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Abstract  21 

In humans, risk attitude is highly context-dependent, varying with wealth levels or for different potential 22 
outcomes, such as gains or losses. These behavioral effects are well described by Prospect Theory, with 23 
the key assumption that humans represent the value of each available option asymmetrically as gain or 24 
loss relative to a reference point. However, it remains unknown how these computations are 25 
implemented at the neuronal level. Using a new token gambling task, we found that macaques, like 26 
humans, change their risk attitude across wealth levels and gain/loss contexts. Neurons in their anterior 27 
insular cortex (AIC) encode the ‘reference point’ (i.e. the current wealth level of the monkey) and the 28 
‘asymmetric value function’ (i.e. option value signals are more sensitive to change in the loss than in the 29 
gain context) as postulated by Prospect Theory. In addition, changes in the activity of a subgroup of AIC 30 
neurons are correlated with the inter-trial fluctuations in choice and risk attitude. Taken together, we 31 
find that the role of primate AIC in risky decision-making is to monitor contextual information used to 32 
guide the animal’s willingness to accept risk.   33 



Introduction  34 

Uncertainty about the possible outcomes of chosen actions is a basic feature of all human and animal 35 
decision making. How our nervous system deals with this uncertainty is therefore a fundamental 36 
question in cognitive neuroscience. Decisions under uncertainty depend on an individual’s risk attitude, 37 
i.e., the willingness to accept uncertainty about the outcome (risk) in exchange for possibly better 38 
outcomes than a safer alternative. Risk attitude is strongly influenced by context. Humans show 39 
different risk attitudes when facing risky gains versus risky losses1. The abundance of economic 40 
resources in the environment and the current wealth of subjects also modulate an individual’s risk 41 
attitude2–5. Prospect theory6, the most influential7 and wide-ranging8 descriptive model of decision-42 
making under risk, explains these context-dependent changes in risk attitude using two critical concepts 43 
about the cognitive processes underlying value estimation. First, prospect theory assumes that humans 44 
evaluate possible future outcomes either as gains or as losses relative to a reference point (i.e. the 45 
current wealth, resources, or state of the subject). Second, human’s sensitivities to changes in value are 46 
different for losses and gains. Specifically, humans are more sensitive to the change of the value of a loss 47 
as compared to a gain (i.e. losses loom larger than gains).  Thus, humans’ choices can be manipulated by 48 
framing an identical outcome as either a gain or loss using verbal instruction, and by varying the current 49 
wealth of subjects that change the point of reference. Despite the success that the prospect theory has 50 
achieved in explaining the risky choices of humans, it remains unclear how the value function across 51 
(gain/loss) contexts, as well as the point of reference are represented in our brain on the neuronal level. 52 

Human imaging experiments and lesion studies have identified a network of brain areas that are active 53 
during decision-making under risk9–14. Of particular interest is the anterior insular cortex (AIC), a large 54 
heterogeneous cortex in the depth of the Sylvian fissure. Human fMRI studies have suggested a crucial 55 
role of AIC in representing subjects’ current internal states15,16, and in risk-aversive behavior12,13. Lesions 56 
in the AIC have also been documented to affect the risk-attitude of human patients17,18. Moreover, 57 
recording studies in monkeys have shown that AIC neurons encode reward expectation19,20. Based on 58 
these findings, we hypothesized that the AIC neurons may encode behaviorally relevant contextual 59 
information in the framework suggested by prospect theory. AIC would represent the current state of 60 
the subject (the reference point) as well as reference-dependent value signals that differ in loss or gain 61 
context (asymmetrical value functions in loss and gain). Together, these representations in AIC would 62 
influence a subject's risk attitude in decision making.  63 

To test this hypothesis, we developed a token-based gambling task and recorded single neuron activities 64 
from the AIC of two macaque monkeys engaged in this task. We first examined whether and how 65 
monkeys changed their risk attitude in various behavioral contexts. Next, we identified AIC neurons 66 
representing factors that influence risk attitude, such as starting token number, gain or loss outcome, 67 
total value of the option, and uncertainty. Finally, we determined whether the AIC neurons encoding 68 
these factors also predict the monkey’s choice or risk attitude. 69 

We found that monkeys, like humans, have different risk attitudes depending on the gain/loss context, 70 
and that AIC neurons encode reference-dependent value signals, consistent with the asymmetric value 71 
function as postulated by the Prospect theory. In addition, both the monkeys’ choices and the activity of 72 
AIC neurons are strongly influenced by the number of tokens that the monkeys possessed at the start of 73 
the trial, indicating that the momentary wealth level served as a reference point. Inter-trial fluctuations 74 
in the activity of AIC neurons encoding these variables were correlated with the monkeys’ choices and 75 
risk attitude. Taken together, these results support our hypothesis that the primate AIC encodes the 76 



reference point and reference-dependent value signals, and that these value representations of 77 
available options modulate the animal’s willingness to accept risk in the current behavioral context.  78 



Result  79 

Two monkeys were trained in a token-based gambling task (Figure 1a). In this task, the monkey had to 80 

collect a sufficient number of tokens (≥6) to receive a standard fluid reward (600μl water). Because the 81 

maximum number of tokens that could be earned in a single trial was three, the monkeys had to 82 

accumulate the necessary tokens over multiple trials (Figure S1). On each choice trial, the monkey chose 83 

between a gamble option (uncertain outcome) and a sure option (certain outcome), which could result 84 

in gaining or losing tokens. The number of tokens to be won or lost was indicated by the color of the 85 

target cues, while the probability was indicated by the relative proportion of each colored area (Figure 86 

1b). To investigate whether the monkeys’ risk attitude was different for gains and losses, we presented 87 

either only gain or only loss options on any given trial. Thus, in a gain context, the monkey had to choose 88 

between a certain token increase versus an uncertain option that could result in an even larger increase 89 

or no increase at all (Figure 1b, left). In the loss context, the monkey had to choose between a certain 90 

loss and an uncertain option that could result in no loss at all or an even larger loss (Figure 1b, right). 91 

The monkeys selected the chosen option by making a saccade to the corresponding target cue. After a 92 

short delay (450-550ms), the outcome was revealed, and the number of currently owned tokens (token 93 

assets) was updated. If a trial ended with a token number less than 6 (e.g., 4), these tokens (e.g., 4) were 94 

kept as the start tokens for the next trial. If a trial ended with a token number larger than 6 (e.g., 8), 95 

beside a delivery of water, the remaining tokens (e.g., 8-6=2) were rolled over to the start of the next 96 

trial. 97 

Both monkeys learned the task, as indicated by the observation that their fixation behavior was strongly 98 

influenced by their token assets. Monkeys fixated faster (Figure S2a-c) and were less likely to break their 99 

fixation (resulting in abortion of the trial) (Figure S2d-f) when they had larger token assets at the start of 100 

the trial, and when they received more tokens from the previous trial. These results suggest that 101 

monkeys understood the use of tokens as secondary reinforcers, and thus were more motivated when 102 

they owned more and received more tokens, before they actually earned the primary reinforcer (the 103 

fluid reward). 104 

Monkeys’ risky choices are influenced by gain/loss context and current token assets 105 

We found that monkeys’ choices were influenced by the gain/loss context. Both monkeys were more 106 

likely to choose the gamble option than the sure option (Figure 1c; t-test; Monkey G, P(Gamble)=59%, 107 

p<10-4; Monkey O, P(Gamble)=67%, p<10-4) and were even more likely to do so in the gain context than 108 

in the loss context (Figure 1c; paired t-test, p<10-4 for both Monkey G and Monkey O). We have also 109 

found that monkeys’ choices were influenced by the number of tokens they owned at the start of the 110 

trial (‘current token assets’), but differently for gains and losses. In the gain context, the probability of 111 

the monkey choosing the gamble option (P(Gamble)) decreased as the token assets increased (Figure 1d; 112 

green dashed line; regression analysis; Monkey G, β = -0.044, p<10-4; Monkey O, β = -0.035, p<10-4). In 113 

contrast, in the loss context P(Gamble) increased with increasing token assets (Figure 1d; red dashed 114 

line; regression analysis; Monkey G, β = 0.028, p<10-4; Monkey O, β = -0.001, p = 0.8). Thus, as the 115 

monkeys owned more token assets, they became more risk-averse for further gains (i.e., less willing to 116 



gamble for a greater win), but were more risk-seeking for avoiding a potential loss. These results are in 117 

line with the observation of humans that human subjects tend to be more risk-aversive when facing a 118 

potential gain, and more risk-seeking when facing a potential loss as their own asset increases1.  119 

Monkeys’ response times (RTs, the interval between stimulus onset and the saccade initiation) were also 120 

influenced by these contextual factors. Both monkeys responded slower in the loss context than in the 121 

gain context (Figure S3a-b; permutation test; monkey G: RT gain = 204.79ms, RTloss = 246.51ms, p < 10-3; 122 

monkey O: RT gain = 175.07ms, RTloss = 206.00ms, p < 10-3), and when they had more tokens (Figure S3c-d; 123 

regression analysis; monkey G: βStartTkn = 2.83, p = 0.19; monkey O: βStartTkn = 3.50, p < 10-2). These suggest 124 

that monkeys chose more carefully when facing a potential loss, and when they are getting closer to 6 125 

tokens for the water reward. Other factors that impacted RTs will be discussed in later sections (Figure 126 

