
 1 

ABACUS: A flexible UMI counter that leverages intronic reads for single-nucleus 

RNAseq analysis 

 

Simon Xi1,4, Lauren Gibilisco1, Markus Kummer2, Knut Biber2, Astrid Wachter3*, Maya 

Woodbury1* 

 

1 Foundational Neuroscience Center, Abbvie Inc., 200 Sidney St, Cambridge, MA 02139 

2 Abbvie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse 67061 

Ludwigshafen Germany 

3 AbbVie Deutschland GmbH & Co. KG, Genomics Research Center, Knollstrasse, 67061 

Ludwigshafen, Germany 

4 Former AbbVie Employee 

*Co-senior authors 

 

Corresponding author: Simon Xi (simon.xi111@gmail.com) 

 

Abstract  

 

Single-nucleus RNA sequencing (sNuc-RNAseq) is an emerging powerful genomics 

technology that combines droplet microfluidics with next-generation sequencing to 

interrogate transcriptome changes at single nucleus resolution. Here we developed 

Abacus, a flexible UMI counter software for sNuc-RNAseq analysis. Abacus draws extra 

information from sequencing reads mapped to introns of pre-mRNAs (~60% of total data) 

that are ignored by many single-cell RNAseq analysis pipelines. When applied to our pilot 

human brain sNuc-RNAseq data, ABACUS nearly doubled the number of nuclei identified 

by the CellRanger workflow, recovering a large number of nuclei from non-neuronal cells. 

By incorporating intronic reads into gene expression quantification, we showed that they 

encoded additional and valid transcription features of individual cells and could be used 

to improve cluster resolution of different cell types. By separately counting UMIs derived 

from forward and reverse intronic reads and from exonic reads, Abacus gives users 

flexibility in representing genes expressed at different abundance levels. In summary, 
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Abacus represents a flexible, improved workflow for sNuc-RNAseq data processing and 

analysis. 

 

 

 

 

Introduction 

 

Recent advances in single-cell RNAseq technologies have enabled large-scale profiling 

of cellular heterogeneity at unprecedented resolution. While most single-cell RNA 

sequencing methods require fresh tissues for high-quality single cell preparation, single-

nucleus-RNAseq (sNuc-RNAseq) has the advantage of being applicable to frozen and 

archived tissue samples that are more readily available. sNuc-RNAseq has rapidly 

become the method of choice to study cell-type specific gene expression in human 

postmortem tissues under different development stages and disease conditions (Habib 

et al. 2017; 2016; Mathys et al. 2019; Kim et al. 2018). Similar to single-cell methods, 

droplet-microfluidics based sNuc-RNAseq techniques such as DroNc-seq (Habib et al. 

2017) and the 10x Genomics Chromium system capture single nuclei in individual oil 

droplets. Then transcripts in each nucleus within each droplet are reverse transcribed 

with oligo-dT primers that each contain a common barcode sequence and a unique 

molecular identifier (UMI) sequence. These cDNA products are pooled, PCR amplified, 

and then sequenced. Barcode sequences are used to assign sequencing reads to 

individual nuclei, while UMI counts provide gene expression estimates in each nucleus. 

For data analysis, pipelines such as CellRanger (Zheng et al, 2017) originally designed 

to analyze single-cell data are commonly used. However, nuclei differ substantially from 

cells in their RNA contents. Only a small fraction of total mRNAs in the cells reside in the 

nucleus, but pre-mRNAs with intronic sequences are primarily found in the nucleus. It has 

been previously observed that the majority of sequencing reads generated in sNuc-

RNAseq studies map to intronic regions of the genome. Most analysis pipelines originally 

developed for single-cell RNAseq studies only make use of reads derived from exons. 

Some pipelines provide an option to combine the UMI counts from intronic and exonic 
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reads as gene expression estimates without a thorough justification, e.g. CellRanger 

(Zheng et al, 2017). To help alleviate this data analysis gap, we developed a software 

package called Abacus that provides a flexible workflow to derive UMI counts from exonic 

and intronic reads in both the forward and reverse directions (i.e. in the same or opposite 

direction of the mRNA). When applied to a sNuc-RNAseq dataset of human postmortem 

brain, we further demonstrated the utility of Abacus-derived UMI counts to improve the 

identification of nuclear barcodes, cluster analysis, and gene expression quantification. 

