Abstract
Radiation therapy is efficiently employed for eliminating cancer cells and reducing tumor growth. To further improving its therapeutic application it is mandatory to unravel the molecular effects of ionizing irradiation and to understand whether they support or counteract tumor therapy. Here we examine the impact of X-ray irradiation on immune activation of human T cells with single doses typically employed in tumor therapy. We discover that exposing cells to radiation triggers in a population of leukemic Jurkat T cells and in peripheral blood mononuclear cells (PBMCs) a canonical Ca2+ signaling cascade, which elicits immune activation of these cells. An early step in the signaling cascade is the initiation of sustained oscillations of the cytosolic Ca2+ concentration, an event mediated by store operated Ca2+ entry (SOCE) via an X-ray induced clustering of the Calcium Release-Activated Calcium Modulator 1 with the stromal interaction molecule 1 (Oari1/STIM1). A functional consequence of the Ca2+ signaling cascade is the translocation of the transcription factor nuclear factor of activated T cells (NFAT) from the cytosol into the nucleus where it elicits the expression of genes required for immune activation. These data imply that a direct activation of blood immune cells by ionizing irradiation has an impact on toxicity and therapeutic effects of radiation therapy.
Competing Interest Statement
The authors have declared no competing interest.