S3e-h).   127 

The fact that monkeys’ risk preference changed across contexts suggests that they evaluate each 128 

available option not depending on the final status (the final token number), but rather how the current 129 

status will be changed (by gaining or losing tokens). Thus, the monkeys showed a framing effect21. This is 130 

clearly demonstrated by contrasting trials with the same outcome in terms of final token number, but 131 

which resulted from either gaining or losing tokens (Figure 1e; paired t-test; monkey G & O: p<10-2 for 132 

all end token numbers, except end token numbers 2&5 for monkey G, and number 5 for monkey O). 133 

Monkeys chose more gambles when a given prospect (end state) was offered as a gain, compared to 134 

when it was offered as a loss. 135 

Prospect theory model of risk-attitude adjustment 136 

After confirming that monkeys’ choice behavior was influenced by core contextual factors critical for 137 

prospect theory (PT), we used this model to describe choice behavior (Figure 1). The key component of 138 

the PT model is to weight gains, losses, and probabilities differently before they are combined to form a 139 

subjective evaluation of the option.  The relative gains and losses are mapped onto corresponding 140 

subjective utility as follows:  u(x) = xα when x>0 (reward outcome in gain) and u(x) = -λ*(-x)α when x<0 141 

(reward outcome in loss). The utility function component α captures risk-attitude. Convex utility (with α 142 

> 1) indicates risk-seeking, while subjects are more sensitive to differences in larger rewards. Concave 143 

utility (with α < 1) indicates risk-aversive, while subjects exhibit diminishing marginal sensitivity. The 144 

utility function component λ captures loss-aversion, the idea that losses loom larger than equivalent 145 

gains. λ > 1 indicates more sensitivity to losses than gains and  λ < 1 indicates more sensitivity to gains 146 

than losses.  147 

To capture the influence of tokens on different components, we modeled behavior for each start token 148 

number independently. In the gain context, both monkeys were risk-seeking (α > 1) when the start 149 

token number was low, but they became risk neutral or risk-averse when the start token number 150 

increased (Figure 1g; light to dark green lines indicate increasing start token number). Estimated α was 151 

negatively modulated by the start token number (regression analysis; Monkey G, β = -0.16, p<10-4; 152 

Monkey O, β = -0.14, p<10-4). In monkey G, the utility functions were consistently steeper for losses than 153 

for gains (Figure 1g; yellowish to red lines indicate increasing start token number; t-test: λ > 1; Monkey 154 
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G, p<10-4 for all start token numbers). Thus, monkey G showed loss-aversion. However, in monkey O the 155 

utility functions were not consistently steeper for losses than for gains and λ values varied around 1. This 156 

indicated that monkey O was equally sensitive to gains and losses and thus showed no loss aversion. 157 

There was no significant difference for the estimated λ across different start token numbers for either 158 

monkey (regression analysis; Monkey G, β = 0.03, p = 0.69; Monkey O, β = 0.01, p=0.4). 159 

Objective probabilities are mapped onto a subjective weighting function as follows: w(p) = pγ/(pγ+(1-160 

p)γ)1/γ . γ > 1 indicates an S-shape subjective probability mapping (overestimated for large probabilities 161 

and underestimated for small probabilities), γ < 1 indicates an inverse S-shape subjective probability 162 

mapping (underestimated for large probabilities and overestimated for small probabilities), and γ = 1 163 

indicate a linear mapping of objective probabilities. Both monkeys showed an inverse S-shaped mapping 164 

of probabilities (Figure 1h; t-test: γ < 1; both monkeys, p<10-4 for all start token numbers). The mappings 165 

were slightly influenced by increasing start token numbers in one monkey (light blue to dark blue lines; 166 

regression analysis; Monkey G, β = 0.02, p<10-4) and not at all in the other one (Monkey O, β = 0.0004, p 167 

= 0.89). 168 

After calculating the subjective value (SV = u(x)*w(p)) of each option based on prospect theory, we 169 

estimated the P(Gamble) by passing subjective value difference between options (ΔSV) through a 170 

softmax function with parameters s and bias: P(Gamble) = 1/1+e-s(ΔSV-bias), where s controls choice 171 

stochasticity and bias represents the tendency to choose the gamble option independent of the value 172 

calculation process. The monkeys showed a consistent tendency to choose the gamble option (Figure 1i; 173 

leftward shift of the choice function in; t-test: both monkeys, p<10-4 for all start token numbers). This 174 

tendency decreased when the start token number increased (Figure 1i; light gray to black lines; 175 

regression analysis; Monkey G, β = 0.32, p<10-4; Monkey O, β = 0.28, p<10-4), indicating monkeys 176 

became less risk-seeking as their wealth levels increased. Moreover, the choice functions became 177 

steeper, that is monkeys’ choices became less stochastic, when the start token number increased for 178 

both monkeys (regression analysis; Monkey G, β = 0.23, p<10-4; Monkey O, β = 0.22, p<10-4). This result, 179 

combined with the token effect on response time, indicates that choices became slower but less 180 

stochastic when token assets increased, which suggests a speed-accuracy tradeoff.  181 

In sum, the PT model describes the behavioral result well (Figure 1c-d) and predicts the monkeys’ 182 

choices better than the expected value model that does not assume nonlinearity in subjective utility and 183 

probabilities (Figure S3). This was also true after taking into account the different number of free 184 

parameters (see quantitative model evaluation in Table 1). This suggests that key components of the 185 

prospect theory model are important for explaining the monkeys’ behavior in our task.   186 

Anterior Insula neurons encode decision-related variables that influence risk-attitude  187 

To determine the neuronal basis underlying prospect theory, we recorded 240 neurons in the AIC of two 188 

macaque monkeys (monkey G: 142 neurons; monkey O: 98 neurons) working in the token gambling task. 189 

The recording locations are shown in Figure 2a (more details in Figure S5). We analyzed the neuronal 190 

activity in the choice period (i.e., the time from target onset to saccade initiation) to determine if AIC 191 

neurons carried signals that could influence decision making. We began by analyzing activity during no-192 



choice trials, in which only one option was presented. In general, the AIC neurons showed weak spatial 193 

selectivity. Only 7% (17/240) of all AIC neurons showed a significant effect of spatial location on 194 

neuronal activity (1-way ANOVA, p<0.05). We therefore ignored spatial target configuration for the 195 

remaining analysis.    196 

To quantitatively characterize the variables that each AIC neuron encodes during the choice period, we 197 

examined the activity of each neuron using a series of linear regression models with all potential 198 

combinations of 3 basic variables (token assets, value, and risk) and a baseline term. This resulted in 8 199 

families of models. Within each family, a basic variable could be represented by varying numbers of 200 

specific instantiations (3 forms of token-encoding, 5 forms of value-encoding, 2 forms of risk-encoding). 201 

This resulted in a total of 162 tested models, including a model that included only a baseline term (for 202 

details see Methods). For each neuron, we identified the best fitting model using the Akaike information 203 

criterion and classified it into different functional categories according to the variables that were most 204 

likely encoded by the neuronal activity.              205 

The vast majority of recorded AIC neuron activity (146/240; 61%) encoded at least one decision-related 206 

variable (task-related neurons: p < 0.05 for the coefficient of a specific variable in the best-fitting 207 

multiple linear regression mode; Figure 2b, more details in Table 1). Among these task-related neurons, 208 

78 neurons (33%) carried gain/loss-modulated value signals, 109 neurons (45%) carried token signals, 19 209 

neurons (8%) carried risk signals, and 9 neurons (4%) carried an absolute value signal. A substantial 210 

number of AIC neurons (53/146; 36%) showed mixed selectivity and encoded more than one decision-211 

related variable. The distributions of neural type classification were similar across the two monkeys 212 

(Table S1). 213 

A large group of AIC neurons reflected information about the expected value of the options (value-214 

encoding neurons). A subset of this group of AIC neurons, carrying a Linear value signal (example neuron 215 

in Figure 2c), encoded the expected value of all options in a monotonically rising (n=13) or falling (n=1) 216 

fashion, for both gains and losses. This kind of value signal is not gain/loss context sensitive. However, 217 

we found neuronal activity of other subsets of value-encoding neurons that varied largely as a function 218 

of the way they represented value across the Gain and the Loss context (Figure 2d-e). One group of 219 

these value-encoding neurons carried a binary Gain/Loss signal (Figure 2d) that categorized each option 220 

as gain or loss, regardless of the expected value. In addition, we found AIC neurons that represented 221 

value in both the gain and loss context, but with inverse correlations of neural activity and value (Figure 222 

