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Abstract 

Objective: Favorable neurodevelopmental outcomes in epileptic spasms (ES) are tied to early diagnosis 

and prompt treatment, but uncertainty in the identification of the disease can delay this process. 

Therefore, we investigated five computational electroencephalographic (EEG) measures as markers of 

ES.  

Methods: We measured 1) amplitude, 2) power spectra, 3) entropy, 4) long-range temporal correlations, 

via detrended fluctuation analysis (DFA) and 5) functional connectivity of EEG data from ES patients 

(n=40 patients) and healthy controls (n=20 subjects), with multiple blinded measurements during 

wakefulness and sleep for each patient.  

Results: In ES patients, EEG amplitude was significantly higher in all electrodes. Shannon and 

permutation entropy were lower in ES patients than control subjects, while DFA intercept values in ES 

patients were significantly higher than control subjects. DFA exponent values were not significantly 

different between the groups. EEG functional connectivity networks in ES patients were significantly 

stronger than controls. Using logistic regression, a multi-attribute classifier was derived that accurately 

distinguished cases from controls (area under curve of 0.96).  

Conclusions: Computational EEG features successfully distinguish ES patients from controls in a large, 

blinded study. 

Significance: These objective EEG markers, in combination with other clinical factors, may speed the 

diagnosis and treatment of the disease, thereby improving long-term outcomes. 

Highlights 
1)      Objective computational EEG features may aid diagnosis of epileptic spasms (ES) 

2)      ES EEG has increased delta and theta power and decreased entropy relative to controls 

3)      Stronger functional connectivity networks differentiate ES patients from controls 
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I. Introduction 

Epileptic spasms (ES) is an epileptic encephalopathy with typical onset between 4-7 months of 

age (Hrachovy and Frost 2003). These seizures occur in clusters and consist of abrupt muscle spasms, 

often accompanied by an interictal electroencephalographic (EEG) pattern known as hypsarrhythmia 

(Gibbs et al. 1953; Pavone et al. 2013; Fisher et al. 2018). Hypsarrhythmia is marked by asynchronous, 

high-amplitude slow waves, a disorganized background, and multi-focal independent spikes (Gibbs et al. 

1953; Hrachovy et al. 1981, 1984). Children with ES often exhibit neurocognitive stagnation, 

psychomotor delay, and other refractory seizure types (Primec et al. 2006; Gaily et al. 2010; Riikonen 

2010; Pavone et al. 2013; Widjaja et al. 2015). Prompt, successful treatment increases the likelihood of a 

favorable outcome, but diagnosis and clinical treatment decisions are challenging and often delayed for 

various reasons. First, epileptic spasms are associated with a wide range of underlying etiologies 

(Osborne et al. 2010; Riikonen 2010), and there is potential for misdiagnosis of subtle ES as other seizure 

types or unrelated benign conditions (Shields 2004; Auvin et al. 2012). Second, the wide variability of 

EEG patterns, such as hypsarrhythmia and so-called modified hypsarrhythmia, can confound visual 

interpretation of the EEG (Gibbs et al. 1953; Hrachovy et al. 1984; Sue et al. 1997; Frost et al. 2011). 

Although the presence of hypsarrhythmia is often used as a diagnostic marker of the syndrome, there is 

low inter-rater reliability for identification of the pattern (Hussain et al. 2015; Mytinger et al. 2015) and 

it is not a predictor of outcome (Demarest et al. 2017). Overall, rates of sustained treatment response 

are low due to a paucity of effective first-line therapies and a high relapse rate (Hrachovy et al. 1983; 

Baram et al. 1996; Ito et al. 2002), and this is further complicated by diagnostic challenges and the 

subsequent use of inappropriate therapies in cases of misdiagnosis (O’Callaghan et al. 2011; Auvin et al. 

2012). Computational EEG biomarkers of ES that are independent of the presence of hypsarrhythmia 

would help address these challenges by providing tools for objective—and perhaps more accurate—

identification of the disease.  

We previously demonstrated that several computational metrics are relevant to ES, such as EEG 

amplitude (Smith et al. 2018), power spectrum (Smith et al. 2018), the strength of long-range temporal 

correlations in EEG amplitude modulations (Smith et al. 2017), and functional connectivity (Shrey et al. 

2018). However, those results were obtained using a relatively small, homogeneous cohort of patients 

with new-onset ES. Here, we sought to validate these findings in a much larger and more diverse cohort 

of ES patients, the majority of which exhibited refractory spasms. We measured five types of 

computational EEG metrics in all subjects: 1) amplitude, 2) power spectrum and spectral edge 

frequency, 3) Shannon and permutation entropy, 4) long-range temporal correlations, and 5) functional 

connectivity using both amplitude and phase-based measures. We compared the results to a group of 

normal children who underwent EEG monitoring to rule out ES or other seizures. In addition to the 

larger cohort, we have enacted randomization and blinding procedures to mitigate bias in the selection 

of subjects and EEG clips, and we analyzed EEG in both sleep and wakefulness, with multiple EEG clips 

for each patient in order to evaluate the reproducibility of computational measurements. This 

comprehensive study describes objective EEG characteristics that may improve the accuracy and latency 

of ES diagnosis. 
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II. Methods 

2.1 Identification of Cases and Controls 

Approval to perform this study was obtained from the UCLA Institutional Review Board. Using a 

clinical video-EEG database, which includes all patients who underwent video-EEG monitoring at UCLA 

Mattel Children’s Hospital between February 2014 and July 2018, we identified ES cases and normal 

controls as follows. To select cases, we used a computer-aided algorithm to randomly select 50 patients 

with ES who exhibited epileptic spasms on an overnight video-EEG, regardless of the presence or 

absence of hypsarrhythmia. To select controls we implemented a similar algorithm to randomly select 

25 patients who (1) underwent overnight video-EEG to evaluate for suspected epileptic spasms, (2) 

exhibited a normal video-EEG, and (3) were deemed neurologically normal (i.e. no known or suspected 

neurological diagnosis as per clinical neurology assessment after EEG). We chose these criteria to mimic 

the clinical scenario in which a patient is being evaluated for suspected epileptic spasms, and physicians 

must determine whether spasms are present or not. Ultimately, we envision our proposed 

computational EEG features would be used in this situation. However, with these strict inclusion criteria 

and the high proportion of patients with refractory spasms typically seen at UCLA, we found that the 

control group was considerably younger than the cases. Therefore, we assembled an approximately age-

matched cohort as follows: To add older control patients, we identified 25 children who presented for 

evaluation of possible seizures (without the criterion that the seizures were epileptic spasms); these 

patients were ultimately found to be seizure-free and neurologically-normal in a fashion identical to the 

original control group. We then used an automated algorithm to randomly select subjects (in a 2:1 ratio 

of cases to controls) from amongst the 50 potential cases and 50 potential controls. To generate similar 

age distributions in an unbiased fashion, the process was repeated iteratively until the group-wise 

difference between cases and controls was less than 10% for median age, mean log-transformed age, 

and standard deviation of log-transformed age. The final cohort included 40 ES cases and 20 control 

subjects. 

