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ABSTRACT 

Cancer hallmark genes are responsible for the most essential phenotypic characteristics 

of malignant transformation and progression. In this study, our aim was to estimate the 

prognostic effect of the established cancer hallmark genes in multiple distinct cancer types. 

RNA-seq HTSeq counts and survival data from 26 different tumor types were acquired 

from the TCGA repository. DESeq was used for normalization. Correlations between gene 

expression and survival were computed using the Cox proportional hazards regression and by 

plotting Kaplan-Meier survival plots. The false discovery rate was calculated to correct for 

multiple hypothesis testing. 

Signatures based on genes involved in genome instability and invasion reached 

significance in most individual cancer types. Thyroid and glioblastoma were independent of 

hallmark genes (61 and 54 genes significant, respectively), while renal clear cell cancer and 

low grade gliomas harbored the most prognostic changes (403 and 419 genes significant, 

respectively). The eight genes with the highest significance included BRCA1 (genome 

instability, HR=4.26, p<1E-16), RUNX1 (sustaining proliferative signaling, HR=2.96, p=3.1E-

10) and SERPINE1 (inducing angiogenesis, HR=3.36, p=1.5E-12) in low grade glioma, CDK1 

(cell death resistance, HR=5.67, p=2.1E-10) in kidney papillary carcinoma, E2F1 (tumor 

suppressor, HR=0.38, p=2.4E-05) and EREG (enabling replicative immortality, HR=3.23, 

p=2.1E-07) in cervical cancer, FBP1 (deregulation of cellular energetics, HR=0.45, p=2.8E-07) 

in kidney renal clear cell carcinoma and MYC (invasion and metastasis, HR=1.81, p=5.8E-05) 

in bladder cancer. 

We observed unexpected heterogeneity and tissue specificity when correlating cancer 

hallmark genes and survival. These results will help to prioritize future targeted therapy 

development in different types of solid tumors.
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INTRODUCTION 

Pancancer projects help to analyze the similarities and differences among different types 

of cancer by investigating genomic, epigenomic, transcriptomic and proteomic traits of the 

tumors. A leading effort in the pancancer genomic field is the PanCancer Atlas from the TCGA 

consortium 1, which focuses on the transcriptome, on the genomic interactions between somatic 

drivers and germline mutations, on the links to the methylome, on the proteome and on the 

tumor microenvironment and their implications for targeted and immune therapies 2. 

During tumorigenesis, normal cells evolve to a neoplastic state in which they share 

common characteristics, including sustained proliferative signaling, loss of growth suppressors, 

apoptosis resistance, replicative immortality, angiogenesis induction, invasion and metastasis 

activation, genomic instability, inflammation, and energy metabolism reprogramming–the so-

called “hallmarks of cancer” 3 4. A comprehensive database of genes associated with diverse 

cancer hallmarks was recently established, enabling the selection of hallmark-specific genes to 

be measured in transcriptome-level studies 5. Altogether, 671 cancer genes were grouped into 

eight main hallmark categories; notably, some of the genes were linked simultaneously to 

multiple hallmarks 5. 

Analysis of gene expression contributed to the identification of molecular cancer 

subtypes capable of characterizing tumors and recognizing their biological characteristics, 

enabling the development of effectively targeted therapeutics. Single or multigene tests have 

been introduced to measure the deregulation of specific molecular pathways that can guide 

therapeutic decision-making by identifying genes that can serve as predictive or prognostic 

biomarkers. Breast cancer treatment is an outstanding example of a multigene decision tree-

based treatment decision support protocol. The decision tree includes human epidermal growth 

factor receptor 2 (HER2), estrogen receptor (ER), and progesterone receptor (PgR). The 

overexpression or amplification of HER2 is present in approximately 25% of breast cancer 

cases 6. HER2-overexpressing tumors treated with anti-HER2 (trastuzumab and pertuzumab) 

therapy have improved disease-free and overall survival 7. ER-positive tumors are eligible for 

endocrine therapy 8. Increased disease-free and overall survival time was obtained by targeting 

