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Summary 
The precisionFDA Truth Challenge V2 aimed to assess the state-of-the-art of variant calling in 
difficult-to-map regions and the Major Histocompatibility Complex (MHC). Starting with FASTQ 
files, 20 challenge participants applied their variant calling pipelines and submitted 64 variant 
callsets for one or more sequencing technologies (~35X Illumina, ~35X PacBio HiFi, and ~50X 
Oxford Nanopore Technologies). Submissions were evaluated following best practices for 
benchmarking small variants with the new GIAB benchmark sets and genome stratifications. 
Challenge submissions included a number of innovative methods for all three technologies, with 
graph-based and machine-learning methods scoring best for short-read and long-read datasets, 
respectively. New methods out-performed the 2016 Truth Challenge winners, and new 
machine-learning approaches combining multiple sequencing technologies performed 
particularly well. Recent developments in sequencing and variant calling have enabled 
benchmarking variants in challenging genomic regions, paving the way for the identification of 
previously unknown clinically relevant variants. 

Introduction 
PrecisionFDA began in 2015 as a research effort to support FDA’s regulatory standards 

development in genomics and has since expanded to support all areas of omics. The platform 
provides access to on-demand high-performance computing instances, a community of experts, 
a library of publicly available tools, support for custom tool development, a challenge framework, 
and virtual shared Spaces where FDA scientists and reviewers collaborate with external 
partners. The precisionFDA challenge framework is one of the platform’s most outward facing 
features. The framework enables the hosting of biological data challenges in a public facing 
environment, with available resources for submission testing and validation. precisionFDA 
challenges, and challenges led by other groups like DREAM ​(Ewing et al., 2015; Lee et al., 
2018; Salcedo et al., 2020, http://dreamchallenges.org)​ and CAGI ​(Andreoletti et al., 2019; 
Hoskins et al., 2017)​, focus experts around the world on common problems in areas of evolving 
science such as genomics, proteomics, and artificial intelligence. 

The first Genome In A Bottle (GIAB)-precisionFDA Truth Challenge took place in 2016, 
and asked participants to call small variants from short-reads for two GIAB samples ​(Zook et al., 
2019)​. Benchmarks for HG001 (a.k.a. NA12878) were previously published, but no benchmarks 
for HG002 were publicly available at the time. This made it the first blinded germline variant 
calling challenge, and the public results have been used as a point of comparison for new 
variant calling methods ​(Kim et al., 2018)​. There was no clear evidence of over-tuning methods 
to HG001, but performance was only assessed on relatively “easy” genomic regions accessible 
to the short-reads used to form the v3.2 GIAB benchmark sets ​(Zook et al., 2019)​.  

Since the first challenge, GIAB expanded the benchmarks beyond the easy regions of 
the genome and improved benchmarking methods. With the advent of accurate small variant 
calling from long reads using machine learning ​(Luo et al., 2020; Wenger et al., 2019)​, GIAB 
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has developed new benchmarks that cover more challenging regions of the genome ​(Chin et al., 
2019; Wagner et al., 2020)​, including challenging genes that are clinically important ​(Lincoln et 
al., 2020)​. In collaboration with the Global Alliance for Genomics and Health (GA4GH), the 
GIAB team defined best practices for small variant benchmarking ​(Krusche et al., 2019)​. These 
best practices provide criteria for performing sophisticated variant comparisons that account for 
variant representations differences along with a standardized set of performance metrics. To 
improve insight into strengths and weaknesses of methods, for this work we developed new 
stratifications by genomic context (e.g. low complexity or segmental duplications). The stratified 
benchmarking results allow users to identify genomic regions where a particular variant calling 
method performs well and where to focus optimization efforts. 

In light of recent advances in genome sequencing, variant calling, and the GIAB 
benchmark set, we conducted a follow up truth challenge from May to June 2020. The Truth 
Challenge V2 (​https://precision.fda.gov/challenges/10 ​) occurred when the v4.1 benchmark was 
available for HG002, but only v3.3.2 benchmark was available for HG003 and HG004. In 
addition to making short-read datasets available (at a lower 35X coverage than the first Truth 
Challenge), this challenge included long-reads from two technologies to assess performance 
across a variety of data types. This challenge made use of the robust benchmark tools and 
stratification BED files developed by the GA4GH Benchmarking Team and GIAB to assess 
performance in particularly difficult regions like segmental duplications and the Major 
Histocompatibility Complex (MHC) ​(Cleary et al., 2015; Krusche et al., 2019; McDaniel et al., 
2020)​. With 64 submissions across the three technologies, the results from this challenge 
provide a new baseline for performance to inspire ongoing advances in variant calling 
particularly for challenging genomic regions. 

Results 
Participants were tasked with generating variant calls as VCF files using data from one 

or multiple sequencing technologies for the GIAB Ashkenazi Jewish trio, available through the 
precisionFDA platform (Fig. 1). Sequencing data were provided as FASTQ files from three 
technologies: Illumina, Pacific Biosciences (PacBio) HiFi, and Oxford Nanopore Technologies 
(ONT), for the three human samples. The read length and coverage of the sequencing datasets 
were selected based on the characteristics of datasets used in practice and manufacturer 
recommendations (Table 1). Participants used these FASTQ files to generate variant calls 
against the GRCh38 version of the human reference genome. 
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Figure 1: Truth Challenge V2 structure. ​Participants were provided sequencing reads (FASTQ files) 
from Illumina, PacBio HiFi, and ONT for the GIAB Ashkenazi trio (HG002, HG003, and HG004). 
Participants uploaded VCF files for each individual before the end of the challenge, and then the new 
benchmarks for HG003 and HG004 were made public. 
 
Table 2: Sequencing dataset characteristics.​ Read Length - N50 used to summarize PacBio and ONT 
read lengths. Coverage - median coverage across autosomal chromosomes.  