2.2 Data Abstraction 

Two EEG clips during wakefulness and two clips during sleep were extracted for all subjects. 

Epoch selection was guided by a randomization algorithm such that the abstractor selected EEG data 

beginning at a specific, predetermined time. Each clip contained 20 minutes of EEG data, and data were 

sampled at 200 Hz with impedances below 5 kΩ.  

2.3 EEG artifact identification 

Time periods in the EEG containing artifact were identified using an automatic extreme value 

detection algorithm, similar to previously published methods (Durka et al. 2003; Moretti et al. 2003) 

(Figure 1). Specifically, the data were first broadband bandpass filtered (1.5 – 40 Hz, Butterworth filter). 

The mean was subtracted from each channel, and the standard deviation was calculated using the entire 

zero-mean time series. Whenever the absolute value of the voltage exceeded a threshold of 7.5 

standard deviations above the mean value in any single channel, the time points were marked as 

artifact. A buffer of 0.9 seconds was added before and after the extreme amplitude values to ensure 

that the entire artifact was marked. Data recorded during EEG impedance checks were also 

automatically identified and marked. Note that artifacts were identified using broadband filtered data, 

but the artifactual EEG epochs were removed after the band-specific filtering needed for each metric. In 
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all cases, artifactual segments of data were excluded from all channels, even if the artifact occurred in a 

single channel. 

 

Figure 1. Pre-processing steps to re-reference, filter, and remove artifacts in EEG data from epileptic 

spasms (ES) patients and control subjects.  

 

2.4 Computational EEG metrics 

We calculated five types of computational metrics for each EEG recording: amplitude, power 

spectrum and spectral edge frequency, Shannon and permutation entropy, long-range temporal 

correlations, and amplitude- and phase-based functional connectivity networks. These metrics were 

chosen because they are commonly used in EEG signal analysis and demonstrated relevance to ES both 

in the literature and in our prior studies using a smaller, more homogeneous cohort (Smith et al. 2017, 

2018; Shrey et al. 2018). All procedures for data pre-processing, filtering, artifact removal, and 

calculation of computational metrics are summarized in Figure 1. Data were re-referenced to the 

common average for the functional connectivity measures, and a linked-ear montage was used for all 

other analyses (Stam et al. 2007; Shrey et al. 2018). We implemented different filtering strategies as 

needed for each calculated metric. For calculation of the EEG amplitude, power spectrum, spectral edge 

frequency, and cross correlation functional connectivity, we bandpass-filtered the re-referenced data 

from 0.5-55 Hz to include all frequencies of clinical interest. Phase-lag index functional connectivity was 

measured in the delta frequency band (1-4 Hz); this computational metric requires selection of a narrow 

frequency range, and the delta band was chosen to enable comparison to the cross-correlation 

connectivity, which will be primarily driven by the low frequency activity. For calculation of DFA, 

Shannon entropy, and permutation entropy, we analyzed all standard narrow frequency bands (delta 

band 1-4 Hz, theta band 4-7 Hz, alpha band 8-12 Hz, and beta band 14-30 Hz).  
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2.4.1 Amplitude 

 Because hypsarrhythmia and other interictal patterns are defined by a high amplitude (typically 

greater than 200-300 µV), the EEG amplitude is a clinically relevant signal feature in ES (Hrachovy et al. 

1984; Nehlig et al. 2012; Pavone et al. 2013). Amplitude values were calculated using the range of the 

broadband filtered data in one second windows for each electrode. The variation of EEG amplitude across 

channels was visualized via topographic maps. For each group, the topographic maps were constructed 

using the median value across all patients for each electrode location. The figures were generated using 

the MATLAB-based EEGLAB function “topoplot”. To compare amplitude distributions across subjects, we 

calculated the empirical cumulative distribution function (CDF) for the Cz electrode in each patient 

dataset. Electrode Cz was chosen because it is minimally contaminated by artifact. 

2.4.2 Power Spectrum and Spectral Edge Frequency 

 For each channel, data were divided into 5-second epochs, and the power spectrum was 

calculated via the fast Fourier transform on the broadband bandpass-filtered data (0.5-55 Hz). The mean 

power spectrum was obtained by averaging the power spectra over all epochs. We calculated the 

decibel change to compare pathological spectra (in ES subjects) to physiological spectra (control 

subjects). The dB change is defined as follows: 

𝑑𝐵𝑐ℎ𝑎𝑛𝑔𝑒 =  20 log10 (
𝑃𝐸𝑆

𝑃𝐶𝑂𝑁𝑇𝑅𝑂𝐿
) 

where 𝑃𝐸𝑆 is the averaged power spectrum of the ES group and 𝑃𝐶𝑂𝑁𝑇𝑅𝑂𝐿 is the averaged power 

spectrum of the control group. We report differences in the standard frequency bands of delta (1-4 Hz), 

theta (4-8 Hz), alpha (8-13 Hz), and beta (13-30 Hz). 

To quantify differences in the spectra using a single metric (as opposed to one value for each frequency 

band), the spectral edge frequency (SEF) was defined as the frequency below which 95% of the power 

resides (Schwender et al. 1996). Topographic maps of the spectral edge frequency were created by 

calculating the SEF value for every channel from each patient. Groupwise topographic maps show the 

median SEF values across subjects, calculated individually for each channel. 

2.4.3 Entropy  

 Entropy is the amount of information contained in a signal, and it is conceptually related to the 

“predictability” of the data. We calculated both the Shannon entropy and the permutation entropy for 

ES patients and control subjects. 

Shannon entropy is derived from information theory and depends only on the distribution of 

values in the data; it is independent from the data’s temporal structure. The Shannon entropy H was 

calculated for each channel as follows (Shannon 1948):  

𝐻(𝑋) =  − ∑ 𝑝(𝑥𝑖) log2 𝑝(𝑥𝑖)

𝑛

𝑖=1

 

where  𝑝(𝑥𝑖) is the probability of observing the 𝑖𝑡ℎ value of the bin series in data 𝑥, and 𝑛 is the number 

of bins (Cohen 2014). We calculated the optimal number of bins according to Freedman and Diaconis, 

1981 (Freedman and Diaconis 1981) as described by Cohen, 2014 (Cohen 2014). The entropy calculation 
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has units of bits, and higher values indicate more stochastic behavior (Van Putten and Stam 2001; 

Kannathal et al. 2005a, 2005b, 2014; Rosso et al. 2005). We calculated Shannon entropy values for all 

EEG electrodes and reported the mean entropy value. 