ER with the antiestrogen tamoxifen in breast cancer 9. PgR positivity helps to improve the 

identification of ER-positive patients. ER, HER2, and PgR define three molecular subtypes of 

breast cancer, each with different treatment modalities. Those patients who are negative for all 

three markers are designated as triple-negative breast cancer; these patients have generally 

worse prognoses and conversely need a more aggressive systemic therapy. 
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Establishing prognostic multigene classification protocols can contribute to the 

understanding of tumor biology and to better prediction of cancer progression and cancer 

treatment strategies. One important issue is the selection of the proper method for the 

combination of the genes. First, genes can be utilized independently in a decision tree, where 

each node can be based on a single gene. Second, when multiple genes are combined, the most 

widespread approach is to compute their mean expression and to use this new value as a 

surrogate for the activity of the entire signature. A third option is to combine multiple genes 

after assigning a different weight to each of them. With breast cancer as an example, such 

combined signatures are utilized in FDA-approved multigene signature platforms, including the 

76-gene signature, 21-gene signature and 70-gene signature platforms; all three of these can 

predict the prognosis of cancer under different conditions 10 11 12. 

In this study, our goal was to rank established cancer hallmark genes according to their 

correlation to survival in a large cohort of distinct cancer types. We also aimed to correlate the 

relevance of each cancer hallmark in each of the available tumor types by assessing the 

prognostic power of signatures comprising hallmark genes. 

 

METHODS 

Database setup 

All data processing steps and statistical analyses were performed in the R v3.5.2 

statistical environment (http://www.r-project.org). 

RNA sequencing (RNA-seq) data were utilized from the Cancer Genome Atlas (TCGA, 

https://cancergenome.nih.gov/). Only tumor types with more than 100 cancer specimens were 

included to ensure a robust sample number in each analysis. 

The RNA-seq HTSeq count data generated by the Illumina HiSeq 2000 RNA 

Sequencing Version 2 platform were used in the expression analyses. The “DESeq” package 

based on the negative binomial distribution was used to normalize the raw count data 13. The 

Bioconductor “AnnotationDbi” package (http://bioconductor.org/packages/AnnotationDbi/) 

was applied to annotate Ensembl transcript IDs with gene symbols (n=25,228). A second 

scaling normalization was performed to set the mean expression of all genes in each patient 

sample to 1,000 to reduce batch effects. 

For each sample, the preprocessed and annotated Mutation Annotation Format (MAF) 

data files that were generated by using MuTect2 for variant detection were used to compute the 

tumor mutation burden. The “maftools” package (http://bioconductor.org/packages/maftools/) 

was used for the aggregation and visualization of mutation data. 
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Defining cancer hallmark signatures 

Altogether, 671 cancer genes were grouped into eight hallmarks 4, based on gene 

assignment to hallmarks as described previously 5. The surrogate hallmark expression signature 

was calculated by computing the mean expression of all genes associated with the given 

hallmark in each tumor sample. 

Survival analysis and calculation of the strongest cutoff 

Cox proportional hazards regression analysis was performed to examine the correlation 

between gene expression and overall survival (OS). The “survival” R package v2.38 

(http://CRAN.R-project.org/package=survival/) was utilized to calculate log-rank P values, 

hazard ratios (HR) and 95% confidence intervals (CI). In addition, the survival differences were 

visualized by generating Kaplan-Meier survival plots. 

To maximize the sensitivity of the analysis and to uncover any potential correlation to 

survival independent of a preset cutoff value (e.g., median), we computed each possible cutoff 

between the lower and upper quartiles of expression. Then, each of these cutoff values was used 

in a separate Cox regression analysis. The false discovery rate (FDR) was computed to correct 

for multiple hypothesis testing, and the result was only accepted as significant in the case of 

FDR<10%. The best performing cutoff with the lowest P value was used in the final analysis 

when drawing the Kaplan-Meier plot. The calculation of the best cutoff is demonstrated via the 

CDK1 gene in kidney papillary carcinoma and ovarian cancer in Figure 1A and B. 