5 

Technology GIAB ID Read Length (bp) Number of Reads Coverage 

Illumina HG002 2X151 415,086,209 35 

 HG003 2X151 419,192,650 35 

 HG004 2X151 420,312,085 35 

PacBio HiFi HG002 12,885 8,449,287 36 

 HG003 14,763 7,288,357 35 

 HG004 15,102 7,089,316 35 

ONT HG002 50,380 19,328,993 47 

 HG003 44,617 23,954,632 85 

 HG004 48,060 29,319,334 85 
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Twenty teams participated in the challenge with a total of 64 submissions, with multiple 
submissions from a number of teams (Fig.2, Supplemental Table 1). Challenge participants 
submitted variant callsets that were generated using one or more sequencing technologies, 
Illumina, PacBio HiFi, and ONT Ultralong (see methods for datasets descriptions). For single 
technology submissions, Illumina was the most common (24 out of 44), followed by PacBio (17), 
and ONT (3). PacBio was used in all 20 of the multiple technology submissions, Illumina was 
used in all but one, and seven submissions used data from all three technologies. Submissions 
used a variety of variant calling methods based on machine learning (ML; e.g. DeepVariant), 
graph (e.g., DRAGEN and Seven Bridges), and statistical (e.g. GATK) methods. See 
supplemental material submission methods for participant variant calling methods. Notably, a 
majority of submissions used ML-based variant calling methods (Fig. 2B). This was particularly 
true for long-read and multi-technology submissions, with 37 out of 40 using an ML-based 
method. 

 
Figure 2: Challenge submission breakdown by (A) technology and (B) type of variant caller used.  
 

Submissions were evaluated based on the averaged parents’ F1 scores for combined 
SNVs and INDELs. In all benchmark regions, the top performing submissions combined all 
technologies, followed by PacBio HiFi, Illumina, and ONT, with PacBio HiFi submissions having 
the best single-technology performance in each category (Fig. 3, Table 2). In contrast to all 
benchmark regions, submissions based on ONT performed better than Illumina in 
difficult-to-map regions despite ONT’s higher indel error rate. In fact, ONT-based variant calls 
had slightly higher F1 scores in difficult-to-map regions than in all benchmark regions, because 
the benchmark for difficult-to-map regions excludes homopolymers longer than 10 bp that are 
called by PCR-free short reads in easy-to-map regions. The best-performing short-read callsets 
(DRAGEN and Seven Bridges) used graph-based approaches, and the best-performing 
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long-read callsets used ML (DeepVariant+PEPPER, NanoCaller, Sentieon, and Roche). 
Performance varied substantially across stratifications, with the best-performing 
multi-technology callsets having similar overall performance, although with error rates that 
varied by a factor of 10 in the Major Histocompatibility Complex (MHC).  

 

 
Figure 3: Overall performance (A) and submission rank (B) varied by technology and stratification 
(log scale). ​Generally, submissions that used multiple technologies (MULTI) outperformed single 
technology submissions for all three genomic context categories. Panel A shows a Histogram of F1 % 
(higher is better) for the three genomic stratifications evaluated. Submission counts across technologies 
are indicated by light grey bars and individual technologies by colored bars. Panel B shows individual 
submission performance. Data points represent submission performance for the three stratifications 
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(difficult-to-map regions, all benchmark regions, MHC), and lines connect submissions. Category top 
performers are indicated by diamonds with "W”s and labeled with Team names. 
 
Table 2: Summary of Challenge Top Performers. ​One winner was selected for each 
Technology/Genomic Region combination, and multiple winners were awarded in the case of ties.  
Winners were selected based on submission F1 score (SNV plus INDELs) for the blinded samples, 
HG003 and HG004.  

* Tied 

Challenge Highlights Innovations in Characterizing 
Clinically-important MHC  
The medically relevant yet difficult to characterize MHC plays an important role in the immune 
response, for example recent research suggests HLA types encoded in the MHC plays a role in 
COVID severity ​(Nguyen et al., 2020)​. The MHC is a highly polymorphic ~5 Mb region of the 
genome that is particularly challenging for short-read methods (Fig. 4). In spite of difficulties 
associated with variant calling in this region, the Illumina graph-based pipeline developed by 
Seven Bridges ​(Rakocevic et al.)​ performed especially well in MHC (F1: 0.992). The Seven 
Bridges GRAF pipeline used in the Truth Challenge V2 utilizes a pan-genome graph that 
captures the genetic diversity of many populations around the world, resulting in a graph 
reference that accurately represents the highly polymorphic nature of the MHC region enabling 
improved read alignment and variant calling performance. The MHC region is more easily 
resolved with long-read based methods as these are more likely to map uniquely in the region. 
The ONT-NanoCaller Medaka (F1: 0.941) ensemble submission performed well on MHC, 

8 

Technology Genomic Region Participant F1 

MULTI All Benchmark Regions​* Sentieon 0.999 

MULTI All Benchmark Regions​* Roche Sequencing Solutions 0.999 

MULTI All Benchmark Regions​* The Genomics Team in Google Health 0.999 

MULTI Difficult-to-Map Regions Roche Sequencing Solutions 0.994 

MULTI MHC Sentieon 0.998 

ILLUMINA All Benchmark Regions DRAGEN 0.997 

ILLUMINA Difficult-to-Map Regions DRAGEN 0.969 

ILLUMINA MHC Seven Bridges Genomics 0.992 

PACBIO All Benchmark Regions The Genomics Team in Google Health 0.998 

PACBIO Difficult-to-Map Regions Sentieon 0.993 

PACBIO MHC Sentieon 0.995 

ONT All Benchmark Regions The UCSC CGL and Google Health 0.965 

ONT Difficult-to-Map Regions The UCSC CGL and Google Health 0.983 

ONT MHC Wang Genomics Lab 0.972 
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particularly for SNVs (F1: 0.992) and is the only method that performed as well in MHC as in all 
genomic benchmarking regions for SNVs. In general, submissions utilizing long-read 
sequencing data performed better than those only using short-read data. The difference in 
performance is less significant for INDELs than SNVs and likely due to differences in the 
sequencing error profile between the short- and long-read sequencing methods. INDELs were 
the dominant error type for both long-read sequencing methods and SNVs were the dominant 
error type for Illumina sequencing.  
 