 Unlike Shannon entropy, permutation entropy quantifies the complexity of a time series while 

taking the temporal order of the signal into account by the utilization of symbolic dynamics (Bandt and 

Pompe 2002): 

𝐻(𝑛) =  − ∑ 𝑝𝑗
′ log2(𝑝𝑗

′)

𝑛!

𝑗=1

 

where the 𝑝𝑗
′  represent the relative frequencies of the possible patterns of symbol sequences and 𝑛 is 

the embedding dimension (Bandt and Pompe 2002; Riedl et al. 2013). Permutation entropy was 

calculated on the EEG data from the Cz electrode for each subject in all frequency bands. We used an 

embedding dimension 𝑛 = 4 and a time delay 𝜏 = 1.   

2.4.4 Long-range temporal correlations 

Detrended Fluctuation Analysis (DFA) is a statistical estimation algorithm used to measure the 

strength of long-range temporal correlations in time series (Peng et al. 1992, 1994; Hardstone et al. 

2012). Specifically in neural time series, the temporal modulation of EEG amplitude occurs over periods 

lasting tens of seconds and is believed to reflect the brain’s ability to control its neuronal synchrony 

(Linkenkaer-Hansen et al. 2001). Here, DFA was implemented using the algorithm as outlined in our 

previous study (Smith et al. 2017), adapted from Peng at al. (Peng et al. 1994) and Hardstone et al. 

(Hardstone et al. 2012). We included box sizes ranging from 1 second to 1/10 of the signal length. If the 

recording exceeded 1200 seconds in length, the maximum box size was set to 120 seconds. The DFA 

exponent, denoted 𝛼, is a direct estimate of the Hurst parameter and reflects the strength of the long-

range temporal correlations present in the time series (Hardstone et al. 2012). The 𝛼 value for positively 

correlated signals varies between 0.5 and 1.0, and human neural electrophysiology data typically falls 

within this range.  

Because we noted little variation across channels, we averaged 𝛼 from all individual channels to 

obtain a single value for each recording. The intercept of the DFA plot (𝛽) was calculated by 

extrapolating on the logarithmic plot to find the fluctuation value when the window size equaled one 

sample (the value at which the logarithm of the window size equals zero) (Smith et al. 2017). Similar to 

the DFA exponent, we averaged 𝛽 from all channels to obtain a single value for each patient. This 

calculation was done independently for each frequency band. 

2.4.5 Functional Connectivity Networks 

 Functional connectivity is a measure of the correlation between electrophysiological signals in 

two different brain regions. We calculated functional connectivity networks using both amplitude- and 

phase-based measures in the ES and control subjects. The amplitude-based measure calculates 

functional connectivity via cross-correlation in one-second epochs using the method developed by 

Kramer et al. (Kramer et al. 2009) and Chu et al. (Chu et al. 2012) and previously applied to ES EEG data 

by our group (Shrey et al. 2018). For each epoch, the connection was deemed to be significant if the 

maximum cross-correlation value for the channel pair fulfilled two criteria: (1) it occurred at a non-zero 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2020. ; https://doi.org/10.1101/2020.11.13.380691doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.380691
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

lag time, and (2) it exceeded a significance threshold obtained via permutation resampling. The overall 

connection strength between two channels was calculated as the percentage of epochs in which the 

connection was significant. For visualization, we created network maps in which edges (connections) 

between nodes (electrodes) were drawn if the connection value exceeded 0.075. This threshold was not 

used for any statistical tests. 

 We additionally applied a phase-based measure of functional connectivity called the phase lag 

index (PLI). This method calculates the level of synchronization between two electrodes by determining 

whether the phase of one signal consistently leads or lags the other signal (Stam et al. 2007): 

PLI =  |
1

𝑁
∑ 𝑠𝑖𝑔𝑛(∆φ(𝑡𝑛))

𝑁

𝑛=1

| 

where the PLI value represents the mean signum of the phase difference ∆𝜑(𝑡𝑛) between the two 

signals over a time period of length N. The instantaneous phase was extracted using the Hilbert 

transform of the narrow bandpass-filtered EEG signal. We measured PLI between all channels pairs for 

all 19 electrodes in the delta frequency band (1-4 Hz) in eight-second epochs of clean data, resulting in a 

19-by-19 adjacency matrix for each epoch of data. Significance was assessed via surrogate data that was 

created by shuffling the Fourier phases of the original signal for 100 iterations. The PLI value for the 

channel pair was considered significant if it exceeded the 95th percentile of the surrogate data 

distribution. Non-significant connections were replaced with PLI values of zero. The functional 

connectivity network for each subject was calculated by averaging the pseudo-binary adjacency matrices 

over all epochs. 

2.5 Calculation of computational EEG metrics 

For each subject, we calculated the metrics for both EEG clips during wakefulness and during 

sleep, and we averaged the two wakefulness values and the two sleep values. All subsequent analysis 

was performed with the average wakefulness value and the average sleep value. Note that, for both 

patient groups, the metric values for the two clips were highly correlated, indicating favorable 

reproducibility of the measurements (Supplementary Table 1). The metrics were computed on each EEG 

clip by authors (BAL, DWS, RJS) who were blinded to the patient groups, clip numbers, and designation 

of wakefulness or sleep. 

2.6 Statistical Methods 

Summary data were reported as mean (standard deviation), or if non-normally distributed, as 

median (interquartile range). Groupwise comparisons of medians were carried out using the Wilcoxon 

rank-sum test. Logistic regression models were developed using a forward stepwise approach. 

Evaluation for multicollinearity was carried out with visual inspection of covariate scatter plots and 

calculation of all pair-wise correlation coefficients. Adjustment for multiple comparisons was 

accomplished using the Benjamini-Hochberg procedure. Statistical calculations were carried out using 

Stata (version 14, Statacorp; College Station, Texas, USA) and MATLAB (ver. 2019b, MathWorks, Inc; 

Natick, MA, USA). 
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III. Results: 

3.1 Subjects 

Clinical and demographic attributes of the study population are summarized in Table 1. The 

median (interquartile range) ages of the 40 cases and 20 controls were 11.0 (7.6 – 22.6) and 9.9 (7.4 – 

27.9) months, respectively.  

Table 1. Clinical and demographic characteristics of the study population 

 Cases 
(n = 40) 

Controls 
(n = 20) 

p-value1 

Age at EEG, months2 11.0 (7.6, 22.6) 9.9 (7.4, 27.9) 0.95 

Female, n (%) 20 (50%) 8 (40%) 0.59 

Age of onset of epileptic spasms, months2 7.4 (4.6, 11.8)   

Duration of epileptic spasms, months2 2.4 (0.1, 6.0)   

Normal development at onset of epileptic spasms 20 (50%)   

Known etiology 31 (78%)   

 Structural etiology 22 (55%)   

 Genetic etiology 14 (35%)   
1p-values were not adjusted for multiple comparisons. 
2Median (interquartile range) 

 
3.2 High amplitude EEG in ES 

 During both wakefulness and sleep, the EEG amplitude was higher in ES patients than controls. 