In addition, multivariate survival analysis was performed for the gene expression and 

clinical features to assess independence from known epidemiological and clinical variables, 

including race, sex, age, tumor stage and tumor grade. 

Data visualization 

Hierarchical clustering was applied to group and to visualize the survival-associated cancer 

hallmark genes in different types of cancer using the Genesis software 14. The “forestplot” R 

package (https://CRAN.R-project.org/package=forestplot) was used to examine the association 

of cancer hallmark gene signatures with OS across different types of cancer. The “survplot” R 

package (http://www.cbs.dtu.dk/~eklund/survplot/) was used to generate the Kaplan-Meier 

plots. 

 

RESULTS 

Transcriptomic database 

The complete dataset of RNA-seq samples with follow-up comprised 9,663 specimens 

from 26 distinct tumor types with breast cancer as the largest (n=1,090) and thymoma as the 
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smallest set (n=118). Across the entire database, the median follow-up for overall survival (OS) 

was 24.3 months, and for relapse-free survival (RFS), it was 23.8 months. Most datasets 

contained both OS and RFS data, with the exception of AML, glioblastoma, melanoma and 

thymoma, which only had RFS data. Ovarian cancer patients had the highest median OS, while 

gastric and head and neck cancer patients had the shortest OS (Figure 1C). In addition, glioma 

and liver cancer patients had the longest and the shortest median RFS at 23.8 and 6.7 months, 

respectively (Figure 1C). 

Clinico-pathological characteristics of patients, including stage, grade, sex and race, 

were available for 6,301, 4,126, 9,720 and 9,471 patients, respectively (Table 1). According to 

the stage, head and neck cancer had the most patients in stage 4, and testicular cancer had the 

most patients in stage 0 or stage 1. The proportion of patients by tumor grade indicates that an 

unfavorable high grade was more common in bladder cancer, while a favorable low grade was 

restricted to head and neck cancer. Sex and ethnicity data of the patients showed that the number 

of males with cancer is higher than the number of females with cancer and that Caucasians give 

the majority in the TCGA database (Table 1). 

Prognostic significance of hallmark-associated genes across 26 types of cancer 

Cox regression analysis was performed using the RNA-seq expression of 671 cancer 

hallmark genes. The results of survival analysis across 26 types of cancer for each gene are 

listed in Supplemental Table 1. We computed the proportion of significant genes in each 

hallmark and in each tumor type (Figure 2). Hierarchical clustering was performed to correlate 

different tumor types and cancer hallmark-associated genes. In this analysis, genes associated 

with invasion and metastasis activation, genome instability, sustained proliferative signaling 

and cellular energetics deregulation clustered into separate cohorts (Figure 2). The top five 

tumors that contained the highest proportion of established cancer hallmark genes significantly 

associated with overall survival were kidney renal clear cell carcinoma, low grade glioma, 

melanoma, thymoma, and liver cancer. 

Hallmark signatures and survival in different types of tumors 

The expression signature of hallmark features was determined for each sample, and the 

prognostic effect of these signatures was investigated in different types of cancer. Significant P 

values (P<0.05) are illustrated as forest plots in Figure 3A. 

Of the eight hallmark feature signatures, seven showed a significant association with 

OS in low grade glioma. On the other hand, lung squamous carcinoma, uterine, ovarian, 

sarcoma, bladder and esophageal cancer contained only one significant hallmark signature 

(Figure 3B). 
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Tumor mutation burden was also determined, and it showed a significant association 

with OS in glioma (HR=3.25, P=6.3E-11), melanoma (HR=0.41, P=6.5E-10), bladder cancer 

(HR=0.49, P=5.6E-06), uterine cancer (HR=0.33, P=2.5E-05), ovarian cancer (HR=0.69, 

P=3.8E-03), stomach cancer (HR=0.62, P=4.2E-03) and kidney renal clear cell carcinoma 

(HR=2.26, P=2.0E-04) (Figure 3C). 