2e). These neurons likely carried a Behavioral salience signal. Most interestingly, we found two other 223 

groups of AIC neurons carrying Loss value (Figure 2f) or Gain value signals (Figure 2g), respectively. 224 

These neurons represented a value signal, but only in either the loss or the gain context. We 225 

encountered more Loss value neurons (n=29) than Gain value neurons (n=4). The larger number of 226 

neurons encoding Loss value fits with human neuroimaging findings that suggest a role for the anterior 227 

insula in encoding aversive stimuli and situations1,13.  228 

The largest proportion of AIC neurons reflected information about the currently owned token number. 229 

These token-encoding neurons used three different frameworks for encoding token assets. The first 230 



group carried a Linear token signal (Figure 2h). These AIC neurons monotonically increased (n=11) or 231 

decreased (n=2) their activity with the number of token assets. The second group carried a Binary token 232 

signal (Figure 2i). These AIC neurons categorized all possible token numbers into a high [3, 4, 5] and a 233 

low [0, 1, 2] token level. Likely, this reflects a fundamental distinction between a ‘low’ token level, for 234 

which it is impossible that the monkey will earn reward at the end of the current trial (because the 235 

monkey can only earn a maximum of 3 tokens in one trial), and a ‘high’ token level that makes it 236 

possible to earn a reward in the current trial. The third, and largest, group carried a Numerical token 237 

signal. These AIC neurons are number-selective and are tuned for a preferred number (here four, 238 

example neuron in Figure 2j). We used a Gaussian function to fit this activity pattern. The AIC neurons 239 

carrying a Numerical token signal covered the entire scale from 0-5 tokens with some neurons having 240 

each of the possible token amounts as their preferred number. 241 

Based on human neuroimaging data22,23, it has been suggested that the anterior insular cortex encodes 242 

the riskiness of options. We tested therefore if AIC neurons encoded risk-related signals. Here risk was 243 

defined as outcome variance. We found some AIC neurons (n=9) carrying a Linear risk signal (Figure 2k) 244 

that encoded the risk of the various options across both the gain and loss context in a parametric 245 

fashion. We also found another group of AIC neurons (n=10) encoding a Binary risk signal that 246 

categorized options into safe or uncertain. More details of distribution of type of neuron can be found in 247 

Table 2 and TableS2.  248 

In the analysis so far, we have used a relative framework for value. Expected value was defined as token 249 

changes relative to a reference point (the start token number). However, value could also be defined in 250 

an absolute framework (i.e., the final token number at the end of the trial). Such an absolute value 251 

framework is arguably better suited for capturing the interest of the monkey in ascertaining how close 252 

he is to collecting 6 tokens and reaping a reward. We tested for AIC neurons that represented expected 253 

absolute value, which is the expected end token number weighted by the probability of each outcome. 254 

However, we found only a very small number (9/240; 4%) carrying an End token signal (Figure 2l).  255 

A significant number of AIC neurons showed activity pattern that matched several predictions of 256 

prospect theory. First, we found that many AIC neurons encode the wealth level of the monkey, i.e. the 257 

token number at the start of the trial. Within the context of our task, this variable represented the 258 

reference point relative to which the gain or loss options are measured. Simultaneously, this variable 259 

also indicates the current state of progress and indicates how close the monkey is to achieving the next 260 

reward. Second, many other AIC neurons reflect in their activity whether the offer is a gain or a loss. 261 

Some of them encoded the context, i.e., whether the options were presented in the gain or loss context. 262 

Other neurons represented a gain/loss-specific value signal in a parametric manner exclusively. Third, 263 

only very few neurons encode expected absolute value. Taken together, these three findings strongly 264 

imply that the primate AIC uses a relative value encoding framework, anchored to a reference point that 265 

reflects the current state of the monkey, as suggested by prospect theory. 266 

Value-encoding neurons in AIC exhibited contextual modulation predicted by the Prospect theory  267 



The majority of value-encoding AIC neurons were context-modulated (Figure 2d-g). A strong assumption 268 

of Prospect theory is that changes in relative value are not encoded symmetrically across gains and 269 

losses. Indeed, the monkeys’ behavior indicated that they were more sensitive to objective value 270 

differences in the loss than the gain context (i.e. steeper utility functions in the loss than that in gain 271 

context in Figure 1g). We therefore investigated whether and how value signals across the AIC 272 

population showed matching differences in their sensitivity for gains and losses. We examined the 273 

absolute value of the standardized regression coefficients (SRC) of Loss-Value Neurons in the loss 274 

context and that of Gain-Value Neuron in the gain context. At the population level, we found indeed 275 

that Loss value signals and Gain Value signals had different sensitivities to changes in value. Specifically, 276 

the normalized |SRC| of Loss-Value Neurons in the loss context were larger than that of Gain-Value 277 

Neuron in the gain context (Figure 3a, permutation test; mean of |SRCloss|= 2.978, mean of |SRCgain|= 278 

2.058, p = 0.054; unsigned SRC for losses and gains were indicated in red and green, respectively). This 279 

suggests that the AIC neurons encoding value signals were more sensitive to increasing loss than 280 

increasing gain (Figure 3b).  281 

Moreover, the sensitivity of value change in gain or loss context were also influenced by the wealth level. 282 

Normalized |SRC| of Loss-Value Neurons in the loss context became smaller as the wealth level 283 

increased (Figure 3c, left; permutation test; mean of |SRCloss| in low wealth level = 3.49, mean of 284 

|SRCloss| with high wealth level= 2.47, p = 0.017; unsigned SRC in the loss context for low or high wealth 285 

levels were indicated in orange and red, respectively). Normalized |SRC| of Gain-Value Neurons in the 286 

gain context also became smaller as the wealth level increased. However, this trend did not reach a 287 

significant level (Figure 3c, right; permutation test; mean of |SRCGain| in low wealth level = 2.38, mean of 288 

|SRCgain| in high wealth level= 2.06, p = 0.29; unsigned SRC in gain context in low or high wealth levels 289 

were indicated in light and dark green, respectively). Again, this wealth level-sensitive effect on AIC 290 

value coding (Figure 3d) is consistent with the fact that monkeys became less sensitive to objective 291 

value change when the wealth level increased (i.e., utility functions became flatter in both the loss and 292 

gain context when the wealth level increased; Figure 1g).  293 

Choice probability of AIC neurons predict the internal states related to behavioral choices 294 

The gain/loss-specific value signals and the wealth level signals in AIC were present before the choice 295 

was made and were therefore in a position to influence the monkey’s decisions. To determine whether 296 

neural activity of the AIC neurons correlates with choice behavior, we computed a receiver operation 297 

characteristic (ROC) for each cell, and then computed the area under the curve (AUC) as a measure of 298 

the cell’s discrimination ability. In this analysis, an AUC value significantly different from 0.5 indicates at 299 

least a partial discrimination between two conditions. For each AIC neuron, we calculated two AUC 300 

values. First, we compared the firing rate distributions on choice trials when the monkey chose the 301 

gamble versus the sure option. We used this AUC value as a measure of choice probability. Second, we 302 

compared the firing rate distributions on choice trials when the monkey was risk-seeking versus risk-303 

avoiding. We used this AUC value as a measure of risk-attitude probability. Risk-seeking trials were 304 

defined as trials where the monkey chose the gamble, even when the expected value of the gamble 305 

option was smaller than the expected value of the sure option. We did not include trials, in which the 306 



monkey chose the gamble option and it had a higher expected value, because in that case the monkey’s 307 

choice did not give any indication about his risk-attitude at that moment. Conversely, risk-avoiding trials 308 

were defined as trials where the monkey chose the sure option, even so it had a lower expected value 309 

than the gamble option. Thus, trials used to compute the risk-seeking probability were the subset of the 310 

trials used to compute choice probability, in which the monkeys did not make choices that maximized 311 

the expected value of the chosen option. 312 

We found that trial-by-trial fluctuations in the activity of a subset of AIC neurons (35/240; 15%) 313 

significantly correlated with fluctuations of choice or risk-attitude. As shown in Figure 4, 19 neurons (8%) 314 

showed a significant choice probability (green), 20 neurons (8%) showed significant risk-attitude 315 

probability (purple), and 4 neurons (2%) showed both significant choice probability and risk-attitude 316 

probability (black). Across the AIC population (n=240), the ability of neural activity to predict choice and 317 

risk attitude showed a strong positive correlation (Pearson correlation; r = 0.41, p<10-4). 318 