 
Figure 4: Submission performance comparison for F1 metric between MHC, all benchmark regions 
and difficult to map regions. ​Points above the diagonal black line perform better in MHC relative to all 
benchmark regions or the difficult to map regions. Submissions with the largest difference in performance 
between MHC and “Difficult-to-Map” or “All Benchmark Regions” for each subplot are labeled. 
SevenBridges - is a graph-based short read variant caller. ONT ensemble - is an ensemble of ONT 
variant callers NanoCaller, Clair and Medaka. PEPPER-DV - is the ONT PEPPER-DeepVariant 
haplotype-aware machine learning variant calling pipeline.  
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Comparing performance for blinded and semi-blinded samples 
reveals possible over-tuning of some methods 
Differences in performance were observed between the unblinded (HG002) and semi-blinded 
genomes (HG003 and HG004). We used the error rate ratio defined as the ratio of 1-F1 for the 
parents to the son (Eq. 1). The error rate ratio was generally larger for ML methods compared to 
non-ML methods and for long-read technologies compared to short-read technologies (Fig. 5). 
These error rate ratio differences are likely due to a combination of factors including differences 
in the sequence dataset characteristics between the three genomes, differences in the 
benchmark sets, and participants’ use of HG002 for model training and parameter optimization. 
Illumina variant call sets generally had smaller F1 score differences (median 1.06, range 0.98 - 
4.38) regardless of the variant calling method used. The smaller error rate ratio may at least 
partially be due to the Illumina datasets being more consistent in coverage and base quality 
across the three genomes compared to the long-read datasets (Table 1, Fig. S1). For 
statistical-based variant callers such as GATK, differences in performance tend to be less than 
those among ML-based methods, especially for Illumina data. This smaller error rate ratio is 
likely due to the maturity of short-read variant calling compared to variant calling from long 
reads with ML-based variant callers. For the ONT-only variant callsets, the error rate ratio was 
less than 1, as the parents had higher F1 scores compared to the unblinded son. This is 
potentially due to the parents’ ONT datasets having higher coverage (85X) than the son’s (47X). 
The degree to which the ML models were over tuned to the training genome (HG002) and 
datasets as well as the impact of any over-tuning on variant calling accuracy warrants future 
investigation, but highlights the importance of transparently describing the training process. For 
the statistical-based variant callers, the observed drop in performance between the blinded and 
unblinded samples was likely due to optimizing algorithm parameters for HG002. Note that the 
parents do not represent fully blinded, orthogonal samples, since HG002 shares variants with at 
least one of the parents, and previous benchmarks were available for the easier regions of the 
parents’ genomes. These results highlight the need for multiple benchmark sets, sequencing 
datasets, and the value of established data types and variant calling pipelines.  
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Figure 5: Ratio of error rates using semi-blinded parents’ benchmark vs. public son’s benchmark. 
(A) Submissions ranked by error rate ratio. (B) Comparison of error rate ratio to the overall performance 
for the parents (F1 in all benchmarking regions, as defined in eq. 1). Error rate defined as 1 - F1. 
 

Improved benchmark sets and stratifications reveal innovations in 
sequencing technologies and variant calling since the 2016 
challenge 

Since the first Truth Challenge held in 2016, variant calling, sequencing, and GIAB 
benchmark sets have substantially improved. The SNV error rates of the Truth Challenge V1 
winners decrease by as much as 10-fold when benchmarked against the new V4.2 benchmark 
set, compared to the V3.2 benchmark set used to evaluate the first truth challenge (Fig. 6A). 
The V4.2 benchmark set covers 7% more of the genome than V3.2 (92% compared to 85% for 
HG002 on GRCh38), most importantly enabling robust performance assessment in 
difficult-to-map regions and the MHC ​(Wagner et al., 2020)​. The performance difference is more 
significant for SNVs compared to INDELs because the overall INDEL error rate is higher. 
Despite the higher coverage (50X) Illumina data used in the first challenge, several Illumina-only 
submissions from the V2 challenge performed better than all of the V1 challenge winners (Fig. 
6B). This result highlights significant improvements in variant caller performance for short reads. 
Furthermore, advances in sequencing technologies have led to even higher accuracy, 
particularly in difficult-to-map regions. Improvements to the benchmarking set has allowed for 
more accurate variant benchmarking and, in turn, facilitated advances in variant calling 
methods, particularly ML-based methods which depend on the benchmark set for model 
training.  
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Figure 6: Comparison of benchmarking performance for (A) different benchmark sets and (B) 
challenges. ​ (A) The 2016 (V1) Truth Challenge top performers F1 performance metric for SNVs and 
INDELs benchmarked against the V3.2 benchmark set (used to evaluate the first challenge) and V4.2 
benchmark set (used to evaluate the second challenge). Performance metrics for the same variant calls 
decrease substantially vs. the V4.2 benchmark set because it includes more challenging regions. (B) 
Performance of V1 challenge top performers (using 50X Illumina sequencing) compared to V2 
submissions (using only 35X Illumina sequencing) for the combined SNV and INDEL F1 metric and the 
V4.2 benchmark set used to evaluate the second truth challenge. The black horizontal lines represent the 
performance for the overall top performer, regardless of technology used, for each stratification. For the 
first challenge variant call sets for the blinded HG002 against GRCh37 were used to evaluate 
performance and for the second challenge variant calls for the semi-blinded HG003 and HG004 against 
GRCh38 were used to evaluate performance.  