In multivariate analysis of OS, including the expression signature of hallmark features, 

sex, race, tumor stage, tumor grade and age, most of the signatures retained their significance 

(Table 2). 

Genes with the greatest prognostic power in multiple tumor types 

In at least ten tumor types, there were 39 genes whose expression was associated with 

OS (Figure 4A). We pinpointed the genes with the highest prognostic power in each cancer 

hallmark feature: BRCA1 associated with genome instability in low grade glioma (HR=4.26, 

P<1E-16), CDK1 linked to cell death resistance in kidney papillary carcinoma (HR=5.67, 

P=2.1E-10), the E2F1 tumor suppressor in cervical cancer (HR=0.38, P=2.4E-05), EREG 

enabling replicative immortality in cervical cancer (HR=3.23, P=2.1E-07), FBP1 participating 

in the deregulation of cellular energetics in kidney renal clear cell carcinoma (HR=0.45, 

P=2.8E-07), MYC activating invasion and metastasis in bladder cancer (HR=1.81, P=5.8E-05), 

RUNX1 sustaining proliferative signaling in glioma (HR=2.96, P=3.1E-10) and SERPINE1 

playing a role in inducing angiogenesis in glioma (HR=3.36, P=1.5E-12) (Figure 4B-I). 

In addition, multivariate Cox regression analysis was also performed using the 

expression of the 39 most significant genes and the available clinical variables, including race, 

sex, age, tumor stage and tumor grade. Of the clinical parameters, age and tumor stage were the 

variables that reached significance in the Cox model in most tumors (for detailed results, see 

Supplemental Table 2). 

 

DISCUSSION 

In this study, we examined the prognostic significance of previously established cancer 

hallmark genes 5. For the survival analysis, we utilized an RNA-seq database from the TCGA 

that contains 9,720 patients of 26 tumor types with clinical annotations. Kidney renal clear cell 

carcinoma, low grade glioma and melanoma had the highest proportion of cancer hallmark 

genes that correlated with survival. Hierarchical clustering analysis showed that some cancer 

hallmark genes clustered together, such as those involved with invasion and metastasis 

activation, genome instability, sustained proliferative signaling and cellular energetics 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.381442doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.381442


 

8 
 

deregulation (distance was based on the percentage of significant genes per hallmark in each 

tumor type). 

A transcriptomic surrogate signature for each hallmark was also determined; this is 

based on the means of the average expression of the cancer genes associated with the given 

hallmark. The prognostic significance of these factors was examined in different types of 

cancers. Among the eight main hallmark signatures, those associated with oncogene activation, 

genome instability, cellular energetics, invasion and metastasis and cell death resistance were 

significant in at least five tumor types. 

Oncogenes have a major role in the control of cell proliferation, differentiation and 

survival during tumorigenesis. c-MYC was the first characterized oncogene that is activated by 

chromosome translocation in human Burkitt’s lymphomas 15. Expression of the altered c-MYC 

gene is increased in tumor cells and is associated with extensive cell proliferation and 

contributes to tumor development. The association between c-MYC expression and patient 

survival remains controversial 15, and we observed a worse prognosis in patients with higher 

expression of c-MYC. Similar results were present in the case of the ERBB2 gene, which 

encodes a cell surface protein-tyrosine kinase receptor that is associated with the progression 

of breast cancer 16 and higher expression of genes in the Wnt-β-catenin pathway. This pathway 

is mutated in more than 85% of colorectal cancers 17. β-catenin (CTNNB1) is the most 

frequently mutated gene, and it can be detected in more than 80% of colorectal tumors. In 

addition, high expression of CTNNB1 is associated with shorter survival in colorectal cancer 

17. Finally, overexpression of cyclin D1 (CCND1), a member of the cyclin family, also 

correlated with poor survival in esophageal squamous cell carcinoma 18. 

