2019) to generate many replicate samples of genes and individuals drawn from the 474 

same population pedigree.  This eliminated the demographic component of variance so we could 475 

focus on uncertainty associated with sampling of genes and individuals from a single population 476 

(or pair of populations).  Collectively, our results demonstrate the importance of accounting for 477 

differences between pedigrees of the population as a whole and pedigrees of sampled 478 

individuals.  The variance components analysis showed that for both r2 and FST, the primary 479 

factor limiting precision in genomics-scale datasets is uncertainty associated with sampling 480 

individuals, and this uncertainty cannot be eliminated by sampling arbitrarily large numbers of 481 

genes for the same individuals.   This is an important consideration for experimental design in 482 

genomics-scale datasets, as often it is faster, easier, and cheaper to assay large numbers of genes 483 

for a small number of individuals, rather than the reverse.   484 

Effects of pedigrees on statistical inference have been noted previously (e.g., Laurie and 485 

Weir 2003; Wakeley et al. 2012, 2016; Ralph 2019).  The standard coalescent treats every 486 

independent gene as if it were produced on a different pedigree, but in real populations all genes 487 

have to percolate through the single, fixed pedigree that captures the genealogical relationships 488 

among individuals in the current population and their ancestors, and this pedigree-dependence 489 

creates correlations among alleles at different gene loci, even across chromosomes (Bhaskar and 490 

Song 2009).  This effect is strongest for analyses that are sensitive to pedigrees from the most 491 

recent generations, such as relatedness, admixture, population differentiation, and LD (King et al. 492 

2018; Nelson et al. 2020).  Furthermore, departures from the standard coalescent model increase 493 

when sample size is more than a small fraction of effective size (Bhaskar et al. 2014), a condition 494 

commonly encountered in real-world applications. 495 

 496 

4.1 | Linkage Disequilibrium 497 

Our simulations show that, except in populations with large Ne and large genomes, once a 498 

few thousand diallelic loci are used to estimate multilocus r2, adding more loci does little to 499 

further reduce var(𝑟̂2).  As a consequence, for datasets with 104 or more SNPs, n’ can be many 500 

orders of magnitude smaller than the number of pairs of loci.  Put another way, except when the 501 

entire population was sampled, we never estimated L’ for LD to be as high as 700 effective loci, 502 

even using L = 50K SNPs for the largest finite Ne (3200) for the largest genome size (64 503 

chromosomes) that we modeled (Table S2). This in turn means that confidence intervals for 𝑁̂𝑒 504 

are much wider than they would be if all the pairwise comparisons were independent.  The 505 

modeling results find significant effects of Ne, C, S and their interactions on n’, with Ne having 506 

the strongest influence.  507 

The fact that n’ depends heavily on Ne even for non-syntenic loci indicates that physical 508 

linkage is not the major factor creating lack of independence of pairwise r2 values; instead, most 509 

pseudoreplication arises from overlapping pairs of the same loci in multiple pairwise 510 

comparisons.  Surprisingly (but conveniently), n’ differs very little whether all pairwise 511 

comparisons are used or only those on different chromosomes.  Restricting comparisons to non-512 

syntenic loci reduces the number of locus pairs (n) but simultaneously increases n’/n, and the two 513 

factors effectively offset each other. 514 

It is somewhat ironic that the degree of physical linkage has relatively little effect on 515 

pseudoreplication in analyses of LD, but this result can be understood when one considers what 516 

happens as more loci are packed into a fixed number of chromosomes.  Any new locus will 517 

inevitably be linked with many existing loci on whatever chromosome it ends up on, but for 518 
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every such pairing there are (C-1)/C new comparisons with existing loci on other chromosomes, 519 

and these dilute any effects of linkage.  Here we quantify for the first time the large amount of 520 

pseudoreplication that occurs because each locus appears in many pairwise comparisons.  This 521 

overlapping-pairs-of-loci effect is modulated through the population pedigree and is strongest 522 

when Ne is small. 523 

 Values of n’ estimated by the Jones et al. (2016) jackknife over individuals were close to, 524 

but on average slightly smaller than, overall n’ we calculated from simulated data.  For replicate 525 

datasets simulated using the same fixed parameters, jackknife estimates of n’ varied widely and 526 

were negatively correlated with mean r2, which produced relatively narrow CIs when Ne was 527 

estimated to be relatively large.  Collectively, these features cause results of the jackknife method 528 

to be somewhat unpredictable, being on average slightly conservative for larger sample sizes and 529 

the opposite for S=25, with the latter producing a large excess of CIs that were higher than true 530 