AIC neurons encode contextual information that influence monkeys’ choice and momentary risk-319 

attitude, such as current wealth level, gain/loss, and the value of each option (Figure 2). It is therefore 320 

not surprising that the activity of many of these neurons is predictive of choice or risk-taking. We 321 

examined whether neurons encoding specific-variables were particularly predictive of choice or risk-322 

attitude (Figure S6). However, a chi-square test showed no significant dependency between the 323 

encoding of a specific decision-related variable and the likelihood that choice-predictive and/or risk-324 

attitude-predictive signals were carried by a given AIC neuron (Table3, 𝛘2= 7.61, p = 0.67, excluding 325 

neurons with AUROC that predict neither choice nor risk-attitude).    326 



Discussion 327 

Prospect theory provides profound insights into how humans make risky decisions in a wide range of 328 
circumstances6,24. The behavioral hallmarks described by the theory have also been reported in old- and 329 
new-world monkeys, as well as in rats25–28. This suggests that the neural circuits responsible for making 330 
risky decisions may have been evolutionarily conserved across mammals. Using a token-based gambling 331 
task, we demonstrated that activity of AIC neurons in macaques exhibits critical characteristics 332 
consistent with those postulated by Prospect Theory. Decoding the activity from a subgroup of AIC 333 
neurons can predict the monkey’s choices and risk attitude on a trial-by-trial basis. These results suggest 334 
that the AIC is a pivotal part of a circuit monitoring state and context information that controls risky 335 
choices by modifying activity in downstream decision processes.  336 

Overall, monkeys in the present study were more prone to choose gamble options (Figure. 1c). This is in 337 
line with similar findings of previous monkey experiments25,26,29,30, yet is inconsistent to most human 338 
studies6,24,31,32. It is unclear whether such a discrepancy between humans and monkeys was due to 339 
species-specific differences, individual variability, or task design. Macaques have been shown to be risk-340 
aversive, like humans, in a foraging task33  and in a risky decision-making task using animals’ hydration 341 
state to index their non-monetary wealth level3. The observed tendency to choose gamble options was 342 
therefore likely due to task-specific factors, such as the small reward amount at stake and the large 343 
number of trials. 344 

Insular cortex is a large heterogeneous cortex that is typically divided into posterior granular, 345 
intermediate dysgranular, and anterior agranular sectors, based on cytoarchitectural differences.  Our 346 
recordings were concentrated in the most anterior part of the insula and encompassed mostly agranular 347 
and some dysgranular areas (Figure S4). In addition, we also recorded some neurons in the border 348 
regions of the adjacent gustatory cortex. Importantly, we found no functional segregation or gradient 349 
with respect to the functional signals that were represented across the different cortical areas, we 350 
explored. This fits with a recent primate neuroimaging study that showed strong activation of this entire 351 
region by visual cues indicating reward, as well as reward delivery20. Insula has long been known to be 352 
strongly connected with the neighboring gustatory cortex34,35. Recently, several lines of studies have 353 
demonstrated that neurons in the gustatory cortex not only engage the primary processing of gustatory 354 
inputs, but also involve multisensory integration15,16, as well as higher cognitive functions like decision-355 
making13,35. This suggests that primate insular cortex and the neighboring gustatory cortex are strongly 356 
interconnected and form an interacting distributed network during decision making. 357 

Prospect theory assumes that people make decisions based on the potential gain or losses relative to a 358 
reference point. In our experiment, the natural reference point against which the monkey compared 359 
possible outcomes was the current token assets. Consistent with this idea, we found that the activity of 360 
a substantial number of AIC neurons (109/240; 45%) encoded start token number. The AIC has been 361 
suggested to represent the current physiological state of the subject (i.e., interoception)15,16,36,37. Our 362 
findings suggest that AIC also encodes more abstract state variables, such as current wealth level, which 363 
are important for economic decisions that will influence future homeostatic state. Notably, we found 364 
some AIC neurons encode the start token number in a numerical scale, with their activity increased (or 365 
decreased) specifically when the monkey owned a particular number of tokens. Such a pattern of 366 
numerical encoding has been identified in primate prefrontal and parietal cortex38,39, medial temporal 367 
lobe40, and recently in AIC41. It would be interesting for future studies to investigate whether these 368 
number-tuned neurons relate to the numerical abilities of primates. 369 



Our results overwhelmingly support the notion that value-related signals in the brain operate in a 370 
relative framework. Only 4% of neurons in the AIC carried a value signal in an absolute framework. 371 
However, how the value of options is represented in a relative framework is an issue under debate. The 372 
core of the debate regards whether the value of gains and losses are represented in a single unitary 373 
system42 or separately by two independent systems43–45. Some of the AIC neurons encoding a parametric 374 
value signal did continuously across gains and losses (14/47; 30%). However, most AIC neurons encoded 375 
gain or loss-specific value signal (33/47; 70%). Thus, while there is some evidence for both hypotheses, 376 
most AIC value-encoding neurons form two independent representations that encode gains or losses, 377 
respectively. This functional separation is further supported by the presence of a large number of 378 
neurons carrying a categorical gain/loss signal. Interestingly, the number of loss-encoding neurons 379 
(29/33; 88%) is much larger than the number of gain-encoding AIC neurons (4/33; 12%). This may 380 
explain why human imaging studies often find a link between the AIC and the anticipation of aversive 381 
outcomes1,13. Thus, the AIC recordings show the presence of separate neuronal populations that encode 382 
value as a relative gain or loss. This could be the neuronal underpinning of the separate utility functions 383 
used in prospect theory. 384 

‘Risk’ is often formalized and quantified as the outcome variance, and the AIC has been implicated to 385 
play a role in monitoring risk22,23. In line with this, we found 8% of the AIC neurons (n=19/240) whose 386 
activity correlates with the outcome variance. Moreover, the trial-by-trial variability of the monkeys’ 387 
choice and risk attitude was correlated with activity changes in a subgroup of AIC neurons (Figure 6). All 388 
of this supports the hypothesis that AIC plays an important part in the process of decision making under 389 
risk. 390 

To the best of our knowledge, this is the first study recording single neurons of the AIC in awake, 391 
behaving primates during risky decision-making. We interpreted the function of AIC from the 392 
perspective of economic, risky decisions 13 and within the framework of Prospect theory6. Decisions are 393 
likely not only guided by the rational, abstract processes depicted by economic models, but are strongly 394 
influenced by emotional processes46. The AIC has been suggested to occupy a central position in 395 
regulating emotions as it receives interoceptive afferents from visceral organs through the posterior 396 
granular insula area, representing contextual information (as demonstrated by this study), and is closely 397 
connected with the amygdala and autonomic nuclei15,47. This study took the first step to delineate how 398 
the decision context modulates economic value representation, and thereby impacts the decision of 399 
subjects. Future work will further investigate the interacting functions of AIC in economic decisions, 400 
emotions, and autonomic regulation.  401 



Materials and Methods 402 

All animal care and experimental procedures were conducted in accordance with the US public Health 403 

Service policy on the humane care and use of laboratory animals and were approved by the Johns 404 

Hopkins University Institutional Animal Care and Use Committee (IACUC).  405 

General  406 

Two male rhesus monkeys (Monkey G: 7.2 kg, Monkey O: 9.5 kg) were trained to perform a token-based 407 

gambling task in this study. Monkeylogic software48 (https://www.brown.edu/Research/monkeylogic/) 408 

was used to control task events, stimuli, and reward, as well as monitor and store behavioral events. 409 

During the experimental sessions, the monkey was seated in an electrically insulated enclosure with its 410 

head restrained, facing a video monitor. Eye positions were monitored with an infrared corneal 411 

reflection system, EyeLink 1000 (SR Research) at a sampling rate of 1000 Hz. All analyses were 412 

performed using self-written Matlab code, unless noted otherwise. 413 

Behavioral tasks 414 

The token-based gambling task was based on a previously published task design49 and consisted of two 415 

types of trials: choice trails and force choice trials. In choice trials, two targets (both a sure option and a 416 

gamble option) were presented on the screen. Monkeys were allowed to choose one of the options by 417 

making a saccade to the corresponding target. Choice trials allowed us to measure the monkey’s risk 418 

attitude in different behavioral contexts of various value-matching of gamble and sure. In force choice 419 

trials, only one target (either a sure option or a gamble option) was presented on the screen so the 420 

monkey was forced to make a saccade to the given target. Comparing the neuronal activity in choice and 421 

force choice trials allowed us to identify neuronal signals specifically related to decision-making. The 422 

choice and force choice trials were pseudo-randomly interleaved in blocks so that each block consisted 423 

of all 24 choice trials and 13 force choice trials. 424 

A choice trial began with the appearance of a fixation point surrounded by the token cue. After the 425 

monkey had maintained its gaze at the central fixation point (±1° of visual angle) for a delay period (0.5-426 

1s), two choice targets were displayed on two randomly chosen locations among the four quadrants on 427 

the screen. The monkey indicated its choice by shifting gaze to the target. Following the saccade, the 428 

token cue moved to surround the chosen target and the unchosen target disappeared from the screen. 429 