New stratifications enable comparison of method strengths  
As an example of the utility of stratifying performance in a more detailed way by genomic 
context with the new stratifications, we compared the ONT PEPPER-DeepVariant (ONT-PDV) 
submission to the Illumina DeepVariant (Ill-DV) submission (Fig. 7). The ONT-PDV submission 
has comparable overall performance to the Ill-DV submission for SNVs, providing an F1 of 
99.64% and 99.57%, respectively, but performance differs >100-fold in some genomic context. 
Ill-DV SNV calls were more accurate in homopolymers and tandem repeats shorter than 200 bp 
in length. In contrast, ONT-PDV consistently had higher performance for segmental 
duplications, large tandem repeats, L1H, and other regions that are difficult to map with short 
reads. Due to the currently higher INDEL error rate for ONT R9.4 reads, Ill-DV INDEL variant 
calls are more accurate for nearly every genomic context, and the F1 for INDELs in all 
benchmark regions was 99.59% for Ill-DV compared to 72.54% for ONT-PDV. This type of 
analysis can help determine the appropriate method for a desired application, and understand 
how the strengths and weaknesses of technologies could be leveraged when combining 
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technologies. High performing multi-technology submissions successfully incorporated callsets 
from multiple technologies by leveraging the additional coverage and complementary strengths 
of different technologies. 
 

 
Figure 7: Comparison of ONT PEPPER-DeepVariant variant callset performance to Illumina 
DeepVariant by genomic context. ​Points above and below the diagonal line indicate stratifications 
where ONT PEPPER-DeepVariant submission performance metric was higher than the Illumina 
DeepVariant submission. The points are colored by stratification category.  

13 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted February 3, 2021. ; https://doi.org/10.1101/2020.11.13.380741doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.380741


 
 

Discussion 
Public genomics community challenges, such as the precisionFDA Truth Challenges 

described here, provide a public baseline for independent performance evaluation at a point in 
time against which future methods can be compared. It is important to recognize the 
advancements and limitations of the benchmarks used in these challenges. For example, the 
GIAB V3.2 benchmark set used to evaluate the first precisionFDA Truth Challenge submissions 
only included the easier regions of the genome 
(https://precision.fda.gov/challenges/truth/results), excluding most segmental duplications and 
difficult-to-map regions, as well as the highly polymorphic MHC. This is evidenced by the fact 
that when the first Truth Challenge winners were benchmarked against the new V4.2 
benchmark set, which included more difficult regions of the genome, the performance metrics 
decreased as much as 10-fold (Fig. 6A). It is important to note that these challenges are not just 
to compare and inspire new methods, but to give the research and clinical sequencing 
community insight into what is currently possible in terms of accuracy and which methods might 
be applicable to the experiment in mind.  

Public community challenges further help drive the methods development. A number of 
ground-breaking mapping+variant calling pipelines were developed, optimized, and made 
available as part of this challenge. For example, the new experimental DRAGEN method used 
graph-based mapping and improved statistical variant calling approaches to call variants in 
segmental duplications and other regions previously difficult to map with short reads. 
DRAGEN’s graph-based mapping method used alt-aware mapping for population haplotypes 
stitched into the reference with known alignments, effectively establishing alternate graph paths 
that reads could seed-map and align to. This reduced mapping ambiguity because reads 
containing population variants were attracted to the specific regions where those variants were 
observed. The Seven Bridges GRAF pipeline used genome graphs to align reads and call 
variants in the whole genome. The graph reference is constructed by augmenting the linear 
genome reference with existing genetic information. A pan-genome graph capturing the genetic 
diversity of many populations around the world was used by the Seven Bridges team for the 
challenge. The pan-genome graph was constructed by incorporating multiple variant databases 
(such as 1000 Genomes, Simons Diversity Project, gnomAD) and also relocating the alt-contigs 
in the GRCh38 assembly to their canonical positions as alternate haplotypes/edges on the 
graph reference. This results in a graph reference that can accurately represent, for instance, 
the highly polymorphic nature of the MHC region and therefore enable improved read alignment 
and variant calling performance in this region by the Seven Bridges GRAF pipeline. 

For the long read methods, innovative machine learning-based methods were developed 
for this challenge. The PEPPER-DeepVariant used new approaches for selecting candidate 
variants and called genotypes accurately for small variants despite the relatively high error rate 
in raw ONT reads. Several new ML methods enabled highly accurate variant calling from the 
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new PacBio HiFi technology. While different sequencing technologies have different strengths, 
robust integration of data from different technologies is challenging. Several submissions used 
new approaches to integrate multiple technologies and leverage the independent 
technology-specific information as well as additional coverage from the combining data to 
perform better than any individual technology.  

Along with the new benchmark set and sequencing data types, we used new genomic 
stratifications to evaluate submission performance in different contexts, highlighting methods 
that performed best in particularly challenging regions. For example, the Seven Bridges GRAF 
Illumina and NanoCaller ONT submissions performed particularly well in the MHC, and the 
Sentieon PacBio HiFi submission performed particularly well in both the MHC and 
difficult-to-map regions. These submissions might have been overlooked if the performance was 
not stratified by context. The new stratifications presented here represent a valuable resource to 
the community for use in evaluating and optimizing variant calling methods. Stratifying 
performance by genomic context can be valuable in at least three ways including 1) assessing 
the strengths and weaknesses of a method for different genome contexts and variant types, 
which is, for example, critical in clinical validation of bioinformatics methods ​(Roy et al., 2018)​; 
2) aide in understanding which variants are not assessed by the benchmark; and 3) aide in 
selecting the technology and bioinformatics methods that are best suited for the genomic 
regions of interest, e.g. MHC.  