Ne.  Overall coverage of CIs based on n’ values estimated by our modeling results was close to 531 

the target 90%.  However, because of the strong positive correlation between 𝑛̂’ and Ne, our 532 

modeling results also produce CIs that are relatively narrow when 𝑁̂𝑒 is relatively high, an effect 533 

that can be reduced by setting an upper limit to 𝑁̂𝑒 when estimating n’. 534 

 535 

4.2 | FST 536 

Consequences of pseudoreplication for precision of 𝐹̂𝑆𝑇 are less dramatic than those for 537 

r2, but nonetheless not trivial.  L’ approaches an asymptote for relatively small genomes and 538 

small Ne, but for much larger numbers of loci (~10-20K) than is the case for r2.  For relatively 539 

large effective and genome sizes, L’ was still increasing after 200K loci, indicating that in those 540 

circumstances precision of 𝐹̂𝑆𝑇 can be enhanced by very large numbers of loci.  541 

Increasing C from 1 to 4 increased L’ more than any comparable increases in Ne.  542 

However, most higher organisms have C≥4 (Table 1), in which case comparable increases in 543 

genome size and effective size produce roughly similar increases in precision.  Relatively 544 

speaking, increases in sample size have somewhat more effect on L’ for 𝐹̂𝑆𝑇 than they do for n’ 545 

for 𝑟̂2.  Although the ascertainment and estimation methods we evaluated affect mean values of 546 

the index, these differences do not affect the rate at which var(𝐹̂𝑆𝑇(𝐿)
𝑁𝑒𝑖 ) or var(𝐹̂𝑆𝑇(𝐿)

𝐻𝑢𝑑𝑠𝑜𝑛) declines 547 

with addition of more loci.  In related evaluations, we found that changes in the variance of 548 

temporal F (Nei and Tajima 1981; Jorde and Ryman 2007) parallel those for FST (unpublished 549 

data).  This means that results obtained here can be applied broadly to predict realized precision 550 

of temporal F statistics and related measures in genomics-scale datasets.  551 

We found that widely-used block jackknife methods consistently overestimate var(𝐹̂𝑆𝑇), 552 

leading to CIs that are much too conservative.  In addition, for a given parameter set, the 553 

estimated jackknife variance varied several-fold across replicates and was positively correlated 554 

with the mean.  According to Busing et al. (1999), block size should be large enough to 555 

encompass all non-independence, which suggests the appropriate block size should be one 556 

chromosome.  Although the common block size of 5Mb might be large enough to capture 557 

correlations involving sites near the center of the block, this approach arbitrarily divides a 558 

continuous system of correlated loci in a way that guarantees that many tightly-linked pairs will 559 

be in different blocks.  Despite this apparent drawback, the undesirable attributes mentioned 560 

above were less extreme for the 5Mb blocks, presumably because they produced more datapoints 561 

to analyze.  CIs for 𝐹̂𝑆𝑇 based on L’ estimated according to results of this study performed well, 562 

even after accounting for uncertainty associated with estimating Ne and C. 563 

 564 
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4.3 | Experimental Design and Practical Applications 565 