The monkey was required to keep fixating the chosen target for 450-550ms, after which the chosen 430 

target changed either color or shape. If the chosen target was a gamble option, it changed from a two-431 

colored square to a single-colored square to indicate the outcome of the gamble. The color represented 432 

the amount of gained or lost tokens in the present trial. If the chosen target was a sure option, the 433 

shape changed from a square to a circle serves as a control to the change in visual display that occurs 434 

during gamble option choices. Finally, after an additional delay (500ms) the token cue was updated. If 435 

the owned token number was equal to or more than 6 at this stage, the monkey received a standard 436 

fluid reward after an additional 450ms waiting time. At the beginning of the next trial, the remaining 437 

tokens were displayed with filled circles. Otherwise, if the owned token number was smaller than 6, the 438 
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monkey did not receive a fluid reward and the updated token cue was displayed at the beginning of the 439 

next trial. If the owned token number was smaller than 0, the inter-trial-interval (ITI) for the next trial 440 

would be prolonged (300 ms per owed token).  441 

The monkey was required to maintain the fixation spot until it disappeared for reward delivery. If the 442 

monkey broke fixation in either one of the two time periods, the trial was aborted and no reward was 443 

delivered. The following trial repeated the condition of the aborted trial contingent on the time of 444 

fixation break. A trial in which the monkey broke fixation before the choice was followed by a trial in 445 

which the same choice targets were presented, but at different locations. This ensured that the monkey 446 

sampled every reward contingency evenly but could not prepare a saccade in advance. On the other 447 

hand, a trial in which the monkey broke fixation after the choice was followed by a no-choice trial in 448 

which only the chosen target was presented. If the monkey broke fixation following a gamble choice, 449 

but before the gamble outcome was revealed, the same gamble cue was presented. If the monkey broke 450 

fixation following a sure choice or after a gamble outcome was revealed, the same sure cue was 451 

presented. This ensured that the monkey could not escape a choice once it was made and had to 452 

experience its outcome. All trials were followed by a regular 1500-2000ms ITI. The schedule of the 453 

token-based gambling task is shown in Figure 1a. 454 

All options in this task were represented by sets of colored squares, with the color of the square 455 

indicating the token amount that could be gained or lost (token outcome) and the proportion of color 456 

indicating the probability that this event would take place (outcome probability) (Figure 1b). The sure 457 

options were single-colored squares indicating a certain outcome (gain or loss of token). There were 7 458 

different colors used for sure options representing the number of tokens that were gained or lost ([-3, -2, 459 

-1, 0, +1, +2, +3]). The gamble options were two-colored squares indicating two possible outcomes 460 

indicated by two different colors. The portion of each color corresponded to the probability of each 461 

outcome. Six gamble options were used in this task. Three of the gambles resulted in either a gain of 3 462 

or 0 token(s), but with different outcome probabilities (i.e. token [+3, 0] with the probability 463 

combination of [0.1, 0.9], [0.5, 0.5], or [0.75, 0.25]). Another three gambles resulted either in a loss of 0 464 

or 3 token(s) with different outcome probability (i.e. token [0, -3] with probability combination of [0.1, 465 

0.9], [0.5, 0.5], or [0.75, 0.25]). The choice trials were divided into a gain context and a loss context 466 

(Figure 1b). In the gain context, the three gamble options that resulted in either a gain of +3 or 0 token 467 

with different outcome probabilities were paired with four sure options that spanned the range of 468 

gaining outcomes (i.e. [0, +1, +2, +3]). These resulted in 12 possible combinations of sure and gamble 469 

options. In the loss context, the other three gamble options resulted either in a loss of 3 or 0 with 470 

probability combination were paired with four sure options that spanned the range of losing outcomes 471 

(i.e. [0, -1, -2, -3)). Thus, there were another 12 possible combinations of sure and gamble options. This 472 

resulted in a total of 24 different combinations of reward option combinations (half in the gain context 473 

and the other half in the loss context) that are offered in choice trials. In the force choice trials, all 13 474 

different reward options (7 sure and 6 gamble options) which were used in the choice trials are 475 

presented in isolation. 476 

Saccade detection   477 



Eye movements were detected offline using a computer algorithm (saccade detection function) that 478 

searched first for significantly elevated velocity (30◦/s). Saccade initiations were defined as the beginning 479 

of the monotonic change in eye position lasting 15ms before the high-velocity gaze shift. A valid saccade 480 

for choice was further admitted to the behavioral analysis if it started from the central fixation window 481 

(1° x 1° of visual angle) and ended in the peripheral target window (2.5° x 2.5° of visual angle).   482 

Description of monkeys’ behavior  483 

Fixation behavior: We examined whether and how monkeys’ motivations to initiate a new trial were 484 

influenced by the outcome of the previous trial and the start token number of the current trial. We used 485 

two behavioral signals as indications of the monkey’s motivational state: (1) fixation latency (i.e., the 486 

time from fixation point onset until fixation by the monkey) and (2) fixation break ratio (i.e., the 487 

frequency with which the monkey failed to fixate on the fixation point long enough to initiate target 488 

onset). We used linear regression models to test if there was a significant relationship between each of 489 

the two variables describing motivational state and the variables describing history and current state. 490 

Response time: We examined whether and how response times were influenced by different decision-491 

related variables.  For each trial, response time was defined as the time period between target onset 492 

and saccade initiation estimated by the saccade detection function. The response time dataset in each 493 

condition (e.g. trials from context of gain or loss, trials with different start token numbers, trials with 494 

different expected values of chosen option (chosen EV), or trials with different absolute values of 495 

difference of expected values among the gamble and sure option (|ΔEVgs|)) was fitted with an ex-496 

Gaussian distribution algorithm50 (https://doi.org/10.6084/m9.figshare.971318.v2). It returned three 497 

besting-fitting parameter values of the ex-Gaussian distribution: the mean μ, the variance σ, and the 498 

skewness τ of the distribution. We used a permutation test to determine if the mean RTs of trials from 499 

the gain and loss context. We used linear regression models to test whether there was a significant 500 

relationship between mean RTs and start token number, chosen EV, or |ΔEVgs|.   501 

Prospect theory model 502 

Prospect theory is derived from classical expected value theory in economics51 and assumes that the 503 
subjective value of a gamble depends on the utility of the reward amount that can be earned, weighted 504 
by the ‘subjective’ estimation of the probability of the particular outcome. Both the utility function and 505 
the probability function can be non-linear and thus might influence risk preference.  506 

We modeled the probability that monkeys chose the gamble option by a softmax choice function whose 507 
argument was the difference between the subjective values of each option.  508 

Subjective utility was parameterized as: 509 

 ( )  {
          

  (  )           
                                                                   (1) 510 

where α is a free parameter determining the curvature of the utility function, u(x), and x is the reward 511 
outcome (in units of gaining or losing token numbers).  512 

Subjective probability of each option is computed by:  513 
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where γ is a free parameter determining the curvature of the probability weighting function, w(p), and p 515 
is the objective probability of receiving corresponding outcome. The u(x) and w(p) were followed with 516 
research2,6.  517 

The subjective value (SV, or say expected utility) of each option was computed by combining the output 518 
of u(x) and w(p) that map objective gains and losses relative to the reference point and objective 519 
probability onto subjective quantities, respectively:    520 

          (      )   (      )   (     )   (       )                                       (3) 521 

        (  )   ( )                                                                           (4) 522 

The subjective value difference between the two options was then transformed into choice probabilities 523 
via a softmax function with terms of slope s and bias s: 524 

 (      )  
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where                      ,   determines the sensitivity of choices to the ΔSV, and      is the 526 

directional bias of choosing gamble.  527 

For an alternative expected value (EV) model, the value of option is calculated as: 528 

                          (      )                                               (6) 529 

       (  )  ( )                                                                           (7) 530 

The expected value difference between the two options was then transformed into choice probabilities 531 
via a softmax function with terms of slope s and bias s as what we did in the PT model: 532 
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where                      ,   determines the sensitivity of choices to the ΔSV, and      is the 533 

directional bias of choosing gamble.  534 

We optimized model parameters,  ,  ,   in the PT model, and   and      in both PT and EV models by 535 
minimize the negative log likelihoods of the data given different parameters setting using Matlab’s 536 
fmincon function, initialized at multiple starting points of the parameter space as follows:  537 

           

            

       

-2 negative log-likelihoods (-2*       which measures the accuracy of the fit) were used to compute 538 
classical model selection criteria. We also computed the Bayesian information criterion (BIC):  539 

       ( )             



where   is the number of training trial and    is the number of free parameters in the model. The 540 
likelihood in BIC is penalized by adding more parameters into the model. Thus, we use BIC to represent 541 
the trade-off between model accuracy and model complexity and use it to guide model selection. We 542 
then compared -2*      and BIC calculated from a 5-fold cross-validation with separate training and 543 
testing for the PT model and EV model in paired t-tests. We also generated model simulations for PT and 544 
EV model in Figure S2 after optimizing model’s parameters.        545 

As in classical expected value theory in economics52, a convex utility function (   ) implies risk seeking, 546 
because in this scenario, the subject values large reward amounts disproportionally more than small 547 
reward amounts. Gain from winning the gamble thus has a stronger influence on choice than loss from 548 
losing the gamble. In the same way, a concave utility function (     ) implies risk seeking, because 549 
large reward amounts are valued disproportionally less than small ones.  550 