Deep learning and ML have advanced variant calling, particularly by enabling faster 
adoption of new sequencing technologies. In this context, care should be taken to evaluate 
over-training and be transparent about the data used for training, tuning and testing. Based on 
results from this challenge, there is likely at least some overfitting to training samples. 
Overtraining can occur both to the individual (HG002) and to the properties of the particular 
sequencing runs that are used for training. Non-ML methods can also overfit, because coding 
and parameter selection will be guided by performance on the development set. For example, 
short-read variant callers that use information from long-read sequencing datasets may perform 
better for samples or populations included in the long-read data. Similarly, methods using graph 
references may perform better for samples or populations used in constructing the graph. 
Having clear provenance of training samples including multiple ethnicities and regions is 
important for the field. These results also highlight the importance of developing additional 
genomically diverse benchmark sets. 

This challenge spurred the development and public dissemination of a diverse set of 
new bioinformatics methods for multiple technologies. It provides a public resource for capturing 
method performance at a point in time, against which future methods can be compared. New 
versions of these methods and new methods will continue to improve upon the methods 
presented here. For example, immediately after the challenge, two different participants 
combined the strengths of a new mapping method for long reads from one submission 
(winnowmap) with a new variant calling method from another submission 
(PEPPER-DeepVariant) to get improved results (Fig. S3)​(Jain et al., 2020)​. The GIAB 
benchmarks help enable the ongoing improvements, and GIAB/GA4GH benchmarking tools 
enable identification of strengths and weaknesses of any method in stratified genome contexts. 
The new variant calling methods presented in this challenge can help improve future versions of 
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benchmarks that will be critical as variant calling methods and sequencing technologies 
continue to improve, thus driving the advancement of research and clinical sequencing.  
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Materials availability 
DNA extracted from a single large batch of cells for each genome is publicly available in 
National Institute of Standards and Technology Reference Material 8392. Cell lines from which 
these DNA are extracted are publicly available as GM24385 (RRID:CVCL_1C78), GM24149 
(RRID:CVCL_1C54), and GM24143 (RRID:CVCL_1C48) at the Coriell Institute for Medical 
Research National Institute for General Medical Sciences cell line repository. 

Data and Code Availability 
Input sequencing data, participant submitted VCFs, and benchmarking results are available at 
https://doi.org/10.18434/mds2-2336 ​. Sequencing data are available on the precisionFDA 
platform and SRA, see Supplemental Material and methods for additional information. Code 
used to analyze challenge results presented in the manuscript and benchmarking results files 
are available at ​https://github.com/usnistgov/giab-pFDA-2nd-challenge ​.  

Methods 
 

The samples were sequenced under similar sequencing conditions and instruments 
across the three genomes. For the Illumina dataset, 2x151 bp high coverage PCR-free library 
was sequenced on the NovaSeq 6000 System (manuscript in-prep). The datasets were 
downsampled to 35X based on recommended coverage used in variant calling. The full 50X 
datasets were downsampled to 35X using seqtk (​https://github.com/lh3/seqtk​) and the following 
command ​seqtk sample -s100 {fastq} 0.752733763. ​For PacBio HiFi, we used the library size and 
coverage recommended at the time by PacBio for variant calling, ~35X 15 kb libraries. For 
HG002, 4 SMRT Cells were sequenced using the Sequel II System with 2.0 chemistry. 
Consensus basecalling was performed using the “Circular Consensus Sequencing” analysis in 
SMRT Link v8.0, ccs version 4.0.0. Data from the 15 kb library SMRT Cells were merged and 
downsampled to 35X. The combined flowcell FASTQs were downsampled using seqtk 
(v1.3r106, ​https://github.com/lh3/seqtk​) to a median coverage across chromosomes 1 to 22 of 
35X. Coverage was verified by mapping reads to GRCh38 using minimap2 ​(Li, 2018)​ and 
coverage was calculated with mosdepth v0.2.9 ​(Pedersen and Quinlan, 2018)​ using a window 
size of 10 kb. The PacBio HiFi data are available on SRA under the following BioProjects; 
HG002 - PRJNA586863, HG003 - PRJNA626365, and HG004 - PRJNA626366. The ONT 
dataset was generated using the unsheared DNA library prep, methods described elsewhere 
(Shafin et al., 2020)​, and consisted of pooled sequencing data from three PromethION R9.4 
flowcells. Basecalling was performed using Guppy Version 3.6 
(​https://community.nanoporetech.com​). Data from three ONT PromethION flow cells were used 
for each of the 3 genomes, but the resulting coverage was substantially higher for the parents 
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(85X) than the child (47X) with similar read length distributions (Fig. S2). See Supplemental 
Material for links to the FASTQ files provided to participants on the precisionFDA platform.  
 

The HG002 V4.1 benchmark set was unblinded and available to participants for model 
training and methods development. We used the blinded HG003 and HG004 V4.2 benchmark 
sets to evaluate performance. The V4.1 and V4.2 benchmark sets are the latest versions of the 
GIAB small variant benchmark set, which utilize long- and linked-read sequencing data to 
expand the benchmark set into difficult regions of the genome ​(Wagner et al., 2020)​. Prior to 
submission, participants could benchmark their HG002 variant callsets using the precisionFDA 
comparator tool (​https://precision.fda.gov/apps/app-F5YXbp80PBYFP059656gYxXQ-1 ​, a free 
precisionFDA account is required for access). The comparator tool is an implementation of the 
GA4GH small variant benchmarking tool hap.py ​(Krusche et al., 2019, 
https://github.com/Illumina/hap.py)​ with vcfeval ​(Cleary et al., 2015)​ on the precisionFDA 
platform. The same comparator tool was used to evaluate submission performance against the 
HG003 and HG004 V4.2 benchmark sets. To evaluate performance for different genomic 
contexts, the V2.0 genome stratifications were used (​https://data.nist.gov/od/id/mds2-2190​). 
Submissions were evaluated using the geometric mean of the HG003 and HG004 combined 
SNVs and INDELs F1 scores (eq. 1). We use the error rate ratio (ERR), defined as the ratio of 
1-F1 for the parents to the son.  
 