 Our simulation and modeling results demonstrate that robust estimates of df’ can be 566 

obtained as a function of numbers of loci and individuals, genome size, and Ne.  The first two 567 

covariates are under control of the investigator, and the third can generally be approximated 568 

reasonably well, even for non-model species.  Dependence of df’ on Ne introduces a 569 

complication, but with even moderate amounts of genetic data one can obtain a fairly precise 570 

estimate of Ne using either single-sample or two-sample (temporal) methods.  Even after having 571 

to estimate Ne to predict n’, LD-based confidence intervals for 𝑁̂𝑒 performed at least as well as 572 

those obtained using the Jones et al. (2016) jackknife method, and with less variability among 573 

replicates (Table 4; Figure S12).  Why the block-jackknife method consistently overestimates 574 

var(𝐹̂𝑆𝑇) and produces CIs that are too wide is not clear, but it might be related to the fact that 575 

blocks with arbitrary boundaries within chromosomes do not capture all dependencies among 576 

loci.   In any case, using our modeling results to predict L’ produced robust CIs for 𝐹̂𝑆𝑇.  Our 577 

results should be particularly useful in planning and experimental design, as expected precision 578 

for a wide range of scenarios can be evaluated quickly and easily. 579 

 The simulation framework we used, which combines coalescent simulations of the distant 580 

past with fast and efficient Wright-Fisher forward simulations of the recent past, provides more 581 

realistic results than can be achieved by either process alone (Nelson et al. 2020).  Nevertheless, 582 

as is inevitable our model required simplifying assumptions, so some caveats are in order.  We 583 

assumed closed populations and did not evaluate potential consequences of migration for var(𝑟̂2) 584 

or var(𝐹̂𝑆𝑇).  We modeled non-random associations of neutral genes and did not attempt to 585 

account for correlations due to selective pressures on linked or unlinked sites, so in that respect 586 

our estimates might be considered upper limits to actual df’.   587 

 We did not explicitly model variation in recombination rate, which is known to be 588 

common both across the genome and between sexes (Ritz et al. 2017; Sardell and Kirkpatrick 589 

2020), so our results reflect a generic genome-wide average.  Although the genome sizes we 590 

simulated (1-64 chromosomes of 50 Mb) encompassed the range of mean values reported for 591 

higher organisms (Table 1), all chromosomes we modeled were the same size.  Some effects of 592 

unequal chromosome length can be accounted for by defining an effective number of 593 

chromosomes as Ce=1/Σxi
2, where xi is the relative length of the ith chromosome, standardized 594 

such that Σxi=1. Ce is analogous to the effective number of alleles at multiallelic loci.  However, 595 

Ce only deals with interactions among chromosomes and does not account for different patterns 596 

of recombination within chromosomes.   597 

 A more general formulation that considers both intra- and inter-chromosomal effects on 598 

genetic shuffling was proposed by Veller et al. 2019 PNAS 116:1659, who defined a metric 𝑟̅, 599 

which is “the probability that the alleles at two randomly chosen loci are shuffled in the 600 

production of a gamete” (p. 1660).  In Veller et al.’s framework, the expected value of 𝑟̅ can be 601 

expressed as the sum of two terms: an intra-chromosomal term that is the probability that two 602 

loci are on the same chromosome and shuffle their alleles; and an inter-chromosomal term that is 603 

the probability that two loci are on separate chromosomes and shuffle their alleles.   604 

 As shown in Supporting Information, the effective number of chromosomes accounts 605 

for the inter-chromosomal effect on 𝑟̅, which quantifies effects of independent assortment 606 

(Mendel’s Second Law), and the distribution of chromosome sizes also affects the intra-607 

chromosomal effect.  For any organism with more than a few chromosomes (mean for 608 

vertebrates is 25; Table 1), the inter-chromosomal effect on 𝑟̅ greatly exceeds that of patterns of 609 

recombination within chromosomes.  Therefore, use of Ce to account for effects of unequal 610 
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chromosome length should provide a good first-order approximation for the overall amount of 611 

genetic shuffling and hence pseudoreplication.   612 

 Nevertheless, two additional factors contribute to the intra-chromosomal effect on 𝑟̅:   613 