Significant differences between the distributions of amplitude values can be seen in a representative 

example from channel Cz (p<0.05, Figure 2A). The differences between ES and control subjects were 

significant in all channels (BH-adj. p<0.05, Figure 2B), and the spatial variation of the amplitude values is 

similar between groups (Figure 2B). The highest EEG amplitudes were situated frontally in both groups 

during wakefulness (Figure 2B, top row), while the highest EEG amplitudes were located more centrally 

during sleep (Figure 2B, bottom row). Lower amplitudes in the temporal channels may be due to the use 

of a linked-ear reference. 
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Figure 2. EEG amplitude is higher in epileptic spams (ES) patients than controls. (A) Empirical 

cumulative distribution functions (CDFs) from the Cz electrode during wakefulness (top) and sleep 

(bottom). The solid line indicates the median of the group CDF values, and the shaded region covers the 

interquartile range for the ES patients (red) and the controls (blue). (B) Topographic maps of median EEG 

amplitude for ES patients (left column) and controls (right column) during wakefulness (top row) and 

sleep (bottom row). 

 

3.2 High EEG spectral power in ES 

During wakefulness and sleep, ES patients exhibited higher power in nearly all frequency bands 

when compared to the control group (Figure 3A). In wakefulness, the greatest increase in power for ES 

patients occurs below 10 Hz, while the power in the upper beta frequency band matches that of control 

subjects (Figure 3A, top). During sleep, ES patient EEG power shows the greatest increase in the lower 

beta frequency band (14-20 Hz) and the alpha frequency band (8-12 Hz) (Figure 3A, bottom). The raw 

power spectra for ES patients and control subjects are also provided for reference (Supplementary 

Figure 1). These differences in the power distribution are reflected by the SEF metric. During 

wakefulness, the SEF values for ES patients were significantly lower than controls in all channels (BH-adj. 

p<0.05). The lowest SEF values were in the central head regions in both groups (Figure 3B, top row). 

During sleep, we found similar spatial variation of SEF values (Figure 3B, bottom row), but the 

differences were only statistically significant in channels O1 and O2 (BH-adj. p<0.05). Sleep was 

generally associated with lower SEF values than wakefulness.  
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Figure 3. EEG spectral power is higher in epileptic spams (ES) patients than controls. (A) EEG power 

spectra for ES patients, relative to control subjects, during wakefulness (top) and sleep (bottom). (B) 

Topographic maps of spectral edge frequency (SEF) for ES patients (left column) and controls (right 

column) during wakefulness (top row) and sleep (bottom row). 

 

3.3 Low permutation entropy in ES 

During wakefulness, Shannon entropy values were significantly higher in ES patients than 

control subjects in the delta frequency band, but significantly lower in the alpha frequency band (Figure 

4A) (BH-adj. p<0.05). Shannon entropy values were also lower for ES patients in all frequency bands 

during sleep, with the difference being significant in the theta, alpha, and beta frequency bands (BH-adj. 

p<0.05, Figure 4A).  

Similar to the results for Shannon entropy, the permutation entropy was generally lower in ES 

patients compared to controls. The permutation entropy values were significantly lower in ES patients in 

the delta and theta frequency bands during wakefulness (Figure 4B) (BH-adj. p<0.05). However, during 

sleep, the permutation entropy values were significantly lower in the delta and beta frequency bands, 

but significantly higher in the theta band (Figure 4B) (BH-adj. p<0.05). 
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Figure 4. EEG entropy is lower in epileptic spams (ES) patients than controls. (A) Shannon entropy and 

(B) permutation entropy for ES patients (red) and control subjects (blue) during wakefulness (left 

subfigure) and sleep (right subfigure). Each data point represents the mean entropy across channels for a 

single subject.  Asterisks indicate significance of p<0.05. 

 

3.4 Long-range temporal correlations distinguish ES patients from control subjects 

 To assess differences in the strength of long-range temporal correlations, we plotted the DFA 

intercept, 𝛽, against the DFA exponent, 𝛼, for all groups (Figure 5A). Consistent with our prior work 

(Smith et al. 2017), we found that 𝛼 and 𝛽 were negatively correlated and that the 𝛽 values for ES 

patients and controls were largely non-overlapping. To better assess statistical differences between 𝛼 

and 𝛽, we also show boxplots of the DFA exponent (Figure 5B) and DFA intercept (Figure 5C). All 

differences were tested with a Wilcoxon rank-sum test, corrected via Benjamini-Hochberg procedure 

with adjusted p<0.05. During wakefulness, the 𝛼 values of each group did not significantly differ from 
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one another in any frequency band (Figure 5B, top row). In sleep, the 𝛼 values for ES patients were 

significantly higher in the delta band compared to controls (Figure 5B, bottom row). In contrast, the 𝛽 

values for ES patients were significantly higher than the control infants in all frequency bands in both 

awake and sleep data except for the delta frequency band during sleep (Figure 5C).  

 

Figure 5. Long-range temporal correlations are altered in epileptic spams (ES) patients; in particular, 

the detrended fluctuation analysis (DFA) intercept is lower in ES patients compared to controls. (A) 

Scatterplots of DFA parameters in wakefulness (top row) and sleep (bottom row). Points are plotted at 

(𝛼𝑖, 𝛽𝑖) where 𝛼 is the DFA exponent value and 𝛽 is the DFA intercept value for patient 𝑖. Results are 

shown for ES (red) and control (blue) subjects in all frequency bands. (B) Same data as in (A), represented 

as boxplots of DFA exponents and (C) boxplots of DFA intercepts for all frequency bands. Asterisks 

indicate significance of p<0.05. 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2020. ; https://doi.org/10.1101/2020.11.13.380691doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.380691
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

3.5 Stronger EEG functional connectivity in ES 

 Overall, we found stronger functional connectivity networks during sleep compared to 

wakefulness (Figure 6). Using the cross-correlation functional connectivity measure, ES patients 

exhibited stronger networks compared to controls in both wakefulness and sleep (Figure 6A). During 

wakefulness, the ES patients exhibited significantly stronger cross-correlation connections than the 

normal infants in 98 of the 171 possible electrode pairs (57.3%) (Figure 6A, top row) (BH-adj. p<0.05). 

Similar results were obtained during sleep, with 78 of the 171 possible electrode pairs (45.6%) exhibiting 

statistically stronger connectivity values than the control group (Figure 6A, bottom row) (BH-adj. 

p<0.05). 