Eq. 1 

1 2 Recall recision)/(Recall Precision)F =  × ( × P +   
  F1parents =  √F1  HG003 × F1HG004  

RR (1 )/(1 )E =  − F1parents − F1HG002  
 
The V2.0 genome stratifications are an update to the GA4GH genomic stratifications 

utilized by hap.py ​(Krusche et al., 2019)​. The V2.0 stratifications are a pared down set of 
stratifications with improved strata for complex regions, such as tandem repeats and segmental 
duplications, as well as new genome-specific stratifications for suspected copy number variants 
(CNVs) and known errors in the reference genome (Table 3). The GRCh38 V2.0 stratifications 
includes 127 stratifications. See supplemental material for a detailed description of the genomic 
stratifications. 

 
Table 3: Summary table of the V2.0 GIAB genome stratifications. ​The new stratification set includes 
the union of multiple stratifications as well as “not in” stratifications, which are useful in evaluating 
performance outside specific difficult genomic contexts.  

18 

Stratification Group Description # Strats Example 
Stratifications 

Useful for  

FunctionalRegions Coding regions 2 CDS, not in CDS Evaluating performance in coding regions 
more likely to be functional 

GC-content Various ranges of 
GC-content 

14  GC < 25%; 30% < 
GC < 55% 

identifying GC bias in variant calling 
performance 
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Participant-provided variant calling methods are included as Supplemental Table 1. 

Fifteen of the twenty participants, including all the challenge winners, provided methods to be 
made publicly available for this manuscript, a requirement for co-authorship. A random unique 
identifier was generated for every submission. For participants intending to remain anonymous, 
the unique identifier was used as the participant and submission names in the methods 
description.  
 

To better understand how improvements in variant calling methods, sequencing 
technologies, and benchmark sets affect performance metrics, we benchmarked the first 
challenge winners against the new benchmark. For the first challenge, participants submitted 
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Low Complexity  22  evaluating performance in locally repetitive, 
difficult to sequence contexts 

- Homopolymers Identification of 
homopolymers by 
length 

4 Homopolymers > 
101 bp; imperfect 
homopolymers > 
10 bp 

evaluating performance in homopolymers, 
where systematic sequencing errors and 
complex variants frequently occur 

- Simple Repeats Di, tri, and 
quad-nucleotide 
repeats of different 
lengths 

9 Di-nucleotide 
repeats 11-50 bp; 
di-nucleotide 
repeats > 200 bp 

evaluating performance in exact Short 
Tandem Repeats where systematic 
sequencing errors and complex variants 
frequently occur, and variant calls are 
challenging if the read length is insufficient to 
traverse the entire repeat 

- Tandem 
Repeats 

Tandem repeats of 
different lengths 

5 Tandem repeats 
between 51 - 200 
bp; tandem 
repeats > 10 kb 

evaluating performance in exact Short 
Tandem Repeats and Variable Number 
Tandem Repeats where systematic 
sequencing errors and complex variants 
frequently occur, and variant calls are 
challenging if the read length is insufficient to 
traverse the entire repeat 

Other Difficult Various difficult 
regions of the 
genome 

6 MHC; VDJ evaluating performance in or excluding 
regions where variants are difficult to call and 
represent due to limitations of the reference 
genome (e.g. gaps or errors) or being highly 
polymorphic in the population (MHC). 

Segmental 
Duplications 

Segmental 
duplications 
defined using 
multiple methods 
and limited to 
segdups > 10kb 

9 Segdups > 10 kb; 
selfChain 

Regions with multiple similar copies in the 
reference, making them challenging to map 
and assemble. 

Genome Specific Difficult regions of 
the genome 
specific to one or 
more of the GIAB 
genomes. 
Including but not 
limited to complex 
variants, copy 
number variants, 
and structural 
variants. 

65 CNVs, complex 
variants 

evaluating performance in or excluding 
regions in each GIAB reference sample 
where small variants can be challenging to 
call (e.g., complex variants) or represent 
(e.g., CNVs and SVs) 
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variant calls for HG001 and HG002 against GRCh37 using Illumina short-read sequencing data, 
2x150 bp 50X coverage (higher than the more commonly used 35X in the V2 Challenge). We 
benchmarked the winners of the first challenge 
(​https://precision.fda.gov/challenges/truth/results​) against the V4.2 HG002 GRCh37 benchmark 
set. The performance metrics for the V3.2 benchmark set were obtained from the precisionFDA 
challenge website. 
 

The input benchmarking results and code used to perform the analyses presented below 
are available (​https://github.com/usnistgov/giab-pFDA-2nd-challenge ​). The statistical 
programming language R was used for data analysis. Rmarkdown was used to generate 
individual results ​(Xie et al., 2020)​. Packages in the Tidyverse were used for data manipulation 
and plotting specifically ggplot, tidyr, and dplyr ​(Wickham et al., 2019)​.  
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Supplemental Figures 

 
Figure S1: Read length and sequence quality score distributions for the three PacBio HiFi 
datasets. ​Sequence data metrics were calculated using FastQC. 