1) the number of crossovers (COs) on each chromosome, and 2) their locations.  All else being 614 

equal, more COs lead to more shuffling, and COs near the center of a chromosome lead to more 615 

shuffling than crossovers near the ends (Veller et al. 2019).  Within chromosomes, our 616 

simulations modeled the number of COs as a random Poisson variable, with locations of COs 617 

randomly spaced along the chromosome.  In Supporting Information, we show (Equations S14-618 

S15) how researchers who are interested in results for species with different patterns of 619 

recombination within chromosomes can adjust our results to reflect the desired overall value of 𝑟̅ 620 

and hence the appropriate level of pseudoreplication. 621 

We modeled discrete generations, and our sampling design assumed that individuals were 622 

sampled randomly from the entire adult population.  Forward simulations used Wright-Fisher 623 

dynamics with a constant number of ideal adults (N), so Ne≈N.  We found a qualitative difference 624 

in df’ for samples that included the entire population (S=Ne), but for real populations (typically 625 

with Ne<N) the relevant criterion is whether all individuals have been sampled (S=N).  Values for 626 

df’ reported in Table S2 for S=Ne would provide a robust estimate of expected precision for the 627 

special case where it is possible to assay the entire population, thus eliminating the large variance 628 

component associated with sampling individuals.  Finally, for many species it is most convenient 629 

to sample juvenile offspring rather than adults.  The variance associated with juvenile samples 630 

approximates that for a very small sample of the parents (see Supporting Information). 631 

Therefore, an approximate value for df’ for such samples can be obtained by using the predicted 632 

df’ (n’ or L’) for small S. 633 
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Table 1.   Summary of information on haploid (1n) chromosome number and mean chromosome 

size and genome size for major taxonomic groups (data from Li et al. 2011).  

 
 Chromosome number Size (Mb)  

 Mean Min Max sd Chromosome Genome 

Prokaryotes 2.2 2 4 0.50 2.5 5.7 

Unicellular eukaryotes 16.6 2 35 9.33 1.7 23.6 

Invertebrates 11.1 2 16 5.18 21.7 168.4 

Vascular plants 13.4 5 20 5.66 47.7 558.0 

Vertebrates 25.2 8 38 6.27 85.4 1933.1 
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Table 2.  Notation used in this study 

 

N Number of individuals in each population (we assumed constant size with discrete 

generations) 

Ne Effective population size.  Because we modeled Wright-Fisher reproduction, each 

generation E(Ne) = N; due to random demographic stochasticity, however, each 

replicate population has a different realized, multigeneration Ne  

C Number of chromosomes, each of length 50 Mb 

S Number of individuals sampled, drawn from the Ne = N individuals in the final 

generation 

L Number of diallelic (SNP) loci; also the nominal degrees of freedom for FST 

n Nominal degrees of freedom = number of pairwise comparisons of loci for the LD 

analyses.  n = L(L-1)/2 ≈ L2/2 

𝐹̂𝑆𝑇(𝐿) An estimate of the standardized variance of allele frequency between two 

populations, based on data for L diallelic loci 

θ The coancestry coefficient, which is related to FST as shown in Equation 1 

𝐹̂𝑆𝑇
𝑁𝑒𝑖 A weighted version of Nei’s (1973) estimator of FST, commonly referred to as GST.  

For two populations and diallelic loci, GST is identical to Wright’s (1951) FST. 

𝐹̂𝑆𝑇
𝐻𝑢𝑑𝑠𝑜𝑛 Hudson et al.’s (1992) estimator of FST, as in Bhatia et al. (2013).  For two 

populations and diallelic loci, 𝐹̂𝑆𝑇
𝐻𝑢𝑑𝑠𝑜𝑛 is identical to Weir and Cockerham’s (1984) 

𝜃. 