  

 

Implementation 

 

Nuclei isolation and single nuclei library preparation 

Nuclei isolation was performed using ~300mg of frozen brain tissue from the cortex of a 

non-diseased human donor. The tissue had a RIN value of 6.4. Briefly, tissue was 

homogenized in 4mL of lysis buffer (0.32M Sucrose, 5mM CaCl2, 3mM Mg(Ac)2, 0.1mM 

EDTA, 10mM Tris-HCl, pH 8, all sterile and DNAse/RNAse free, with 0.1% triton x-100, 

and 1mM  dithiothreitol (DTT) in sterile H20) using a glass Wheaton homogenizer on ice. 

Lysate was layered on top of a sucrose solution (1.8M sucrose, 3mM Mg(Ac)2, 10mM 

Tris-HCl, pH8, and 1mM DTT in sterile H20) in an ultracentrifuge tube (#244060, Beckman 

Coulter). Nuclei were separated from cellular debris by ultracentrifugation (107,000 x g 

for 1.5 h at 4C). The supernatant was removed and pellets were resuspended in buffer 

containing DPBS, 0.2U/ul RNAse inhibitor (Roche) and 10ug/ml ultrapure BSA (Thermo 

Fisher). Nuclei were counted with EVE automated Cell Counter (Nanoentek). Nuclei 

concentration was adjusted according to the manufacturer’s instructions before single 

nuclei lysis and barcoding using the 10X Genomics Chromium controller.  Once the 

uniquely-barcoded beads called GEMs (Gel Bead-In Emulsions) were collected after the 

Chromium controller runs, sequencing libraries were prepared using Chromium single cell 

3’-reagent V3 kit following the vendor’s recommended protocol. Sequencing was 

performed on an Illumina HiSeq2500. For data QC, sequencing reads were processed 

using the standard CellRanger v3 pipeline. Basic QC metrics such as total read counts 

and number of reads per nucleus were taken from the standard CellRanger report. 
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UMI counting with Abacus 

Sequencing reads were first processed using the standard CellRanger pipeline. BAM files 

generated by CellRanger were then subjected to Abacus. The tool parses the BAM files 

and extracts the barcodes and corrected UMI sequences from aligned reads, then 

summarizes the UMI counts from intronic and exonic reads in the forward and reverse 

directions for each gene. Final UMI count tables (genes as rows and barcodes as 

columns) are generated in the sparse matrix format as the CellRanger output. In total, 

three UMI count tables are generated separately: one from forward exonic reads, one 

from forward intronic reads, and one from reverse intronic reads (see Figure 1).   

 

Downstream data analysis 

To identify nuclear barcodes, Abacus first summarizes the counts in each UMI count table 

by column (i.e. by barcode). Afterwards, each barcode is associated with three UMI count 

categories, one from forward exonic reads, one from forward intronic reads, and one from 

reverse intronic reads. Abacus then filters nuclear barcodes by UMI counts from forward 

exonic reads and from forward intronic reads. The default filtering threshold is UMI count 

> 80. For clustering analysis, count tables generated by Abacus were loaded into R 

package v3.5 and underwent dimensionality reduction  in “Seurat” package v2.3 (Butler 

et al. 2018) with default parameters. To run clustering analysis jointly using UMI counts 

from forward exonic reads and forward intronic reads, the UMI count table from forward 

intronic reads was appended to the UMI count table from forward exonic reads. The 

combined UMI count table was subjected to dimensionality reduction in “Seurat” package 

v2.3 (Butler et al. 2018). 

 

Results 

 

Different sources of intronic reads 

It has been reported in sNuc-RNAseq studies that a large proportion of sequencing reads 

were aligned to intronic regions of the genome (Habib et al. 2017). It was suggested that 

these intronic reads were derived from mis-priming of the oligo-dT primers to the poly-A 
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repeats in the intronic regions of the pre-mRNAs during the first-strand cDNA synthesis 

by reverse transcription (La Manno et al. 2018). However, in the nucleus, both pre-

mRNAs and genomic DNA contain poly-A repeats that could potentially provide the 

template for oligo-dT priming and cDNA synthesis. Intronic reads derived from pre-mRNA 

would align to the genome in the same direction as the mRNA (denoted as forward 

direction). In contrast, intronic reads derived from genomic DNA align in both forward and 

reverse directions (i.e. same or opposite direction as the mRNA).  