 

Figure S2: Read length distribution for the three ONT PromethION datasets.  
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Figure S3: Comparison of submitted version of the ONT PEPPER-DeepVariant variant callset 
performance to an updated version. ​After the challenge ended a new mapping algorithm for long read 
data, winnowmap, was released. Winnowmap uses weighted minimizers to improve read mapping in 
repetitive genomic regions (​https://doi.org/10.1093/bioinformatics/btaa435 ​). The updated variant callset 
utilizes this new read mapping algorithm in its pipeline. Points above and below the diagonal line indicate 
stratifications where the updated callset performance metric was higher than the challenge submission. 
The points are colored by stratification category.   
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Supplemental Material 

Challenge Sequencing Datasets 
Links to FASTQ files provided to challenge participants on the precisionFDA platform. A free 
precisionFDA account is required for file access.  
 
HG002 (NA24385) 

● Illumina 
○ precisionFDA:  

■ HG002.novaseq.pcr-free.35x.R1.fastq.gz 
■ HG002.novaseq.pcr-free.35x.R2.fastq.gz 

● PacBio HiFi 
○ precisionFDA: ​HG002_35x_PacBio_14kb-15kb.fastq.gz 
○ SRA:  

■ Bioproject: PRJNA586863 
■ Accessions: SRX7083054, SRX7083055, SRX7083056, and 

SRX7083057 
● Oxford Nanopore 

○ precisionFDA: ​HG002_GM24385_1_2_3_Guppy_3.6.0_prom.fastq.gz 

HG003 (NA24149) 

● Illumina 
○ precisionFDA:  

■ HG003.novaseq.pcr-free.35x.R1.fastq.gz 
■ HG003.novaseq.pcr-free.35x.R2.fastq.gz 

● PacBio HiFi 
○ precisionFDA: ​HG003_35x_PacBio_14kb-15kb.fastq.gz 
○ SRA 

■ Bioproject Accession: PRJNA626365 
■ SRA Accessions: SRX8136474, SRX8136475, SRX8136476, and 

SRX8136477 
● Oxford Nanopore 

○ precisionFDA: ​HG003_GM24149_1_2_3_Guppy_3.6.0_prom.fastq.gz 

HG004 (NA24143) 

● Illumina 
○ precisionFDA:  

■ HG004.novaseq.pcr-free.35x.R1.fastq.gz 
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■ HG004.novaseq.pcr-free.35x.R2.fastq.gz 
● PacBio HiFi 

○ precisionFDA: ​HG004_35x_PacBio_14kb-15kb.fastq.gz 
○ SRA 

■ Bioproject Accession: PRJNA626366 
■ SRA Accessions: SRX8137018, SRX8137019, SRX8137020, and 

SRX8137021 
● Oxford Nanopore 

○ precisionFDA: ​HG004_GM24143_1_2_3_Guppy_3.6.0_prom.fastq.gz 

Genome Stratifications 
The Global Alliance for Genomics and Health (GA4GH) Benchmarking Team and the 
Genome in a Bottle (GIAB) Consortium v2.0 stratification BED files are intended as 
standard resource of BED files for use in stratifying true positive, false positive, and 
false negative variant calls. The stratification BED files can be accessed from the NIST 
Public Data Repository, ​https://data.nist.gov/od/id/mds2-2190​. ​All stratifications that 
utilize the GRCh38 reference use the reference without decoy or ALT loci 
(ftp://​ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/
seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis
_set.fna.gz ​, link checked 08/31/2020).  
 
Functional Regions 
Two Functional Region stratifications were created to stratify variants inside and outside 
of coding regions. The coding regions were extracted from the RefSeq GFF file 
( ​https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/405/GCF_000001405.39_GRCh
38.p13/GCF_000001405.39_GRCh38.p13_genomic.gff.gz​, ​link checked 08/31/2020) ​. 
Non-overlapping complement regions for some stratifications are also provided, as 
“notin” files.  
 
GC Content 
Fourteen GC content stratifications were created to stratify variants into different ranges 
of GC content. Using the seqtk algorithm (​https://github.com/lh3/seqtk ​, link checked 
08/31/20) with the GRCh38 reference,  >=x bp regions with >y% or <y% GC were 
identified. The output was further processed to generate 100 bp ranges of GC with an 
additional 50 bp slop on either side ​(Ross et al., 2013) ​.  
Note that after adding 50 bp slop, 274,889 bp overlap between gc30 and gc65, or 
0.05% of gc30 and 0.5% of gc65, or 0.07% of gc30 and 0.5% of gc65. The BED files 
with different GC ranges are almost exclusive of each other, but not completely. 

26 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted February 3, 2021. ; https://doi.org/10.1101/2020.11.13.380741doi: bioRxiv preprint 

https://precision.fda.gov/files/file-FpZG9Jj0xbJpY09b1vfvgbbv-1
https://precision.fda.gov/files/file-FpvKxv80vzGJ1xQK9GX5qG4k-1
https://precision.fda.gov/files/file-Fpk3VZQ0fQXKP8xk381VGYvg-1
https://data.nist.gov/od/id/mds2-2190
http://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
http://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
http://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/405/GCF_000001405.39_GRCh38.p13/GCF_000001405.39_GRCh38.p13_genomic.gff.gz
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/405/GCF_000001405.39_GRCh38.p13/GCF_000001405.39_GRCh38.p13_genomic.gff.gz
https://github.com/lh3/seqtk
https://paperpile.com/c/oMuW7u/oTNu
https://doi.org/10.1101/2020.11.13.380741


We chose to stratify regions with <30% or >55% GC because these regions had 
decreased coverage or higher error rates for at least one of the technologies in Ross et 
al. ​(2013) ​, and we added 55-60 and 60-65 because we found increased error rates in 
these tranches in exploratory work. 
 