 𝑟̂2
(𝐿) An estimate of the mean squared correlation of alleles at different loci, based on 

data for all pairwise comparisons of L diallelic loci 

ϕ The squared coefficient of variation of 𝐹̂𝑆𝑇 or 𝑟̂2; ϕ = var/mean2 

L’ Effective degrees of freedom for FST analyses; L’ = 2/ϕF 

n’ Effective degrees of freedom for LD analyses; n’ = 2/ϕr 

V1 The component of var(𝐹̂𝑆𝑇) or var(𝑟̂2) that reflects uncertainty associated with 

sampling replicate sets of genes for the same individuals 

V2 The component of var(𝐹̂𝑆𝑇) or var(𝑟̂2) that reflects uncertainty associated with 

taking replicate samples of individuals assayed for the same genes 

CI Confidence interval  
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Table 3. Experimental design for sampling individuals and genes for analyses of LD.  From each 

population, potentially-overlapping subsets of individuals (rows) were drawn from the Ne total 

individuals in the final generation.  Subsets of L loci (columns) were non-overlapping.  Mean r2 

was calculated for each cell.  The variance among mean r2 within rows was used to estimate 

variance component V1 (same individuals, different loci), and the variance within columns was 

used to estimate variance component V2 (same loci, different individuals).   A measure of 

pseduoreplication, ϕr, was calculated across mean r2 for the cells (in bold) along the diagonal 

(different sets of individuals and loci).  This sampling design was repeated for different numbers 

of loci (L), sampled individuals (S), chromosome number (C), and Ne.  See the text and Figure S3 

for details of a modified sampling design for FST that involved pairwise comparisons of daughter 

populations. 

 

 

  Sets of loci 
  --------------------------------------------------------  
  1 2 3 4 V1  

 ---------------------------------------------------------------------------------------------------------------------------------- 
 A r2

A1 r2
A2 r2

A3 r2
A4 var(r2

A*) 
Samples of B r2

B1 r2
B2 r2

B3 r2
B4 var(r2

B*) 
individuals C r2

C1 r2
C2 r2

C3 r2
C4 var(r2

C*) 
 D r2

D1 r2
D2 r2

D3 r2
D4 var(r2

D*) 
   ------------------------------------------------------------------------------------ 

      V2 var(r2
*1) var(r2

*2) var(r2
*3) var(r2

*4)  
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Table 4.  Effects of Ne, number of chromosomes (C), and number of individuals sampled (S) on 

coverage of confidence intervals (CIs) around mean r2.  Results are shown for CIs based on the 

Jones et al. (2016) jackknife method and effective df (n’) estimated using the modeling results 

from this study, which required estimating Ne and C.  Shown are the percentages of 1024 

replicate samples whose 90% CIs included the true value (“In”), were entirely above the true 

value (“Above”), or were entirely below (“Below”).  Each cell represents results averaged over 

simulations with data for 500, 1000, and 5000 SNPs, and the bottom set of rows averages results 

across all scenarios, by sample size and method.  Results shown used data for pairs of loci on 

different chromosomes. 

 
 Jackknife This study 
 ------------------------------------ ----------------------------------- 
Ne C   S %Above %Below %In %Above %Below %In 
------------------------------------------------------------------------------------------------------------------------ 
200 4 25 9.4 1.7 88.9 12.7 1.8 85.5 
200 4 50 7.1 2.3 90.6 8 3.8 88.2 
200 4 100 4.9 2.5 92.7 4.6 3.6 91.8 
200 16 25 9.5 1.3 89.1 9.4 2.4 88.2 
200 16 50 5.8 1.6 92.6 7.1 5.0 87.9 
200 16 100 3.5 1.7 94.8 4.7 4.4 90.9 
800 4 25 14.8 0.6 84.6 11.7 0.8 87.5 
800 4 50 8.4 1.2 90.4 10.1 1.5 88.4 
800 4 100 6.1 2.7 91.2 7.4 4.5 88.1 
800 16 25 17.1 0.5 82.4 11.4 1.2 87.5 
800 16 50 8.9 1.0 90.1 9.7 2.9 87.4 
800 16 100 5 1.9 93.1 6.1 3.7 90.1 
--------------------------------------------------------------------------------------------------------------------------   