Chromosomal instability (CIN) and microsatellite instability (MSI) are the two main 

types of genomic instability in human cancers 4. The expression of genomic instability-related 

genes is higher in metastatic samples than in primary tumors 19. In breast cancer, Habermann et 

al performed gene expression profiling in which they examined the correlation between gene 

expression, genome instability and clinical outcomes 20 and identified a 12‐gene aneuploidy‐

specific signature that is an independent predictor of clinical outcome. In our analysis, the 

transcriptomic signature consisting of 150 genes contributing to genome instability 5 was 

prognostic in eight tumors. Among these, high signature expression was associated with poor 

survival in low grade glioma, liver cancer, kidney papillary cancer, lung adenocarcinoma and 

sarcoma. In cervical cancer, renal clear cell carcinoma and thymoma, the high expression of the 

hallmark signature was correlated with a favorable outcome. 
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Altered energy metabolism involves an increased rate of glycolysis and limited 

oxidative phosphorylation. These features of proliferating cancer cells enable the retention of 

macromolecules, which help to drive constitutive cell growth and proliferation 4. Among the 

numerous metabolic pathway-associated genes, the high expression of GLUT1, G6PD, TKTL1 

and PGI/AMF are significantly correlated with decreased survival in breast cancer 21. The FAS 

gene is upregulated at an early stage in multiple cancers, including breast 22, stomach 23 and 

prostate cancers 24; its expression is positively correlated with poor survival. Our results show 

that the high expression of the transcriptomic signature of cancer metabolism-associated genes 

is linked to decreased survival in acute myeloid leukemia, head and neck cancers, breast cancer, 

lung adenocarcinoma and melanoma. However, in kidney renal clear cell carcinoma, kidney 

papillary cancer and low grade glioma, the high expression of the signature was associated with 

a better outcome. 

Epithelial-mesenchymal transition (EMT) is a multistep process that contributes to the 

migratory and invasive capacity of cells, which are essential for the development and metastasis 

of cancer 4. In many types of cancer, including breast and head and neck cancers, developmental 

EMT pathways such as Notch have been reported to be dysregulated, and activation of these 

pathways often correlates with poor survival 25. The suppression of EMT results in the increase 

of cell proliferation with increased expression of nucleoside transporters in pancreatic tumors. 

These changes lead to enhanced sensitivity to gemcitabine treatment and increased overall 

survival in mice 26. The importance of EMT is supported by our observation that the 

transcriptomic signature of the tumor invasion and metastasis activation-associated genes 5 had 

prognostic significance in the highest number of tumors. Among the tumors, the high 

expression of the signature was linked to poor survival outcome in low grade glioma, liver 

cancer, acute myeloid leukemia, cervical cancer, head and neck cancers, pancreas cancer, 

bladder cancer and lung adenocarcinoma. 

The resistance of cancer cells to apoptosis is a fundamental aspect of cancer 

development, which includes the upregulation of antiapoptotic proteins and the downregulation 

of proapoptotic proteins 27. The number of gene expression signature studies of apoptotic genes 

is limited, and studies more commonly reflect on single apoptotic genes. Holleman et al 

performed a microarray gene expression study in which they examined the expression pattern 

of 70 key apoptotic genes in acute lymphoblastic leukemia (ALL) and concluded that leukemia 

subtypes have a unique expression pattern of apoptosis genes and that select genes are linked 

to cellular drug resistance and prognosis in childhood B-lineage ALL 28. Another study 

investigated 40 genes involved in the extrinsic and intrinsic pathways in myeloma cells, and 
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these genes were linked to poor prognosis and were overexpressed in normal plasmablastic cells 

29. In our study, the cell death resistance signature based on a set of 119 genes 30 31 was linked 

to poor survival in liver and pancreatic cancers and good survival in melanoma, kidney renal 

clear cell carcinoma, breast cancer and thyroid cancer. 