 The PLI-derived connectivity networks were visually similar in structure to the networks 

obtained with cross-correlation. Similar to cross-correlation, ES patients exhibited stronger networks 

when compared to controls in both wakefulness and sleep. In wakefulness, 144/171 (84.2%) of the ES 

patient functional connections were significantly stronger than the control subjects (Figure 6B, top row) 

(BH-adj. p<0.05), while 152/171 (88.9%) connections were significantly stronger during sleep (Figure 6B, 

bottom row) (BH-adj. p<0.05).  

 

Figure 6. Patients with epileptic spams (ES) have stronger functional connectivity networks than 

controls. Mean functional connectivity maps are shown for ES patients (left column) and controls (right 

column) in wakefulness (top row) and sleep (bottom row). (A) Cross correlation-based functional 

connectivity was measured in one-second epochs, and overall connection strength is defined as the 

proportion of significant one-second epochs. Connection strength is represented by the color of the 

edges. For visualization, graph edges are displayed if the connection strength between two electrodes 

exceeds 0.075. (B) Functional connectivity networks based on phase-lag index were assessed in eight-

second epochs, and statistical significance was tested via phase-shuffled surrogate data. The pseudo-

binary matrices were averaged over all available epochs. For visualization, graph edges are displayed if 

the connectivity strength between two electrodes exceeds 0.2. 
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3.6 Multivariable classification of cases and controls 

After establishing group differences in the aforementioned computational EEG metrics, we 

explored whether a multivariable logistic regression model could be developed to accurately 

discriminate cases from controls using multiple computational metrics in a simultaneous fashion.  Using 

the age-matched cohorts (40 cases and 20 controls), our model utilized sleep measures of functional 

connectivity (phase-lag index in the delta frequency band), Shannon entropy in the beta frequency 

band, and the DFA intercept in the beta band. Using the regression coefficients, we devised a metric, M, 

defined as follows: 

𝑀 = (0.661)(𝑃𝐿𝐼𝑠𝑙𝑒𝑒𝑝) − (3.159)(𝐻𝑠𝑙𝑒𝑒𝑝) + (6.730)(𝛽𝑠𝑙𝑒𝑒𝑝) 

where PLI is the phase lag index, H is Shannon entropy and β is the intercept derived from the DFA 

analysis. As illustrated in Figure 7 the median M was higher among cases than controls (p<0.001), and 

when evaluated as a classifier with receiver operating characteristic (ROC) analysis, it yielded an area 

under the curve (AUC) of 96%. In an exploratory internal validation, we evaluated the accuracy with 

which M could discriminate the 10 cases and 30 controls that remained after the selection of the age-

matched cohorts. Among these 40 additional patients, median M remained higher among cases (0.006), 

but classification of individual patients was compromised, as suggested by AUC=79%. Recognizing that 

these remaining cases and controls were age-mismatched and included numerous patients who were 

far older than typical patients with epileptic spasms, we found that favorable classification was 

preserved by excluding any of the additional patients whose age was greater than 4 years, as suggested 

by AUC = 93%. Similarly, considering all 100 candidate cases and controls, while excluding the 4 cases 

and 22 controls who were older than 4 years, we again observed favorable classification (AUC = 94%). As 

illustrated in Figure 8, poor classification performance among older patients likely reflects a 

“pseudomaturation” among cases, such that their entropy and functional connectivity metrics resemble 

those of older normal controls to some extent. 
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Figure 7. Computational EEG measures enable classification of epileptic spams (ES) patients and 

controls. (A) Values of the multivariable metric, 𝑀, derived from logistic regression coefficients, for 

controls (left, blue) and ES patients (right, red). The metric was based on phase-lag index functional 

connectivity, Shannon entropy, and the detrended fluctuation analysis (DFA) intercept. (B) A receiver 

operating characteristic (ROC) curve was created by sweeping through values of 𝑀 and measuring the 

accuracy (sensitivity and specificity) of classifying individual subjects as ES patients or controls. The area 

under the curve was 0.96, indicating that the metric 𝑀 can distinguish between the two groups. 

 

Figure 8. Computational EEG metrics exhibit some dependence on age, particularly for subjects over 

four years old. The values of (A) phase-lag index connectivity, (B) Shannon entropy, and (C) detrended 

fluctuation analysis (DFA) intercept, are shown as a function of subject age for epileptic spasms (ES) 

patients (red triangles) and control subjects (blue circles). Older patients are difficult to classify, as the 

values of phase-lag index connectivity and Shannon entropy for ES patients overlap with those of control 

subjects over four years old. Data for all 50 ES patients and 50 control subjects are shown. 
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IV. Discussion 

We analyzed EEG data from a large, diverse cohort of epileptic spasms patients and identified 

multiple computational EEG markers that differ significantly from normal infants. This study validates 

previous work on a smaller, more homogeneous cohort of patients (Smith et al. 2017, 2018; Shrey et al. 

2018). The results are more rigorous, as we have included a larger number of subjects, evaluated both 

sleep and awake EEG recordings, repeated multiple measurements per subject, and used randomization 

and blinding to mitigate potential bias in the selection of patients and EEG samples. This is the largest 

and most comprehensive study of its kind.  

In our pilot study, we retrospectively identified 21 patients with new-onset ES that were treated 

at the Children’s Hospital of Orange County and had varying etiologies. The subject age range was 

narrow (median 6.3, IQR 5.2-8.1 months) and most presented with hypsarrhythmia on the pre-

treatment EEG (Smith et al. 2018). In contrast to that study, this cohort included 40 ES patients, with 

only eight patients exhibiting pre-treatment hypsarrhythmia, and older subjects with a wider age range 

(median 11.0, IQR 7.6-22.6 months) at the time of treatment. Despite these differences, these two 

independent studies produced consistent results and suggest that the proposed metrics are robust: 

Amplitude. Amplitude is an EEG feature that is often unusually high in ES (Stamps et al. 1959; 

Hrachovy et al. 1984; Pavone et al. 2013). Hypsarrhythmia is a high-amplitude pattern, and diffuse 

slowing is a common feature in both ictal and interictal data (Nehlig et al. 2012). Only eight of the forty 

patients in this cohort presented with hypsarrhythmia on the pre-treatment EEG; despite that, we found 

that the EEG had a higher amplitude in ES compared to controls (Table 2), which matches the results 

from our previous study (Smith et al. 2018). Thus, the differences we report here are not merely 

reflecting the presence of hypsarrhythmia, suggesting that amplitude may have value as a general 

biomarker of epileptic spasms.  

Power and Spectral Edge Frequency. Consistent with the finding of high amplitude in ES, the 

EEG power of ES patients was significantly higher than control subjects (Table 2). This is consistent with 

the clinical findings of diffuse slowing in the pre-treatment EEG (Nehlig et al. 2012). Although we only 

analyzed frequencies up to 30 Hz in this study, it has been noted that fast activity (14-50 Hz) may play an 

important role in ES (Inoue et al. 2008; Wu et al. 2008). Even higher frequency ranges (40-150 Hz) may 

have relevance in ES as well (Kobayashi et al. 2004; Nariai et al. 2020), but the sampling rate of our data 

precluded this analysis. Particularly during wakefulness, the spectral edge frequency further highlighted 

the distinction in the frequency characteristics of ES patients in comparison with controls, with lower 

SEF values signaling significantly higher power in the lower frequency bands. The SEF metric is one way 

to summarize differences across all frequencies in the power spectra using a single measurement.  