The   can further influence subject’s risk-attitude in the context of gain or loss because it modulate the 551 
curvature of utility function in gain to that in the loss context. With a    , the utility function in the 552 
loss context will be sharper than that in the gain context, indicating the subject is more sensitive to the 553 
value change in the loss context. While with a    , the utility function in the loss context will be flatter 554 
than that in the gain context, indicating the subject is less sensitive to the value change in the loss 555 
context. 556 

Independently, a non-linear weighting of probabilities can also influence risk attitude. For example, an S-557 
shaped probability weighting function (     ) implies that the subject overweighs small probabilities 558 
and underweights the large probabilities. This would lead to higher willingness to accept a risky gamble, 559 
because small probabilities to win large amounts would be overweighed relative to high probabilities to 560 
win moderate amounts. 561 

The bias term in the softmax function can also influence a subject’s risky choices independent to the 562 
subjective value of options. A negative bias will result with risk-seeking behavior because the subject 563 
tends to choose gamble while the SVs of gamble and sure are identical. In the other hand, a positive bias 564 
will result with risk-aversive behavior because the subject tends to choose sure while the SVs of gamble 565 
and sure are identical. 566 

Cortical localization and estimation of recording locations 567 

We used T1 and T2 magnetic resonance images (MRIs) obtained for the monkey (3.0 T) to determine the 568 

location of the anterior insula. In primates, the insular cortex constitutes a separate cortical lobe, 569 

located on the lateral aspect of the forebrain, in the depth of the Sylvian or lateral fissure (LF)  (Figure 570 

2g). It is adjoined anteriorly by the orbital prefrontal cortex, and it is covered dorsally by the 571 

frontoparietal operculum and ventrally by the temporal operculum. The excision of the two opercula 572 

and part of the orbital prefrontal cortex reveals the insula proper, delimited by the anterior, superior, 573 

and inferior peri-insular (or limiting or circular) sulci. We used the known stereoscopic recording 574 

chamber location and recording depth of the electrode to estimate the location of each recorded 575 

neurons. The estimated recording locations were superimposed on the MRI scans of each monkey. 576 

Cortical areas were estimated using the second updated version of the macaque monkey brain atlas by 577 

Saleem and Logothetis54 with a web-based brain atlases55 . 578 

Surgical procedures  579 



Each animal was surgically implanted with a titanium head post and a hexagonal titanium recording 580 

chamber (29mm in diameter) 20.5 mm (Monkey G) and 16 mm (Monkey O) lateral to the midline, and 581 

30 mm (Monkey G) and 34.5 mm (Monkey O) anterior of the interaural line. A craniotomy was then 582 

performed in the chambers on each animal, allowing access to the AIC. The location of AIC was 583 

determined with T1 and T2 magnetic resonance images (MRIs, 3.0T) obtained for each monkey. All 584 

sterile surgeries were performed under anesthesia. Post-surgical pain was controlled with an opiate 585 

analgesic (buprenex; 0.01 mg/kg IM), administered twice daily for 5 days postoperatively.  586 

Neurophysiological recording procedures 587 

Single neuron activities were recorded extracellularly with single tungsten microelectrodes (impedance 588 

of 2-4 MΩs, Frederick Haer, Bowdoinham, ME). Electrodes were inserted through a guide tube 589 

positioned just above the surface of the dura mater and were lowered into the cortex under control of a 590 

self-built Microdrive system. The electrodes penetrated the cortex perpendicular to the surface of the 591 

cortex. The depths of the neurons were estimated by their recording locations relative to the surface of 592 

the cortex. Electrophysiological data were collected using the TDT system (Tucker & Davis). Action 593 

potentials were amplified, filtered, and discriminated conventionally with a time-amplitude window 594 

discriminator. Spikes were isolated online if the amplitude of the action potential was sufficiently above 595 

a background threshold to reliably trigger a time-amplitude window discriminator and the waveform of 596 

the action potential was invariant and sustained throughout the experimental recording. Spikes were 597 

then identified using principal component analysis (PCA) and the time stamps were collected at a 598 

sampling rate of 1,000 Hz.    599 

Spike density function  600 

To represent neural activity as a continuous function, we calculated spike density functions by 601 

convolving the peri-stimulus time histogram with a growth-decay exponential function that resembled 602 

a postsynaptic potential56. Each spike therefore exerts influence only forward in time. The equation 603 

describes rate (R) as a function of time (t): R(t) = (1 - exp(-t/τg))∗exp(-t/τd), where τg is the time constant 604 

for the growth phase of the potential and τd is the time constant for the decay phase. Based on 605 

physiological data from excitatory synapses, we used 1 ms for the value of τg and 20 ms for the value of 606 

τd57. 607 

Linear regression analysis of neuronal coding  608 

To find AIC neurons, whose neuronal activities reflect specific decision-related variable(s), we performed 609 

a linear regression with its mean Firing rate (FR) within the choice period for each trial as the dependent 610 

variable, and a predictor derived from the decision-related variables as the independent variable:  611 

                               

in which, β was the coefficient of the predictor. A constant term was added as a baseline model.   612 

To tested four different classes of decision-related variables: (1) “Token-asset” variables, (2) “Gain/Loss-613 

Value” variables, (3) “Risk” variables, and (4) a “Absolute value” variable. In total, we considered 16 614 
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different potential decision-related variables, as well as a baseline model that consisted only of a 615 

constant term.  616 

Token-asset variables were variables that represented the start token number in one of three different 617 

types. The first type, the linear token signal, encoded the start token number in a linear, continuous 618 

manner (monotonically rising or falling from 0 to 5). The second type, the binary token signal, encoded 619 

the start token number in a binary, discontinuous manner (with a value of “1” for trials with start token 620 

number 0 to 3 and a value of “2” for trials with start token number 3-5). The third type, the numerical 621 

token signal, encoded the start token number in a Gaussian manner with the peak of the activity at one 622 

of the token numbers from 0 to 5, and the activity symmetrically falling for token numbers that were 623 

smaller or larger than the peak.  624 

Gain/Loss-Value variables were variables that represented the gain/loss context, the expected value of 625 

options, or gain/loss context-dependent value signals. We tested five types of variables. The first type, 626 

the gain/loss signal, encoded the context of gain or loss in a binary manner. Trials in the gain context 627 

were indicated with a “1”, and trials in the loss context with a “-1”. The only exception were no-choice 628 

trials with a sure option with EV = 0, which were indicated with a “0”. The second type, the linear value 629 

signal, encoded the expected value of options in a linear, continuous manner across both the gain and 630 

loss context (with a range from -3 to 3). The remaining types also encoded the expected value of options, 631 

but contingent on the gain/loss context. The third type, the gain value signal, encoded the expected 632 

value of options in a linear manner, but only in the gain context (options with EV larger than 0 were 633 

encoded as the original number, otherwise were encoded as “0”), while the fourth type, the loss value 634 

signal, encoded the expected value of options in a linear manner only in the loss context (options with 635 

EV smaller than 0 were encoded as the original number, otherwise were encoded as “0”). The fifth type, 636 

the behavioral salience signal, encoded the expected value of options in a linear but asymmetric 637 

direction for the gain and loss context. Thus, this signal encoded the absolute distance of the value from 638 

zero, independent of whether it represented a gain or a loss (e.g. both an option with EV = 1.5 and an 639 

option with EV = -1.5 would be encoded as “1.5”).  640 

Risk variables were variables that represented the variance of possible outcomes of an option 641 

(calculated by √ (   ), in which p was the winning probability of the option). We considered two 642 

different types. The first type, the linear risk signal, encoded the variance of outcome in a linear manner 643 

proportional to the variance. The second type, the binary risk signal, encoded whether the outcome of 644 

option was uncertain or not in a binary manner (with a value of “1” for all gamble options and a value of 645 

“0” for all sure options).  646 

So far, value always was defined as a relative change of tokens, independent of the start token number. 647 

We also considered an absolute value signal (i.e., the sum of all possible end token numbers, weight by 648 

their probability). This signal took into account not only the possible change in token number, but also 649 

the start token number. Thus, it represented the outcome of a choice in absolute framework that 650 

reflected how close the monkey was to earning fluid reward. 651 

Mix-selective neuronal coding with regression analysis 652 



The regression analysis using the series of single variable models indicated that many neurons encoded 653 

multiple decision-related variables. We therefore further investigated the contribution of decision-654 

related variables to neural activity, by using a multiple linear regression with the mean Firing rate (FR) 655 

within the choice period for each trial as the dependent variable, and predictors derived from the 656 

decision-related variables as the independent variables.  657 

                                                            

We fitted a family of regression models with all possible combination of the basic decision-related 658 

variables described in the last section. This resulted in a total of 163 tested models. For each neuron, we 659 

determined the best-fitting model using the Akaike information criterion and classified it as belonging to 660 

different functional categories according to the variables that were included in the best-fitting model.  661 