In brief, RNA-seq-based transcriptomic data were utilized to perform survival analysis 

across 26 different types of cancer. Strikingly, the signatures constructed from the cancer 

hallmark genes showed tumor type-specific correlations with survival. Individual cancer 

hallmark genes showing prognostic significance in more than 10 cancer types were also 

uncovered. These results help to prioritize targeting the most relevant hallmark for drug 

development in each tumor type. 
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TABLES 

Table 1. Clinical characteristics of patients. 
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AML LAML 151 10.13 97 7.13 0.00 0 - 68/83 - - 135/1/13 

Bladder BLCA 405 17.87 179 13.60 0.00 31 15.40 106/299 0/2/130/138/133 21/381 321/44/23 

Breast BRCA 1090 28.10 151 42.40 21.35 84 25.77 1078/12 0/181/619/247/20 - 752/61/182 

Cervical CESC 304 21.23 71 20.23 12.75 26 16.10 304/0 - 153/119 209/20/30 

Colon COAD 454 22.30 102 13.47 0.00 23 16.87 214/240 0/75/176/128/64 - 212/11/59 

Esophagus ESCA 161 13.57 64 13.38 0.00 21 7.47 23/138 0/16/69/49/8 82/44 100/38/5 

Glioblastoma GBM 153 11.90 122 12.70 0.00 1 51.67 54/99 - - 137/5/10 

Glioma LGG 510 22.12 125 27.13 0.00 20 19.93 228/282 - 248/261 470/8/21 

Head and neck HNSC 500 21.27 217 14.33 0.00 28 7.70 133/367 0/25/70/78/259 360/121 426/10/47 

Kidney (clear cell) KIRC 530 39.85 173 27.30 0.00 15 30.00 186/344 0/265/57/123/82 241/281 459/8/56 

Kidney (papillary) KIRP 288 25.58 44 21.37 13.22 28 15.72 76/212 0/172/21/51/15 - 205/6/60 

Liver LIHC 371 19.57 130 13.85 10.73 143 9.10 121/250 0/171/86/85/5 232/134 184/158/17 

Lung (adeno) LUAD 513 21.13 187 19.93 9.80 89 15.90 276/237 0/274/121/84/26 - 387/7/52 

Lung (squamous) LUSC 501 21.63 216 17.85 11.83 61 18.40 130/371 0/244/162/84/7 - 349/9/30 

Melanoma SKCM 468 34.45 215 35.67 0.00 0 - 179/289 7/76/140/170/23 - 445/12/1 

Ovarium OV 374 34.03 230 36.55 0.00 126 17.67 374/0 - 43/321 324/11/25 

Pancreas PAAD 177 15.43 92 12.90 0.00 23 14.97 80/97 0/21/146/3/4 125/50 156/11/6 

Paraganglioma PCPG 178 25.08 6 15.08 20.42 4 27.65 101/77 - - 147/6/20 

Prostate PRAD 495 30.80 10 36.73 20.53 30 25.30 0/495 - - 147/2/7 

Rectum READ 165 20.33 25 20.33 0.00 6 28.68 75/90 0/30/51/51/24 - 80/1/6 

Sarcoma SARC 259 31.57 98 22.27 5.37 66 11.17 141/118 - - 226/6/18 

Stomach STAD 375 14.23 147 11.60 6.60 37 10.50 134/241 0/53/111/150/38 147/219 238/74/11 

Testis TGCT 134 42.03 4 18.85 20.67 27 15.03 0/134 0/55/12/14/0 - 119/4/6 

Thymoma THYM 119 38.83 9 28.43 0.00 0 - 57/62 - - 99/12/6 

Thyroid THCA 502 31.47 16 34.03 18.72 26 16.43 367/135 0/281/52/112/55 - 332/51/27 