Entropy. Shannon entropy has been reported to be lower in epilepsy patients than healthy 

subjects (Kannathal et al. 2005a, 2005b, 2014; Rosso et al. 2005). From a nonlinear dynamics 

perspective, this is because epileptic data often exhibits a lower dimension than healthy data, which is 

more stochastic in nature. Specifically in ES, it was found that hypsarrhythmia exhibited lower 

dimension and lower entropy than healthy control data, but the time series was not as nonlinear as 

seizure data (Van Putten and Stam 2001). Corroborating this literature, we found that the Shannon 

entropy values during sleep were lower in ES patients when compared to control patients. However, 

during wakefulness, the Shannon entropy in ES patients was only significantly lower than controls in the 

alpha frequency band. This may be due to the increased likelihood of residual EEG artifacts during 
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wakefulness. Permutation entropy investigates the organization of the time series while accounting for 

the short-term temporal structure of the data. Permutation entropy was significantly lower in ES 

patients compared to control subjects in the delta and theta frequency bands during wakefulness, and in 

the delta and beta frequency bands during sleep (Table 2). 

Long-range temporal correlations. We used detrended fluctuation analysis (DFA) to compare 

the temporal structure of the EEG data for ES and control subjects, specifically by measuring power-law 

scaling and long-range temporal correlations. We previously showed that long-range temporal 

correlations of EEG amplitude modulations were weaker in new onset ES patients compared to controls, 

and that DFA exponent values normalized with successful treatment (Smith et al. 2017). In contrast, 

here we found that the DFA exponents of the ES patients were not significantly different from the 

control group during wakefulness or sleep, except for the delta frequency band during sleep. The 

intercept, however, was significantly higher in the ES patient group in comparison to the control group 

in all frequency bands in wakefulness and in all except the delta band during sleep, generally providing 

excellent separation between the two groups (Table 2). The DFA intercept scales logarithmically with the 

variance of the amplitude envelope (Smith et al. 2017), suggesting that the EEG in ES patients not only 

has a high amplitude, but also that this amplitude varies widely over time.  

Functional connectivity. The EEG patterns in ES have been hypothesized to be driven by 

neuronal networks including subcortical structures which motivated our analysis of functional 

connectivity. For example, studies with SPECT (Chiron et al. 1993), PET (Chugani et al. 1992), fMRI 

(Siniatchkin et al. 2007), and EEG source localization (Japaridze et al. 2013) found that subcortical-

cortical interactions may play a role in the development of ES (Chiron et al. 1993). This could explain 

how diffusely abnormal EEG patterns are observed despite focal etiologies. We assessed functional 

connectivity in two ways. We first used cross-correlation, which has been shown to reveal stable, 

patient-specific networks in healthy subjects (Chu et al. 2012) as well as ES patients (Shrey et al. 2018). 

Previously, long-range, cross-hemispheric connections were observed in ES patients both with 

coherence (Burroughs et al. 2014) and cross-correlation (Shrey et al. 2018). Here, we found that 

connectivity strengths were higher in ES in most channel pairs in cross correlation-based networks, and 

we observed more long-range cross-hemispheric connections in ES compared to controls, corroborating 

previous work (Table 2) (Burroughs et al. 2014; Shrey et al. 2018). Similarly, using PLI as a second 

connectivity measure, ES subjects exhibited significantly stronger connections during wakefulness and 

sleep. We chose to analyze the delta frequency band because it exhibited the greatest power 

differences between ES patients and control subjects. Moreover, we expected it to correspond most 

closely to the broadband cross-correlation measure, which had demonstrated relevance in previous 

studies. Across both subject groups and functional connectivity metrics, the functional connections were 

stronger during sleep than wakefulness. 
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Table 2. Summary of ES results, relative to control subjects, for each computational metric. 

Abbreviations: Delta frequency band (𝛿), theta frequency band (𝜃), alpha frequency band (𝛼), beta 

frequency band (𝛽), N.S. (not significant). 

STATE Wake Sleep 

FREQUENCY BAND 𝛿 𝜃 𝛼 𝛽 𝛿 𝜃 𝛼 𝛽 

Amplitude Higher Higher 

Power Spectrum Higher Higher Higher N.S. Higher Higher Higher Higher 

Spectral Edge Frequency Lower N.S. 

Shannon Entropy Higher N.S. Lower N.S. N.S. Lower Lower Lower 

Permutation Entropy Lower Lower N.S. N.S. Lower Higher N.S. Lower 

LRTC Strength: 
Exponent 

N.S. N.S. N.S. N.S. Higher N.S. N.S. N.S. 

LRTC Strength: Intercept Higher Higher Higher Higher N.S. Higher Higher Higher 

Functional Connectivity: 
Cross-correlation 

Stronger (57.3% of connections) Stronger (45.6% of connections) 

Functional Connectivity: 
Phase-Lag Index 

𝛿 band: Stronger (84.2% of 
connections) 

𝛿 band: Stronger (88.9% of 
connections) 

 

Limitations. Although we attempted to remove as many artifacts as possible, we note that some 

results may have been affected by residual artifactual data. For example, eye movements and muscle 

artifacts may have contributed to the high frontal amplitude and higher temporal power observed 

during wakefulness (Figure 3). Muscle artifact may have contributed to stronger connectivity in the 

peripheral (hat-band) connections and the skewing of the SEF topological map toward the temporal 

channels.  Additionally, the choice of reference may have affected the metric values; the higher 

amplitude and lower SEF in the central channels may be due the choice of the linked ear reference. We 

acknowledge these effects and attempted to minimize their influence on the metric values as much as 

possible, particularly by comparing to a normal control group that is susceptible to the same types and 

occurrences of artifacts. Additionally, we note that in some of the metrics, the sleep/wake state played a 

role in whether the metric successfully distinguished ES patients from control subjects. Further 

investigation of the differences in the EEG profiles of ES patients during sleep and wakefulness may help 

identify features that are consistently present regardless of the patient’s sleep/wake state; alternatively, 

this may suggest to clinicians which specific features are relevant, based on whether the patient is 

awake or asleep.  