Sensitivity to value changes in gain and loss value cells 662 

We examined whether neurons carrying Loss value signals and Gain Value signals showed different 663 

sensitivity to changes in value. We estimated the absolute value of the standardized regression 664 

coefficients (|SRCs|) of firing rate of Loss-Value Neurons in the loss context and |SRCs| of firing rate of 665 

Gain-Value Neuron in the gain context, respectively. We included all neurons for statistical test, whose 666 

best-fitting model included a Loss or Gain Value Signal. We performed a permutation test with 10,000 667 

iterations to test if the normalized |SRCs| of Loss Value (n = 39) and Gain Value neurons (n = 12) showed 668 

a significant difference (Figure 3a).  669 

We also examined whether the sensitivity to value change in neurons carrying Loss value signals and 670 

Gain Value signals was influenced by the wealth level (i.e., the number of tokens owned at the 671 

beginning of the trial). We compared |SRCs| of Loss and Gain Value neurons in trials with low [0,1,2] or 672 

high [3,4,5] token level.  We performed a permutation test with 10,000 iterations to test if the 673 

normalized |SRCs| of Loss Value (n = 39) and Gain Value neurons (n = 12) showed a significant 674 

difference for low and high token levels (Figure 3c).  675 

Receiver operating criterion (ROC) analysis 676 

To determine whether neural activity of the AIC neurons was correlated with the monkey’s choice 677 

behavior or risk-attitude, we computed a receiver operation characteristic (ROC) for each cell and 678 

computed the area under the curve (AUC) as a measure of the cell’s discrimination ability. We computed 679 

the AUC value of choice probability by comparing the distributions of firing rates associated with each of 680 

the two choices (i.e. choice of “gamble” or choice of “sure”). We computed the AUC value of risk-681 

seeking probability by comparing the two distributions of firing rates associated with risk-seeking and 682 

risk-avoidance behavior. Risk-seeking trials were defined as trials where the monkey chose the gamble, 683 

even so the expected value of the gamble option was smaller than the expected value of the sure option. 684 

We did not include trials, in which the monkey chose the gamble option and it had a higher expected 685 

value, because in that case the monkey’s choice did not give any indication about his risk-attitude at that 686 

moment. Conversely, risk-avoiding trials were defined as trials where the monkey chose the sure option, 687 

even so the expected value of the sure option was smaller than the expected value of the gamble option. 688 



Thus, trials used to compute the risk-seeking probability were a subset of the trials used to compute 689 

choice probability, in which the monkeys did not make choices that maximized the expected value of the 690 

chosen option. 691 

Chi-square test  692 

To test whether neurons encoding specific behaviorally relevant variables were more likely to carry 693 

significant choice or risk-attitude probability signals, we used a chi-square test, which is used to 694 

determine whether there is a statistically significant difference between the expected frequencies and 695 

the observed frequencies in one or more categories.   696 



  697 



Figure 1. Behavior performance of monkeys in the token-based gambling task.  698 

(a) Schematic of the task. Each trial starts with a fixation dot at the center of the screen. Upon the 699 
monkey fixated to the central dot, the current number of tokens it has was presented (filled circles of 700 
the hexagonal placeholder). Following 0.5-1s delay, one (‘forced-choice’ trial) or two (‘choice’ trial) 701 
options were presented (detailed in (b)), and the monkey indicated its choice by making a saccade to the 702 
target. The unchosen option then disappeared, and the current number of tokens was presented again 703 
in the surround of the chosen target. The outcome of the chosen target revealed after a delay (0.45-0.55 704 
s), indicated by the color change of the square, and the number of tokens that the monkey possessed 705 
was updated accordingly. The monkey was rewarded (600uL of water) whenever it collected six tokens 706 
or more at the end of the trial. Shadowed area indicated the choice period of which the neuronal data 707 
was analyzed. 708 

(b) Set of options. Each option is a square (x degree), of which the color(s) indicated the possible 709 
outcome(s) (-3 to +3, in units of token change), and the portion of colored area indicated the probability 710 
(10%, 50%, 75%, 100%) of the corresponding outcome to be realized. The choice trials consisted of two 711 
types (gain vs. loss context), and there was always a sure option paired with a gamble option – i.e., only 712 
the combination of [sure gain vs. gamble gain] and [sure loss vs. gamble loss] were available. In forced-713 
choice trials, only one option was presented, which could be either a sure option or gamble option (gain 714 
or loss). See Methods for details. 715 

(c) The probability of monkey choosing gamble option in gain/loss contexts. Upper and lower panels 716 
represent data from two different monkeys, respectively. Green: gain context; Red: loss context. Error 717 
bars: S.E.M; **** p<10-4, paired t-test. 718 

(d) The probability of monkey choosing gamble option, plotted by context and the start token number. 719 
Green: gain context; Red: loss context. Error bars: S.E.M; n.s.: not statistically significant (p>0.05), ** 720 
p<10-2, *** p<10-3, **** p<10-4 in paired t-test (black), **** p<10-4 in regression analyses (green or red). 721 

(e) The probability of monkey choosing gamble option, plotted by context and the end token number. 722 
Conventions as in (d). 723 

(f) Behavior modeling. The model consists of two parts: first in the process of option evaluation (upper 724 
panel), the subjective value (SV) of each option was calculated as the product of a utility function and a 725 
probability weighting function. Both functions are nonlinear as per the Prospect theory (PT) 726 
hypothesized. The subjective value difference between the two options (ΔSV) was then used to 727 
determine the probability of choosing the gamble option via a logistic function –i.e., decision policy 728 
(lower panel). 729 

(g-i) The best fit utility functions (g), probability weighting functions (h), and the decision policies (i) 730 
based on the observed performance. Upper and lower panels represent data from two different 731 
monkeys, respectively. Color gradients represent different start token numbers (light to dark: 0 to 5).  732 



  733 



Figure 2. AIC Neurons encode diverse task-related variables in forced-choice trials. 734 

(a) MRI images showing the area of recording of each monkey. Left and middle: sagittal (left) and 735 
coronal (middle) view of the insular cortex of monkey G. Right: coronal view of the insular cortex of 736 
monkey O. 737 

(b) Venn diagram of the neurons encoding four task-related variables in the forced-choice trials. Green: 738 
expected value of option (EV); Blue: start token number; Red: risk (variability of potential outcomes); 739 
Yellow: end token number. 740 

(c-g) Example neurons showing a variety of patterns by which the contextual information (gain vs. loss) 741 
and/or the EV were encoded. Upper panels: spike density function (SDF), aligned by the target onset 742 
(t=0). Lower panels: mean firing rate of each example neuron at different EV levels. Mean firing rate was 743 
calculated using the window from target onset to saccade initiation (varied across trials). The 744 
distribution of saccade timing was presented as a boxplot on top of each SDF. For clarity, when plotting 745 
the SDF, data of some EV levels were grouped together, as indicated by the color codes. (c) linear 746 
encoding of the EV across contexts; (d) binary encoding of gain/loss context; (e)  linear encoding of the 747 
absolute value of the EV in both contexts; (f) linear encoding of the EV in the loss context; (g) linear 748 
encoding of the EV in the gain context. 749 

(h-j) Example neurons showing a variety of patterns by which the token information was encoded. (h) 750 
linear; (i) binary encoding of the start token number; (j) encoding of a specific number of start token (=4). 751 
Conventions are as in (c-g). 752 

(k) Example neuron showing linear encoding of the risk. Conventions are as in (c-g). 753 

(l) Example neuron showing linear encoding of the end token number. Conventions are as in (c-g).  754 
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Figure 3. Gain-Value and loss-Value neurons exhibit differential sensitivity to EV change in the gain 756 
and loss context. 757 

(a-b) Linear regression was performed using the expected value of option (EV) as the regressor, to 758 
account for the variability of firing rates for Loss-Value neurons (39 neurons) in loss-context trials; and 759 
for Gain-Value neurons (12 neurons) in gain-context trials. See Methods for details of the neuron 760 
selection.  761 

(a) Distribution of the standardized regression coefficients (SRC). For cross-context comparison, the 762 
absolute value of SRCs (|SRCs|) were plotted. Left panel: data of those Loss-Value neurons in loss-763 
context trials. Right panel: data of those Gain-Value neurons in gain-context trials. Each count 764 
represents one neuron. Inverted triangle: mean of the distribution. 765 

(b) Replot the SRCs (as the slope of ΔFR to ΔEV) of Loss Value neurons (red) and those of Gain Value 766 
neurons (green) in loss- and gain-context, respectively. Noted that the slope of red line is steeper than 767 
the slope of green line (p=0.053, permutation test), indicating that as compared to the Gain Value 768 
neurons, the Loss Value neurons are more sensitive to EV change (in the loss context), mirroring the 769 
pattern observed from behavior (Fig.1g). Solid line and shadow area: mean ± S.E.M. 770 

(c-d) Linear regression was performed using the expected value of option (EV) as the regressor, to 771 
account for the variability of firing rates for Loss-Value neurons in loss-context trials in  low or high 772 
token level; and for Gain-Value neurons in gain-context trials in  low or high token level.  773 