Uterine UCEC 543 30.37 91 23.63 21.03 57 17.33 543/0 - 218/325 372/20/106 

∑ - 9,720 24.33 2,821 19.23 23.8 972 15.6 5,048/4,672 7/1,941/2,023/1,567/

763 

1870/2256 7,031/596/844 
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Table 2. Multivariate Cox regression analysis of hallmark gene signatures after including sex, race, stage, grade and age. Significant P (P<0.05) 

and HR values in univariate and both uni- and multivariate survival analyses are green and red, respectively. HR values with asterisk (*) shows 

that there are not any events in one of the groups in the survival analysis. * 

 

Sustaining 

proliferative 

signaling 

Resisting cell  

death 

Inducing  

angiogenesis 

Genome 

 instability 

Evading growth 

suppressors 

Enabling replicative 

immortality 

Deregulation of  

cellular energetics 

Activation invasion and 

metastasis 

Tumor types P HR P HR P HR P HR P HR P HR P HR P HR 

Bladder 9.90E-09 0.78 1.45E-08 0.8 8.23E-09 1.48 1.92E-08 0.86 1.95E-08 0.86 5.56E-09 1.4 1.61E-08 1.17 6.76E-09 1.37 

Breast 1.05E-16 0.64 8.41E-17 0.69 3.23E-16 0.73 1.67E-16 1.57 1.59E-16 1.42 7.19E-18 1.88 1.93E-17 1.59 4.02E-16 1.34 

Cervical n.s. 0.82 n.s. 1.08 4.85E-02 1.73 7.82E-05 0.32 n.s. 1.25 n.s. 1.3 n.s. 0.81 1.14E-02 2.19 

Colon 1.45E-05 1.02 1.93E-06 0.55 1.31E-05 1.2 1.36E-05 0.97 1.29E-06 0.51 5.66E-06 1.57 1.40E-05 0.97 1.44E-05 1.01 

Esophagus 1.94E-02 0.84 1.73E-02 0.72 1.72E-02 0.77 1.77E-02 1.21 2.01E-02 0.93 9.40E-03 2.16 2.60E-04 3.68 1.80E-02 0.77 

Glioblastoma 1.38E-03 1.62 1.91E-03 1.53 7.66E-03 1.22 1.09E-03 0.64 2.44E-03 0.68 1.78E-03 1.51 8.59E-03 1.18 7.36E-03 1.26 

Head and neck 3.24E-05 0.81 5.94E-05 0.87 1.74E-05 1.34 2.89E-05 1.28 4.71E-05 0.85 4.79E-05 1.17 1.72E-06 1.83 6.61E-06 1.49 

Kidney (clear cell) 1.60E-24 0.85 1.77E-25 0.69 8.43E-25 0.86 1.08E-25 0.69 3.02E-25 0.73 1.25E-24 0.86 6.68E-26 0.67 6.87E-25 0.78 

Kidney (papillary) 4.69E-10 2.8 6.04E-10 2.76 5.53E-09 0.54 3.38E-09 2.04 3.08E-09 2.64 1.84E-09 2.29 5.41E-12 0.06 7.56E-09 1.49 

AML 8.22E-07 0.62 2.75E-06 0.76 4.57E-06 1.15 3.29E-06 1.28 1.44E-07 1.78 1.67E-06 1.41 6.19E-10 2.69 4.58E-08 1.98 

Glioma 5.29E-21 1.82 7.40E-19 0.91 5.72E-22 2.12 1.26E-20 1.7 2.49E-19 1.35 9.92E-24 2.28 9.58E-22 0.5 2.48E-24 2.67 

Liver 1.09E-05 1.57 2.40E-06 1.86 3.66E-05 0.7 1.01E-06 1.94 3.02E-05 1.37 2.89E-06 1.72 8.93E-05 1.09 1.12E-06 1.86 

Lung (adeno) 8.35E-08 1.36 1.35E-07 1.26 1.73E-07 0.84 1.22E-08 1.53 1.29E-07 1.31 4.11E-09 1.65 6.27E-08 1.53 5.86E-08 1.43 