Conclusion. The consistency of the results for ES patients across wide ranges of ages, etiologies, 

and severity (new onset vs. refractory) indicate that these characteristics of the EEG may be consistently 

present in epileptic spasms patients. As lead time is one of the strongest prognostic factors in these 

children, stable metrics that quantify the disease add value to current diagnostic tools. We believe these 

metrics have the potential to significantly enhance clinical decision making. In particular, as suggested 

by our logistic-regression derived classifier, these metrics may improve diagnostic accuracy. Future 

studies will also investigate potential algorithms to identify pre-symptomatic patients, predict response 

to treatment, measure treatment efficacy, and predict relapse.  
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Supplementary Information 

Supplementary Figure: 

 

Supplementary Figure 1. Log-transformed EEG power from 0-30 Hz in all channels for ES patients (left 

column) and control subjects (right column). EEG power measured during wakefulness is shown on the 

top row and EEG power measured during sleep is shown on the bottom row. 

 

Supplementary Tables: 

Supplementary Table 1: Correlation between metrics calculated from independent EEG clips 

Metric State R^2 value p-value 

DFA exponent: Delta Wake 0.51 3.9e-296 

DFA exponent: Theta Wake 0.43 1.0e-234 

DFA exponent: Alpha Wake 0.41 1.1e-216 

DFA exponent: Beta Wake 0.55 0 
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DFA exponent: Delta Sleep 0.47 1.4e-261 

DFA exponent: Theta Sleep 0.39 1.2e-203 

DFA exponent: Alpha Sleep 0.42 2.6e-228 

DFA exponent: Beta Sleep 0.46 8.2e-258 

DFA intercept: Delta Wake 0.80 0 

DFA intercept: Theta Wake 0.78 0 

DFA intercept: Alpha Wake 0.74 0 

DFA intercept: Beta Wake 0.59 0 

DFA intercept: Delta Sleep 0.50 4.1e-288 

DFA intercept: Theta Sleep 0.62 0 

DFA intercept: Alpha Sleep 0.64 0 

DFA intercept: Beta Sleep 0.67 0 

CC Conn Wake 0.83 3.1e-40 

CC Conn Sleep 0.81 2.7e-38 

Amplitude Wake 0.63 0 

Amplitude Sleep 0.85 0 

SEF Wake 0.71 0 

SEF Sleep 0.17 1.9e-77 

Shannon Entropy: Delta Wake 0.46 7.6e-254 

Shannon Entropy: Theta Wake 0.33 2.8e-169 

Shannon Entropy: Alpha Wake 0.29 8.3e-141 

Shannon Entropy: Beta Wake 0.28 2.0e-137 

Shannon Entropy: Delta Sleep 0.15 3.3e-67 

Shannon Entropy: Theta Sleep 0.45 1.2e-251 

Shannon Entropy: Alpha Sleep 0.55 0 

Shannon Entropy: Beta Sleep 0.39 8.4e-204 

Permutation Entropy: Delta Wake 0.96 6.3e-72 

Permutation Entropy: Theta Wake 0.99 1.2e-101 

Permutation Entropy: Alpha Wake 0.99 7.6e-115 

Permutation Entropy: Beta Wake 0.98 1.4e-93 

Permutation Entropy: Delta Sleep 0.62 2.8e-22 

Permutation Entropy: Theta Sleep 0.66 8.9e-25 

Permutation Entropy: Alpha Sleep 0.66 9.6e-25 

Permutation Entropy: Beta Sleep 0.65 5.4e-24 

PLI Conn Wake 0.57 1.3e-19 

PLI Conn Sleep 0.51 5.9e-17 

 

Supplementary Table 2. Percentage of EEG clip classified and removed as artifact 

Percentage Artifact Wake 1 Sleep 1 Wake 2 Sleep 2 

ES Patient 1 10.92 0.22 10.84 0.50 

ES Patient 2 23.00 5.43 22.84 3.37 

ES Patient 3 8.12 1.20 8.76 2.07 

ES Patient 4 5.69 4.06 5.37 6.25 

ES Patient 5 13.62 1.04 11.54 2.08 

ES Patient 6 1.80 0.00 2.62 0.00 
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ES Patient 7 10.49 3.41 22.00 5.88 

ES Patient 8 11.40 1.84 19.15 2.35 

ES Patient 9 5.32 0.15 4.14 0.35 

ES Patient 10 9.03 0.66 8.17 0.20 

ES Patient 11 13.02 1.52 10.60 1.25 

ES Patient 12 4.63 1.30 10.05 2.70 

ES Patient 13 5.23 0.06 4.23 0.00 

ES Patient 14 12.38 1.23 9.81 0.10 

ES Patient 15 18.68 2.47 19.71 2.60 

ES Patient 16 5.72 6.08 0.10 0.00 

ES Patient 17 8.89 0.30 8.88 0.55 

ES Patient 18 4.43 4.94 9.16 3.03 

ES Patient 19 7.98 12.79 10.84 13.19 

ES Patient 20 2.61 0.12 5.14 0.25 

ES Patient 21 0.00 0.21 2.05 0.24 

ES Patient 22 4.83 3.52 13.12 1.93 

ES Patient 23 14.13 0.25 10.42 0.56 

ES Patient 24 11.04 1.28 13.53 0.26 

ES Patient 25 0.35 3.62 2.49 2.00 

ES Patient 26 13.37 0.96 14.67 0.90 

ES Patient 27 15.42 0.50 17.94 4.09 

ES Patient 28 19.50 0.91 12.71 1.45 

ES Patient 29 5.33 3.03 15.97 2.64 

ES Patient 30 5.52 0.24 1.70 0.93 

ES Patient 31 3.25 9.82 8.13 5.82 

ES Patient 32 8.15 5.06 14.44 4.48 

ES Patient 33 11.39 3.50 9.22 4.91 

ES Patient 34 11.25 7.86 7.39 4.39 

ES Patient 35 16.22 4.58 18.26 0.00 

ES Patient 36 8.36 2.02 12.98 2.05 

ES Patient 37 1.59 0.21 0.90 0.10 

ES Patient 38 11.63 2.81 9.68 0.72 

ES Patient 39 2.43 2.27 0.82 2.71 

ES Patient 40 11.62 0.44 16.10 1.24 

ES Patient 41 2.16 0.20 0.66 0.60 

ES Patient 42 5.19 6.55 4.68 4.08 

ES Patient 43 3.51 0.83 5.21 4.09 

ES Patient 44 13.26 1.93 13.88 4.05 

ES Patient 45 2.69 0.90 1.19 1.78 

ES Patient 46 10.55 10.05 6.82 6.28 

ES Patient 47 1.68 0.15 0.42 0.00 

ES Patient 48 2.81 2.07 3.98 2.41 

ES Patient 49 6.70 5.12 1.83 4.61 

ES Patient 50 5.65 1.39 5.56 2.38 
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Percentage Artifact Wake 1 Sleep 1 Wake 2 Sleep 2 