 

To assess the extent of the different sources of intronic reads, we applied the Abacus 

workflow to two sNuc-RNAseq datasets from human postmortem brain samples 

generated using the 10x Genomics Chromium protocol (see Methods). It is worth noting 

that UMIs from forward and reverse intronic reads on average account for 48.3% and 

21.0%, respectively, of total UMIs from reads mapped to gene regions (i.e. exonic and 

intronic regions) (Table 1). Since reverse intronic reads are primarily derived from 

genomic DNA, assuming an equal amount forward intronic reads are generated from 

genomic DNA, we can estimate that UMIs from forward intronic reads derived from pre-

mRNAs would account for 27.3% of UMIs (i.e. 21.0% subtracted out from 48.3%). This 

confirms that pre-mRNA is the primary source of the forward intronic reads but that a 

substantial portion of forward intronic reads can also be derived from genomic DNA and 

should not be ignored. 

 

Use of UMI counts derived from exonic and intronic reads to improve the identification of 

nuclei-containing droplets 

For all droplet-based sNuc-RNAseq techniques, only a small fraction of the oil droplets 

formed during the sorting process actually contain a nucleus. One important step in the 

sNuc-RNAseq data analysis is to identify barcodes that correspond to nuclei-containing 

droplets from those corresponding to empty droplets containing only ambient RNAs in the 

solution. Nuclei-containing droplets are expected to have higher UMI counts (i.e. more 

RNA transcripts) than empty droplets.  
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Here, we investigated the utility of the Abacus-derived intronic and exonic UMI counts to 

identify barcodes corresponding to nuclei-containing droplets. For each barcode, we 

calculated the total UMI count derived from forward intronic reads representing pre-mRNA 

level, and the total UMI count derived from forward exonic reads representing the mRNA 

level. Interestingly, we observed two distinct groups of barcodes (Figure 2): Group I with 

slightly higher UMI counts from forward intronic reads than from forward exonic reads 

(points close to the diagonal line on Figure 2), and Group II with moderate UMI counts 

from forward exonic reads (ranging from 100 to 1000 UMIs) but low UMI counts from 

forward intronic reads (ranging from 10 to 100 UMIs). The default CellRanger pipeline 

identifies barcodes corresponding to nucleus-containing droplets by a single threshold of 

UMI counts derived from forward exonic reads. As shown in the green box in Figure 2A, 

barcodes identified by CellRanger do not adequately capture either of the two distinct 

populations, resulting in the exclusion of a large number of droplet barcodes. Unlike 

CellRanger, Abacus filters barcodes by UMI counts from both forward exonic reads and 

forward intronic reads and recovers most of Group I barcodes as nucleus-containing 

droplets (points in the red box in Figure 2A). We applied clustering and tSNE visualization 

on the nuclei identified by Abacus using gene expression values quantified by UMI counts 

derived from forward exonic reads. Interestingly, these ~1594 barcodes (37% of total 

barcodes) omitted by CellRanger but recovered by Abacus (point in the red box but 

outside of the green box in Figure 2A) are grouped into several cell type clusters on the 

tSNE plot, corresponding to several non-neuronal cell types (e.g. oligodendrocytes, 

microglia, astrocytes) as well as some  neuronal subtypes in the brain. In fact, for the non-

neuronal cell types, the CellRanger pipeline has omitted the majority of the nuclei 

barcodes (89% of the oligodendrocytes, 71% microglia, 75% astrocytes). As a 

comparison, when including the barcodes from Group II, they form a separate cluster, not 

expressing any distinct cell type markers, suggesting that Group II barcodes might 

represent either empty droplets containing ambient RNA or cell debris that survived the 

nuclear preparation. 