(c) Distribution of the |SRCs| of Loss Value neurons in loss-context (left column) and |SRCs| of Gain 774 
Value neurons in gain-context (right column), split by start token levels. Upper row: low token level 775 
(start token number = 0-2; Bottom row: high token level (start token number = 3-5). Conventions as in 776 
(a). 777 

(d) Replot the SRCs from (c). Note that for both gain- and loss- contexts, the slope becomes shallower as 778 
the token level increases, consistent to the pattern observed from behavior (Fig.1g). 779 
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Figure 4. Distribution of area under the curve (AUC) of receiver operating characteristic (ROC) for 781 
choice and risk-attitude in individual neurons.  782 

AUC values capturing the covariation of each neuron with differences in choice (choosing gamble or sure) 783 
and risk-attitude (risk-seeking or risk-avoidance). Each point represents one neuron (n = 240), and colors 784 
indicate the significance of the two AUC values. In the marginal distributions, significant neurons are 785 
indicted in darker shades and the arrowheads indicate the average values across the entire distribution 786 
(light green or light purple) and the subset of neurons with significant AUC (dark green or dark purple), 787 
respectively. The gray vertical and horizontal dashed lines show the area of no significant discrimination 788 
ability (AUC of choice = 0.5 and AUC of risk-attitude = 0.5). The broken line represents the linear 789 
regression relating the AUC of choice and AUC of risk-attitude (r and p values refer to the regression 790 
slope).   791 



 792 

Table 1. Model comparison.  793 

DF, degrees of freedom; LLmax, maximal log likelihood;  BIC, Bayesian Information Criterion (computed 794 
with LLmax). The table summarizes for each model the likelihood maximizing (‘best’) parameters 795 
average across sessions and its fitting performances for each monkey.  796 

Comparing the model fit of PT model and EV model: t-test; Monkey G, p < 10-4 , p<10-4, p<0.05, p<0.05, 797 
p=0.09, and p<0.05 for start token number 0-5, respectively; Monkey O, p <10-2 , p<10-3, p=0.55, p= 0.62, 798 
p=0.95, and p=0.80 for start token number 0-5, respectively.  799 

Comparing the BIC of PT model and EV model: t-test; Monkey G, p <10-4 , p<10-4, p<10-2, p<0.05, p<0.05, 800 
and p<0.01; Monkey O, p <10-2, p<10-4, p=0.22, p=0.17, p=0.20, and p=0.34 for start token number 0-5, 801 
respectively.802 



 803 

Table 2. Summary of the number and percentage of significant responding neurons in different subsets 804 
of neuron types for all recorded AIC neurons.  805 

 806 

 807 

Table 3. The number of each signal during the choice period in the force choice trial, recounted based 808 
upon the AUC for choice or risk-attitude.    809 
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Supplementary materials  922 

923 
Figure S1. Inter-Reward-Trial number for each monkey.  924 

Monkeys used to accumulate the necessary 6 tokens for a standard fluid reward in 3-5 successive 925 
trials.  Red triangle indicates the average trials to get the reward (I think it is better to use a vertical line 926 
to indicate average trials). 927 

Error bars indicate SEM or estimates across sessions (session number = 37 for each monkey).  928 



  929 



Figure S2. Effect of current token asset and token outcome history on fixation latency and fixation 930 
break ratio. 931 

(a) Standardized regression coefficients (SRCs) for fixation latency (latency to fixate on the center point 932 
at the beginning of the trial before the token cue appears) as a function of previous outcome (token 933 
change in last trial) and current token number. Error bars indicate SEM of SRCs across sessions.  934 

(b) Fixation latency as a function of previous outcome. Regression coefficient (β) between fixation 935 
latency and the token number won or losses of the previous trial.  936 

(c) Fixation latency as a function of current token asset. Regression coefficient (β) between fixation 937 
latency and the start token number of the current trial.  938 

(d) Standardized regression coefficients (SRCs) for fixation break ratio (failure to hold fixation on the 939 
center point long enough for token cues to appear) as a function of previous outcome (token change in 940 
last trial) and current token number. Error bars indicate SEM of SRCs across sessions.  941 

(e) Fixation break ratio as a function of previous outcome. Regression coefficient (β) between 942 
percentage of trials with fixation breaks and the token number won or losses of the previous trial.  943 

(f)Fixation break ratio as a function of current token asset. Regression coefficient (β) between 944 
percentage of trials with fixation breaks and the start token number of the current trial.  945 

Error bars indicate SEM or estimates across sessions (session number = 37 for each monkey).  946 

ns, no significant, ** p<10-2 , *** p<10-3 , **** p<10-4 (t-test  or paired t-test). 947 
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Figure S3. Response time of monkey’s choice.  949 

(a) Distribution of response times when monkeys made decisions in the gain (green) and loss (red) 950 
context for each monkey. Histograms with light color indicate the raw data distribution and curves with 951 
dark color indicate the best-fitting (ex-Gaussian) distribution.  952 

(b) Cumulative distribution function (CDF) of response times in the gain (green) and loss (red) context.  953 

(c) Distribution of response times when monkeys made decisions with different start token numbers. 954 
The color gradients from light to dark blue indicate token number from 0 to 5.  955 

(d) CDF of response times with different start token numbers.  956 

(e) Distribution of response times when monkeys made decisions with different absolute values of 957 
expected value difference between gamble and sure option (|ΔEVgs|s). The black color gradients 958 
indicate |ΔEVgs| from small to large.  959 

(f) CDF of response times with different |ΔEVgs|s).  960 

(g) Distribution of response times when monkeys made decisions with different EV of chosen option. 961 
The color gradients indicate chosen values from small to large.  962 

(h) CDF of response times with different EV of chosen option.  963 

One monkey took more time to make a choice when the difference expected value between options 964 
were small (Figure S3e-f; regression analysis; monkey O: β RT_|ΔEVgs|= -5.11, p < 10-3), indicating a task-965 
difficulty dependent response time. Yet another monkey showed no significant difference to this 966 
variable (Figure S3e-f; regression analysis; monkey G: β RT_|ΔEVgs|= -0.50, p = 0.74). Furthermore, Both 967 
monkeys made faster choices as the expected value of chosen option increased (Figure S3g-h; regression 968 
analysis; monkey G: β RT_StartTkn= 2.83, p = 0.19; monkey O: β RT_StartTkn= 3.50, p < 10-2). This likely reflects an 969 
elevated motivation for high-value options.  970 
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Figure S4. Behavioral results and model simulations. 972 
Probability of choosing gamble, P(Gamble) for all possible choice target pairs (a gamble and a sure from 973 

gain or loss context) correspond to token asset 0-5. Colored bars represent the actual choice data and 974 

black (prospect theory model) and white (expected value model) dots represent the model simulated 975 

data. Bars are sorted according to ΔEV (EV gamble - EV sure) from small to large in loss and gain context, 976 

respectively.   977 
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Figure S5. Recording sites with location of neurons of different functional types. 979 
Coronal MRI sections for each monkey show the locations of recorded neurons. The right side of each 980 

section shows the MRI from the anatomical scan of each monkey performed before surgery. 981 

Superimposed on each section is the estimated location of each recorded neuron based on penetration 982 

coordinates and recording depth. Neuronal classification according to the regression model is marked in 983 

different colors. The dot size indicates the number of units recorded in the location. Different colors 984 

indicate different functional signals encoded by the neurons. The position of each section in stereotactic 985 

coordinates is indicated on top. The left side of each section shows the most similar section in the 986 

macaque brain atlas of Saleem and Logothetis (2012). The location of the agranular and dysgranular 987 

insula (filled pink area), and gustatory cortex (red outlined area) are indicated in each section.  988 
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Figure S6. Distribution of area under the curve (AUC) of receiver operating characteristic (ROC) for 991 
choice and risk-attitude in neurons encode different kind of decision-related signals. 992 

AUC values capturing the covariation of each neuron with differences in choice (choosing gamble or sure) 993 

and risk-attitude (risk-seeking or risk-avoidance). Each point represents one neuron (n = 240). Shapes 994 

indicate the significance of the two AUC values.  Colors indicate the functional signal encoded by the 995 

neuron. In the marginal distributions, significant neurons are indicted in darker shades and the 996 

arrowheads indicate the average values across the entire distribution (light green or light purple) and 997 

the subset of neurons with significant AUC (dark green or dark purple), respectively. The gray vertical 998 

and horizontal dashed lines show the area of no significant discrimination ability (AUC of choice = 0.5 999 

and AUC of risk-attitude = 0.5). The broken line represents the linear regression relating the AUC of 1000 

choice and AUC of risk-attitude (r and p values refer to the regression slope). 1001 
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 1003 

Table S1. Summary of the number and percentage of significant responding neurons in different subsets 1004 
of neuron types for AIC neurons recorded from each monkey.   1005 

 1006 

Table S2. Summary of the number and percentage of neurons positively or negatively correlated to 1007 

different decision-related variables.  1008 

 1009 