  25 12.7 1.0 86.2 11.3 1.6 87.2 
 Means 50 7.5 1.5 90.9 8.7 3.3 88.0 
  100 4.9 2.2 92.9 5.7 4.1 90.2 
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Table 5.  Effects of Ne, number of chromosomes (C), and number of individuals sampled (S) on 

coverage of confidence intervals (CIs) around 𝐹̂𝑆𝑇.  Results are shown for CIs based on block 

jackknife estimates of var(𝐹̂𝑆𝑇
𝐻𝑢𝑑𝑠𝑜𝑛) and effective df (L’) for 𝐹̂𝑆𝑇

𝑁𝑒𝑖 estimated using the modeling 

results from this study, which required estimating Ne and C.  Shown are the percentages of 1152 

replicate samples whose 90% CIs included the true value (“In”), were entirely above the true 

value (“Above”), or were entirely below (“Below”).  Each cell represents results averaged over 

simulations with data for 5000, 20000, and 50000 SNPs, and the bottom set of rows averages 

results across all scenarios, by sample size and method.  These results used a block size of 5 Mb.  

Very similar results were found for block sizes of 1 chromosome and for block-jackknife 

estimates of var(𝐹̂𝑆𝑇
𝑁𝑒𝑖) (see Table S7). 

 Block jackknife This study 
 ------------------------------------ ----------------------------------- 
Ne C   S %Above %Below %In %Above %Below %In 
------------------------------------------------------------------------------------------------------------------------ 
200 4 25 0.7 0.6 98.7 2.4 3.9 93.7 
200 4 50 0.0 0.0 100.0 2.3 2.7 94.9 
200 4 100 0.0 0.0 100.0 4.0 5.4 90.6 
200 16 25 0.2 0.8 99.0 2.4 3.8 93.8 
200 16 50 0.2 0.2 99.6 2.9 4.0 93.1 
200 16 100 0.1 0.1 99.8 3.8 4.6 91.6 
800 4 25 0.5 0.3 99.2 3.0 5.6 91.3 
800 4 50 0.1 0.5 99.3 4.4 6.6 89.0 
800 4 100 0.1 0.1 99.8 4.7 6.4 88.9 
800 16 25 0.7 1.2 98.1 3.8 4.8 91.4 
800 16 50 0.5 1.2 98.4 3.7 5.7 90.6 
800 16 100 0.4 0.8 98.8 5.1 5.4 89.5 
--------------------------------------------------------------------------------------------------------------------------   

  25 0.5 0.7 98.7 2.9 4.5 92.5 
 Means 50 0.2 0.5 99.3 3.3 4.8 91.9 
  100 0.2 0.3 99.6 4.4 5.4 90.2 
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Figure 1.  Experimental design for simulations.  For each evolutionary scenario (combination of 

Ne and genome size), four ancestral populations (AP1–AP4) were simulated to ensure 

coalescence (10Ne generations), at which point each ancestral population split into four daughter 

populations (D1-D4).  The 4x4 = 16 daughter populations then evolved independently under 

isolation for t = 0.2Ne generations.  Subsequently, the model differed slightly for the FST and LD 

analyses.  In the latter (as depicted in the figure), for each daughter population, eight mutational 

replicates (different set of loci) were generated based on the same pedigree, producing a total of 

128 replicates for each evolutionary scenario. For FST, each set of four daughter populations 

allowed six pairwise comparisons of populations, and for each two-population pedigree six 

mutational replicates were generated (Figure S4). 
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Figure 2.  Effective number of loci (L’) for mean r2 as a function of the number of diallelic 

(SNP) loci, L.  Top:  Influence of number of chromosomes (C), with Ne = 200 and S = 50.  