 

Use of UMI counts derived from forward intronic reads for clustering analysis  
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Even though forward intronic reads could originate from either pre-mRNA or genomic 

DNA, for abundantly expressed genes, there are far more copies of pre-mRNA transcripts 

than genomic DNA in the nucleus and, therefore, intronic reads would be predominantly 

derived from pre-mRNAs and genuinely reflect the gene expression levels. To test this 

hypothesis, we applied tSNE clustering analysis using the gene expression values 

quantified by UMIs derived only from forward intronic reads. As expected, clusters 

corresponding to major brain cell types including excitatory neurons, inhibitory neurons, 

oligodendrocytes, and astrocytes could be identified. A microglia cell cluster was not 

detected probably due to the smaller number of microglia cells in the tissue. As Abacus 

provides separate gene expression quantifications from forward intronic and exonic 

reads, we could perform cluster analysis jointly with expression values derived from both 

intronic and exonic reads simply by appending the two feature expression tables. Here, 

UMI counts derived from exonic reads and intronic reads for the same gene are kept as 

separate features and contribute to the clustering independently. Joint analysis provides 

greater cluster refinement as indicated by the increased number of clusters identified at 

the same level of cluster resolution (Figure 3, 13 clusters identified instead of 10 from 

clustering using UMI counts derived from exonic reads alone). Taken together, our results 

strongly suggest that forward intronic reads reflect gene expression levels of the 

transcriptome and can contribute additional useful information for clustering analysis. 

 

UMI counts derived from forward intronic reads cannot be used to quantify gene 

expression of low abundance genes 

Since low abundance genes have very few copies of pre-mRNA in the cell, reads mapped 

to the intronic regions of these genes would be primarily originated from mis-priming to 

genomic DNA as opposed to pre-mRNA. Indeed, this is evident from the directionality of 

the reads. As an example, for the gene FBXW8, a lowly expressed gene as indicated by 

the few reads mapped at the 3’UTR, intronic reads are mapped to both forward and 

reverse directions of the FBXW8 gene on the genome (Figure 4B). In comparison, for 

gene MAP2, a highly expressed gene, intronic reads are predominantly mapped to the 

forward direction of the MAP2 gene (Figure 4A). Transcriptome-wide analysis reveals that 

74% of the genes have more than 3 times the intronic reads mapped to the forward 
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direction over the reverse direction (Figure 4C). This suggests that for a substantial 

portion of genes (~26%) showing a higher proportion of intronic reads mapped to the 

reverse direction as compared to the forward direction, the intronic reads may not 

accurately represent true gene expression levels due to mis-priming to genomic DNA.  

 

 

 

Discussion 

 

sNuc-RNAseq is often limited by the number of transcripts that can be captured and 

counted per nucleus, as there are substantially fewer mRNAs in the nucleus than the 

cytosol. By providing the flexibility to generate UMI counts from reads mapped to different 

regions of the genome in different orientations, Abacus allows users to make effective 

use of intronic reads to quantify pre-mRNA transcripts and improves the overall transcript 

capturing in sNuc-RNAseq studies. By jointly analyzing UMI counts from forward intronic 

and exonic reads, our analysis revealed distinct subgroups of droplet barcodes. We 

demonstrated here that, by including UMI counts from forward intronic and exonic reads, 

Abacus can be used to identify nucleus-containing droplets with better sensitivity and 

specificity, and substantially improve nucleus barcode calls. This functionality could be 

particularly useful for sNuc-RNAseq studies of tissues that contain a mixture of cell types 

with differing RNA content in the nucleus. In our study of human postmortem brain 

samples, Abacus detected substantially more nuclei of non-neuronal cell types that 

apparently have fewer UMI counts than neurons. 

 

For gene expression quantification, unlike other tools that combine UMI counts from 

intronic and exonic reads, Abacus provides users the flexibility to treat UMI counts from 

forward intronic and exonic reads as separate features. This is particularly useful for 

analyzing the expression of genes with low abundance, as intronic reads mostly originate 

from mis-priming of oligo-dT primers to genomic DNA instead of pre-mRNA. For these 

low abundance genes, tools combining UMI counts from intronic and exonic reads would 

mis-represent the true expression levels and reduce the sensitivity and specificity in 
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detecting gene expression changes. With Abacus, users can choose to use the different 

UMI counts depending on the application. For differential gene expression analysis, users 

can choose to use only UMI counts from exonic reads that provide more accurate 

representation of low abundance genes. On the other hand, for cluster analysis, UMI 

counts from both intronic and exonic reads can be used, as the cluster identities are 

mainly driven by the abundant genes. 