Control 1 5.66 1.72 11.78 0.16 

Control 2 31.18 5.53 17.44 2.36 

Control 3 8.33 3.22 9.47 0.50 

Control 4 14.96 0.05 16.29 0.00 

Control 5 11.52 0.53 13.27 0.48 

Control 6 10.50 1.69 8.58 0.17 

Control 7 6.86 0.33 10.98 0.00 

Control 8 7.32 1.02 6.68 0.31 

Control 9 12.06 0.58 18.61 0.48 

Control 10 5.10 0.63 3.54 0.52 

Control 11 12.35 0.31 2.93 1.87 

Control 12 18.01 0.56 8.15 2.39 

Control 13 4.62 0.15 3.36 0.15 

Control 14 7.14 0.14 9.71 1.11 

Control 15 2.77 0.00 4.33 0.30 

Control 16 15.04 0.91 9.47 0.00 

Control 17 6.61 1.51 10.02 1.88 

Control 18 8.26 0.17 12.13 0.15 

Control 19 8.96 0.25 8.09 0.00 

Control 20 13.34 0.71 13.15 0.80 

Control 21 4.64 0.54 3.74 0.90 

Control 22 6.38 1.52 7.81 2.39 

Control 23 8.61 0.00 13.30 0.00 

Control 24 20.83 0.71 6.62 0.00 

Control 25 29.46 0.80 12.26 0.43 

Control 26 30.59 0.52 22.52 0.00 

Control 27 4.26 0.00 1.98 0.00 

Control 28 26.80 0.37 33.50 0.74 

Control 29 25.74 0.00 7.27 0.10 

Control 30 5.67 2.55 7.07 1.43 

Control 31 9.86 0.91 6.45 0.57 

Control 32 21.79 0.53 13.57 1.55 

Control 33 14.80 0.40 7.31 0.70 

Control 34 9.42 0.70 7.20 1.13 

Control 35 5.91 0.15 15.72 1.11 

Control 36 9.85 1.15 7.88 0.54 

Control 37 7.10 0.00 4.91 0.37 

Control 38 8.56 0.10 6.61 0.31 

Control 39 9.89 0.10 8.67 0.20 

Control 40 11.53 0.90 5.11 0.29 

Control 41 8.66 0.98 9.67 3.56 

Control 42 19.80 2.39 23.26 1.06 

Control 43 9.44 0.61 8.72 0.94 

Control 44 7.30 0.00 9.66 0.65 

Control 45 15.06 0.00 7.84 0.63 
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Control 46 8.52 0.00 5.02 0.57 

Control 47 18.66 1.86 19.71 2.32 

Control 48 4.43 0.75 4.35 0.97 

Control 49 9.03 0.33 4.04 0.75 

Control 50 12.45 1.67 11.72 0.00 

 

Supplementary Table 3: Number of 5-second windows used in power spectrum analysis 

Number of 5 second 
windows used in power 

spectrum analysis 

Wake 1 Sleep 1 Wake 2 Sleep 2 

ES Patient 1 322 332 302 359 

ES Patient 2 239 330 277 342 

ES Patient 3 354 360 331 349 

ES Patient 4 343 344 335 332 

ES Patient 5 233 353 311 266 

ES Patient 6 371 318 271 362 

ES Patient 7 323 241 334 230 

ES Patient 8 318 347 299 356 

ES Patient 9 199 235 83 314 

ES Patient 10 355 316 280 366 

ES Patient 11 176 356 311 349 

ES Patient 12 347 424 318 347 

ES Patient 13 343 356 344 360 

ES Patient 14 317 354 323 367 

ES Patient 15 152 350 290 344 

ES Patient 16 338 200 357 349 

ES Patient 17 286 240 327 329 

ES Patient 18 199 278 153 301 

ES Patient 19 330 267 276 235 

ES Patient 20 99 310 223 288 

ES Patient 21 87 197 244 327 

ES Patient 22 114 266 172 349 

ES Patient 23 308 363 301 362 

ES Patient 24 188 224 203 280 

ES Patient 25 104 126 224 358 

ES Patient 26 158 353 209 352 

ES Patient 27 214 325 241 295 

ES Patient 28 257 359 317 351 

ES Patient 29 220 227 170 228 

ES Patient 30 141 296 189 348 

ES Patient 31 305 317 317 344 

ES Patient 32 158 346 159 269 

ES Patient 33 127 237 321 221 

ES Patient 34 228 334 328 313 

ES Patient 35 296 224 309 201 
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ES Patient 36 213 331 298 349 

ES Patient 37 197 354 351 352 

ES Patient 38 315 148 287 202 

ES Patient 39 244 163 231 209 

ES Patient 40 277 329 307 387 

ES Patient 41 186 355 163 303 

ES Patient 42 326 337 354 242 

ES Patient 43 156 217 222 191 

ES Patient 44 204 169 207 228 

ES Patient 45 185 241 93 202 

ES Patient 46 138 157 226 162 

ES Patient 47 177 238 269 249 

ES Patient 48 143 174 214 227 

ES Patient 49 139 174 176 109 

ES Patient 50 155 185 177 141 

 

Number of 5 second 
windows used in power 

spectrum analysis 

Wake 1 Sleep 1 Wake 2 Sleep 2 

Control 1 252 229 219 231 

Control 2 161 272 202 251 

Control 3 218 228 219 240 

Control 4 300 374 304 354 

Control 5 263 309 313 229 

Control 6 214 190 238 211 

Control 7 223 222 245 240 

Control 8 219 164 223 241 

Control 9 221 252 197 234 

Control 10 206 242 238 223 

Control 11 275 353 3485 334 

Control 12 188 252 226 263 

Control 13 347 322 334 326 

Control 14 224 253 214 247 

Control 15 249 281 264 243 

Control 16 305 357 335 329 

Control 17 235 237 225 246 

Control 18 219 214 211 245 

Control 19 205 242 224 240 

Control 20 201 204 218 172 

Control 21 232 235 227 207 

Control 22 241 248 224 309 

Control 23 274 275 240 238 

Control 24 278 254 335 348 

Control 25 248 344 296 336 

Control 26 244 323 262 350 
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Control 27 354 354 366 368 

Control 28 266 362 242 245 

Control 29 217 350 309 356 

Control 30 337 347 334 354 

Control 31 317 237 324 353 

Control 32 283 363 324 351 

Control 33 305 474 330 362 

Control 34 323 351 324 346 

Control 35 223 265 198 237 

Control 36 318 350 327 337 

Control 37 303 350 335 297 

Control 38 271 349 331 348 

Control 39 271 354 331 367 

Control 40 315 282 359 376 

Control 41 325 273 289 346 

Control 42 284 348 262 376 

Control 43 313 328 332 350 

Control 44 315 337 322 319 

Control 45 305 362 321 347 

Control 46 325 334 341 256 

Control 47 279 227 266 343 

Control 48 340 339 334 322 

Control 49 199 222 241 237 

Control 50 220 226 213 260 
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