Lung (squamous) 8.48E-07 1.99 9.11E-05 1.45 3.73E-04 1.34 1.54E-04 0.71 2.09E-04 0.71 1.09E-03 1.1 7.24E-04 0.83 2.79E-04 1.34 

Ovarium 1.68E-04 1.53 4.45E-03 0.87 1.05E-03 0.75 1.88E-03 0.77 5.94E-03 1.08 3.14E-03 0.83 4.26E-03 0.85 1.14E-03 1.36 

Pancreas 7.58E-03 2.03 3.70E-02 1.82 n.s. 1.51 4.84E-02 1.52 n.s. 1.37 n.s. 1.42 n.s. 1.32 1.53E-02 1.81 

Paraganglioma 6.27E-02 0.12 n.s. 3.61 n.s. 0.25 n.s. 4.57 n.s. 2.73 n.s. 1.69 n.s. * n.s. 0.48 

Prostate n.s. * n.s. inf 9.98E-02 * n.s. inf n.s. * n.s. * n.s. inf n.s. * 

Rectum 1.77E-02 2.8 1.36E-02 0.49 8.56E-03 0.44 2.90E-02 0.6 2.24E-02 0.64 3.54E-02 1.02 3.28E-02 1.39 3.53E-02 1.23 

Sarcoma 2.83E-02 1.51 n.s. 0.73 2.47E-03 0.53 2.73E-03 2.01 2.40E-02 1.49 2.56E-02 1.47 n.s. 1.18 n.s. 0.71 

Melanoma 4.35E-10 0.67 4.29E-13 0.5 1.12E-10 0.61 8.21E-11 1.63 9.88E-09 1.1 2.58E-09 0.75 1.63E-10 1.6 9.99E-09 0.93 

Stomach 2.15E-03 1.14 2.20E-03 1.19 1.42E-03 1.35 1.28E-03 0.75 3.74E-04 0.64 1.67E-03 1.21 2.50E-03 0.92 1.00E-03 1.48 

Testis 5.88E-03 * 5.72E-03 * 3.58E-03 * 2.96E-03 >100 4.93E-03 * 5.81E-03 * 5.87E-03 >100 4.56E-03 * 

Thyroid 1.73E-10 0.4 6.54E-11 0.34 1.52E-11 3.38 2.36E-10 0.77 6.82E-11 2.02 6.40E-13 0.35 1.31E-11 6.24 2.29E-10 0.59 

Thymoma n.s. 0.43 n.s. 2.35 1.24E-02 7.68 1.65E-02 0.08 n.s. 0.25 8.35E-03 0.04 4.97E-02 4.11 2.83E-02 0.2 

Uterine 2.07E-07 1.56 9.32E-07 1.54 1.34E-06 0.85 1.58E-06 1.21 7.64E-07 1.43 1.01E-06 1.32 1.89E-06 1.02 1.62E-06 0.82 
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FIGURE LEGENDS 

Figure 1. Overview of cutoff determination and survival distribution in the database. The 

determination of the best cutoff value in the survival analysis demonstrated with the CDK1 

gene in kidney papillary carcinoma (A) and ovarian cancer (B). Survival time characteristics of 

tumors with observed events (C). 

Figure 2. The prognostic power of cancer hallmark genes. 

Figure 3. Effect of hallmark signatures (A) and tumor mutation burden (C) on patient survival. 

Summary of the significant prognostic hallmark signatures in different types of tumors (B).  

Figure 4. Best performing genes in at least 10 distinct tumor types. 

 

SUPPLEMENTARY MATERIALS 

Supplemental Table 1. Univariate analysis of cancer hallmark genes across 26 types of 

cancer. 

Supplemental Table 2. Multivariate analysis of genes that were significant in more than 10 

tumors. 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.381442doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.381442


preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.381442doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.381442


preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.381442doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.381442


preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.381442doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.381442


preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.381442doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.381442