Genome Specific 

For each GIAB genome, Genome Specific stratifications were created to identify 
variants in difficult regions due to potentially difficult variation in the NIST/GIAB sample, 
including (1) regions containing putative compound heterozygous variants, (2) regions 
containing multiple variants within 50 bp of each other, (3) regions with potential 
structural variation and copy number variation. GRCh37 stratifications were generated 
using vcflib vcfgeno2haplo and Unix commands to identify complex and compound 
variants in benchmark VCF files from GIAB ​(Zook et al., 2019) ​ for all samples, as well 
as Platinum Genomes ​(Eberle et al., 2017)​, and Real Time Genomics ​(Cleary et al., 
2014)​ for HG001/NA12878. To generate GRCh38 Genome Specific stratifications, the 
GRCh37 Genome Specific complex/compound/SVs BED files were remapped to 
GRCh38 using the NCBI Remapping Service 
( ​https://www.ncbi.nlm.nih.gov/genome/tools/remap​). Non-overlapping complement 
regions for some stratifications are also provided, as “notin” files. 
 
Functional Technically Difficult 
The Functional Technically Difficult stratification is used in stratifying variants by 
different functional, or potentially functional, regions that are also likely to be technically 
difficult to sequence. A list of GRCh37 difficult-to-sequence promoters, “bad promoters”, 
was generated from Ross et al. ​(2013)​ supplementary file 
13059_2012_3110_MOESM1_ESM.TXT (link checked 08/31/2020).  The GRCh37 bad 
promoter-derived BED file was then remapped to GRCh38 using the NCBI remapping 
service ( ​https://www.ncbi.nlm.nih.gov/genome/tools/remap​).  
 
Low Complexity 
Twenty-two Low Complexity stratifications were created to identify variants in difficult 
regions due to different types and sizes of low complexity sequence (e.g., 
homopolymers, STRs, VNTRs, other locally repetitive sequences). To capture the full 
spectrum of repeats, we used a python script to extract Simple_repeats and 
Low_complexity repeats form the UCSC RepeatMasker-generated file 
( ​http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/rmsk.txt.gz​, date accessed 
07/22/2019) and UCSC TRF-generated file 
( ​http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/simpleRepeat.txt.gz​, date 
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accessed 07/22/2019). Non-overlapping complement regions for some stratifications 
are also provided, as “notin” files. 
 
Other Difficult 
We provide nine stratifications for GRCh37 and six stratifications for GRCh38 
representing additional difficult regions that do not fall into the other stratification groups. 
These regions include: (1) the VDJ recombination components on chromosomes 2, 14, 
and 22; (2) the MHC on chromosome 6; (3) L1Hs greater than 500 base pairs; (4) 
reference assembly contigs smaller than 500kb; and (5) gaps in the reference assembly 
with 15kb slop. In addition, we used alignments of GRCh38 to GRCh37 to identify 
regions that were expanded or collapsed between reference assembly releases. For 
GRCh37, we provide regions with alignments of either none or more than one GRCh38 
contig. We also provide regions where the hs37d5 decoy sequences align to GRCh37 
indicating potentially duplicated regions. We describe the identification of these regions 
while generating the new small variant benchmark in Wagner et al. ​(2020)​. We 
generated files containing the L1H subset of LINEs greater than 500 base pairs starting 
with the rmsk.txt.gz file from UCSC 
( ​https://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/rmsk.txt.gz​) and 
( ​http://hgdownload.cse.ucsc.edu/goldenPath/hg38/database/rmsk.txt.gz​) then identify 
entries with “L1H” and select those greater than 500 base pairs long.  
 
Segmental Duplications 
Nine Segmental Duplication stratifications were generated to identify whether variants 
are in segmental duplications or in regions with non-trivial self-chain alignments. 
Non-trivial self-chains are regions where one part of the genome aligns to another due 
to similarity in sequence, e.g., due to genomic duplication events. Segmental 
Duplications from UCSC 
( ​hgdownload.cse.ucsc.edu/goldenPath/hg38/database/genomicSuperDups.txt.gz​, link 
checked 08/31/20) were processed to generate stratifications of all segmental 
duplications, segmental duplications greater than 10 kb, and regions >10 kb covered by 
more than 5 segmental duplications with >99% identity ​(Bailey et al., 2001)​.  For 
stratifications that represent non-trivial alignments of the genome reference to itself, 
excluding ALT loci, the UCSC chainSelf 
( ​hgdownload.cse.ucsc.edu/goldenPath/hg38/database/chainSelf.txt.gz​, link checked 
08/31/20) and chainSelfLink 
( ​hgdownload.cse.ucsc.edu/goldenPath/hg38/database/chainSelfLink.txt.gz​, link 
checked 08/31/20) were used.  Together these files were used to produce stratifications 
for all chainSelf regions and regions greater than 10 kb. Non-overlapping complement 
regions for some stratifications are also provided, as “notin” files. 
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Mappability 
Four Mappability stratifications were created to stratify variant calls based on genomic 
region short read mappability. Regions with low mappability for different read lengths 
and error rates were generated using the GEM mappability program ​(Derrien et al., 
2012)​ and BEDOPS genomic analysis tools ​(Neph et al., 2012)​. Two sets of parameters 
were used representing low and high stringency short read mappability. 
Non-overlapping complement regions for some stratifications are also provided, as 
“notin” files. 
 
Union 
Four Union stratifications were created to identify whether variants are in, or not in, 
different general types of difficult regions or in any type of difficult region or complex 
variant. The all difficult stratification regions, is the union of all tandem repeats, all 
homopolymers >6 bp, all imperfect homopolymers >10 bp, all difficult to map regions, all 
segmental duplications, GC <25% or >65%, "Bad Promoters", and 
"OtherDifficultregions". Additionally stratifications are provided for the union of all 
difficult to map regions and all segmental duplications. For all stratifications, a “notin” 
non-overlapping complement is provided as “easy” regions for stratification.  
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