Bottom:  Influence of Ne, with C = 16 and S = 25.  Mean r2 was calculated across all n = L(L-1)/2 

pairs of loci.  Figure S8 (Supplementary Information) shows these same results except the Y axis 

is plotted as the effective number of locus pairs (n’). 
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Figure 3.  Effective number of loci (L’) for mean r2 as a function of the sample size of 

individuals (S = 25-800) and the number of diallelic (SNP) loci, L.  Results are for Ne = 800, C = 

16, and using all pairwise comparisons of loci. 
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Figure 4.  Variance components analysis for mean r2.  As depicted in Table 3, V1 is the variance 

of mean r2 for the same individuals assayed for different, non-overlapping sets of loci, and V2 is 

the variance of mean r2 for different (potentially overlapping) sets of individuals assayed for the 

same loci.  “Sum” = V1+V2 and “Observed” is the total observed variance of mean r2.  Results 

are for Ne = 200, C = 16, S = 50, and using all pairwise comparisons of loci. 
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Figure 5.  Comparison of parametric and actual 90% confidence intervals for 𝑁̂𝑒 based on LD 

(top) and 𝐹̂𝑆𝑇(𝐿)
𝐻𝑢𝑑𝑠𝑜𝑛 (bottom).  Parametric CIs use the nominal degrees of freedom (L = the number 

of diallelic (SNP) loci for 𝐹̂𝑆𝑇(𝐿)
𝐻𝑢𝑑𝑠𝑜𝑛 ; n = L(L-1)/2 for LD); actual CIs use the effective degrees of 

freedom calculated in this study (L’ and n’).  Results are for simulations with Ne = 200, C = 16, 

and S = 50.  Note the different X-axis scales in the two panels.  
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Figure 6.  Rate of decline in the variance of multilocus 𝐹̂𝑆𝑇(𝐿) as more diallelic loci (SNPs, L) 

were used in the analysis.  Results are for simulations with Ne = 200, C = 4, and S = 25 and are 

shown for the estimators of Nei (𝐹̂𝑆𝑇
𝑁𝑒𝑖) and Hudson (𝐹̂𝑆𝑇

𝐻𝑢𝑑𝑠𝑜𝑛).  Figure S15 shows comparable 

results for another scenario with different values of Ne, C, and S. 
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Figure 7.  Influence of Ne (top panel, with number of chromosomes, C, fixed at 16) and C 

(bottom panel, with Ne fixed at 200) on the effective degrees of freedom (L’) for 𝐹̂𝑆𝑇(𝐿)
𝑁𝑒𝑖  computed 

between pairs of populations.  Black dotted line represents L’ = L = the number of SNPs. 
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Figure 8.  Effects of pedigree on variation in mean 𝐹̂𝑆𝑇(𝐿)
𝐻𝑢𝑑𝑠𝑜𝑛.  For each of two, 2-population 

pedigrees, 8 replicate samples (demarcated by vertical lines) were taken of S = 100 individuals.  

These results are for simulations with Ne = 200 and 4 chromosomes.  Sampled individuals were 

drawn hypergeometrically from the Ne individuals in the final generation.  For each sample, six 

mutational replicates generated non-overlapping sets of L = 5000 SNP loci that were used to 

compute mean 𝐹̂𝑆𝑇(𝐿).  Solid horizontal lines (“Pedigree FST”) represent mean 𝐹̂𝑆𝑇
𝐻𝑢𝑑𝑠𝑜𝑛 across all 

8x6 = 48 replicates within each pedigree.  The first set of samples shows results for comparison 

of daughter populations 1 and 2 and the second set of samples shows results for comparison of 

daughter populations 3 and 4, all derived from the same ancestral population.  
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Figure 9.  Coverage of 90% confidence intervals (CIs) around FST estimators for the population 

pedigrees and samples shown in Figure 8 (Ne = 200; C = 4; L = 5000; S = 100).  Top:  CIs 

generated from block-jackknife estimates of var(𝐹̂𝑆𝑇
𝐻𝑢𝑑𝑠𝑜𝑛).  Bottom:  CIs generated based on L’ 

for 𝐹̂𝑆𝑇
𝑁𝑒𝑖 estimated from this study.  CI coverage is evaluated with respect to mean 𝐹̂𝑆𝑇

𝐻𝑢𝑑𝑠𝑜𝑛 or 

mean 𝐹̂𝑆𝑇
𝑁𝑒𝑖 across all replicates within each pedigree (“Pedigree FST”, horizontal lines).  The 

black X symbols indicate an upper (or lower) bound that was below (or above) the mean 

pedigree FST. 
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