 

Conclusions 

 

Intronic reads can originate from both pre-mRNAs and genomic DNA, and provide useful 

features for gene expression analysis in sNuc-RNAseq studies. Abacus is a flexible UMI 

counter that summarizes intronic and exonic reads from both forward and reverse 

strands, enabling use of these different UMI counts depending on the analysis context. 

Joint utilization of UMI counts from forward intronic and exonic reads can improve the 

identification of nuclei barcodes, especially for cell types with lower transcript numbers, 

and can increase the refinement of cluster analysis. For genes with low abundance, our 

analysis indicates that only UMI counts from exonic reads should be used and not 

combined with UMI counts from intronic reads for gene expression quantification. 

 

Availability and requirements 

Project name: Abacus 

Project home page:  

Operating system(s): Platform independent 

Programming language: Java 

Other requirements: Java Runtime Environment (JRE) 8 (64 bit), 4 GB RAM and 1 CPUs 

License: GNU GPLv3 

Any restrictions to use by non-academics: None 
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Figure 1. Schematic representation of the Abacus intronic and exonic read UMI 

counter workflow. Abacus parses CellRanger-derived BAM files and extracts the 

barcodes and corrected UMI sequences from aligned reads, then summarizes UMI 

counts from intronic and exonic reads in the forward and reverse directions for each gene. 

Final UMI count tables (genes as rows and barcodes as columns) are generated in sparse 

matrix format. In total, three UMI count tables are generated, from 1) forward exonic 

reads, 2) forward intronic reads, and 3) reverse intronic reads. These can then be used 

for downstream analyses such as clustering and differential expression.  
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Figure 2. Abacus improves the identification of nuclei from various brain cell types 

by using UMIs derived from forward intronic and exonic reads. A) Abacus identifies 

distinct populations of droplets marked by different ratios of forward intronic UMI and 

exonic UMI counts. The red and green boxes show the final barcodes reported by Abacus 

and CellRanger respectively. B) Clustering and tSNE visualization of nuclei identified by 

Abacus. C) Cell type-specific gene markers represented in the distinct clusters (MAP2 = 

neurons, MBP = oligodendrocyte lineage, SLC17A7 = excitatory neurons, GAD1 = 

inhibitory neurons, GFAP = astrocytes, C1QA = microglia). D) Nuclei uniquely identified 

by Abacus belong to diverse brain cell types. Blue dots represent nuclei identified by 

CellRanger and Abacus, whereas red dots represent nuclei uniquely identified by Abacus. 

For the non-neuronal cell types, the CellRanger pipeline has omitted the majority of the 

nuclei barcodes (89% of the oligodendrocytes, 71% microglia, 75% astrocytes; see text). 
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Figure 3. UMIs derived from forward intronic reads reflect gene expression levels 

of the transcriptome. A) Clustering and tSNE visualization using UMI counts from 

forward intronic reads. B) Expression of cell-type specific marker genes in the different 

clusters (MAP2 = neurons, MBP = oligodendrocyte lineage, SLC17A7 = excitatory 

neurons, GAD1 = inhibitory neurons) demonstrate that clustering based on forward 

intronic reads maintains clustering by cell type, suggesting a reflection of true gene 

expression levels.  

 

A)                                                                 B)    
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Figure 4. By reporting UMI counts derived from forward, reverse intronic and 

exonic reads separately, Abacus provides an accurate and flexible representation 

of gene expression. A) An example of reads mapped to a highly-expressed gene, MAP2, 

showing that intronic reads map mainly in the forward direction (red) as compared to the 

reverse direction (blue), and thus are mainly derived from pre-mRNA. B) An example of 

reads mapped to a lowly-expressed gene, FBXW8, demonstrating a higher proportion of 

UMI counts in the reverse direction (blue) as compared to the forward direction (red). C) 

Quantification of the number of UMI counts mapping to exons (x-axis) and the ratio of 

intronic reads mapping in the forward vs. reverse direction (y-axis). Some genes, 

especially lowly-expressed genes (i.e. those with lower exonic UMI counts), show a ratio 

of intronic forward/reverse UMI counts <3, suggesting high reverse intronic read mapping 

indicative of mis-priming to genomic DNA. 
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Table 1.  Number of UMIs identified from reads mapped to different gene regions. 
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