
Fast Alignment-Free Similarity Estimation By Tensor Sketching

Amir Joudaki1,2,3, Gunnar Rätsch1,2,3,∗, and André Kahles1,2,3,∗

1 Department of Computer Science, ETH Zurich, Zurich 8092, Switzerland
{ajoudaki,raetsch,andre.kahles}@inf.ethz.ch

2 University Hospital Zurich, Biomedical Informatics Research, Zurich 8091, Switzerland
3 SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland

∗ to whom correspondence should be addressed

Abstract. The sharp increase in next-generation sequencing technologies’ capacity has created a de-
mand for algorithms capable of quickly searching a large corpus of biological sequences. The complexity
of biological variability and the magnitude of existing data sets have impeded finding algorithms with
guaranteed accuracy that efficiently run in practice. Our main contribution is the Tensor Sketch method
that efficiently and accurately estimates edit distances. In our experiments, Tensor Sketch had 0.88
Spearman’s rank correlation with the exact edit distance, almost doubling the 0.466 correlation of the
closest competitor while running 8.8 times faster. Finally, all sketches can be updated dynamically if
the input is a sequence stream, making it appealing for large-scale applications where data cannot fit
into memory.

Conceptually, our approach has three steps: 1) represent sequences as tensors over their sub-sequences,
2) apply tensor sketching that preserves tensor inner products, 3) implicitly compute the sketch. The
sub-sequences, which are not necessarily contiguous pieces of the sequence, allow us to outperform
k-mer-based methods, such as min-hash sketching over a set of k-mers. Typically, the number of
sub-sequences grows exponentially with the sub-sequence length, introducing both memory and time
overheads. We directly address this problem in steps 2 and 3 of our method. While the sketching of
rank-1 or super-symmetric tensors is known to admit efficient sketching, the sub-sequence tensor does
not satisfy either of these properties. Hence, we propose a new sketching scheme that completely avoids
the need for constructing the ambient space.

Our tensor-sketching technique’s main advantages are three-fold: 1) Tensor Sketch has higher accuracy
than any of the other assessed sketching methods used in practice. 2) All sketches can be computed in a
streaming fashion, leading to significant time and memory savings when there is overlap between input
sequences. 3) It is straightforward to extend tensor sketching to different settings leading to efficient
methods for related sequence analysis tasks. We view tensor sketching as a framework to tackle a
wide range of relevant bioinformatics problems, and we are confident that it can bring significant
improvements for applications based on edit distance estimation.

Keywords: sequence distance metrics, tensor sketching, edit distance estimation

1 Introduction

The emergence of next-generation sequencing technologies and a dramatic decrease in cost have
led to an exponential increase in biological sequence data, frequently stored in exceptionally large
databases. While alignment scores are considered the gold-standard of sequence distance in many
bioinformatics applications, the growing number of sequences to be analyzed poses serious chal-
lenges to exact distance computation via alignment. This problem has motivated research on time-
and space-efficient alignment-free methods that try to estimate rather than compute sequence
similarity. Especially applications relying on comparing millions of sequences have turned towards
choosing approximate methods over exact alignments [2]. Out of many possibilities, we have se-
lected the task of phylogeny reconstruction to further motivate distance estimation. In this task,
the estimated distances between sequences are used to reconstruct the evolutionary history in form
of a phylogenetic tree. Instead of using exact alignment scores, many alignment-free methods in-
stead rely on k-mer statistics as a proxy. (Where the term k-mer refers to all length k substrings
of a given string.) The multiplicity, frequency, mode, and reappearance statistics of k-mers have
been utilised to directly estimate evolutionary distance [17,16,1]. Other approaches include variable
lengths matches in their statistics [18].

To break the stringent dependency of adjacent letters in a k-mer, spaced k-mers have introduced
“match” and “ignore” positions. For example, if a match-pattern “11011” is used, then “CTGAC”

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.381814doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.381814


2 Amir Joudaki et al.

versus “CTTAC” constitutes a match. Spaced k-mers have been shown to improve mapping sen-
sitivity, the accuracy of phylogenies, and the performance of sequence classification [5,7,13,15].
Analogously, substring-based methods can be relaxed to allow for some mismatches [6]. Since the
quality of the estimations will greatly depend on the selected match-pattern, several works have
focused on optimizing these patterns [3,11,8,10]. However, finding combinatorially optimal patterns
becomes intractable as the number of ignore-positions increases. Furthermore, any optimization
is prone to be task-dependent, which would require the optimization to be repeated for each task
separately.

More recently, hashing based methods have become increasingly popular. MinHash sketch meth-
ods have been primarily used for set similarity estimation [2], that have shown promise in fast
genomic and metagenomic distance estimation by representing sequences as collections of infor-
mative substrings [12]. From locality sensitive hashing literature we know that any sketch over the
`p-norm (p ∈ (0, 2]) will automatically lead to sub-quadratic nearest neighbor search by locality
sensitive hashing [4]. This provides further motivation for focusing on sketching the edit distance,
leaving behind the inherent problems of seed-based methods. To our knowledge, the most accurate
sketching method currently available is Ordered MinHash (OMH) [9], which dramatically improves
accuracy of k-mer MinHash, by considering k-mers that are non-adjacent. Therefore, we will com-
pare our approach against the classical k-mer MinHash, and Ordered MinHash as the current
state-of-the-art.

An especially difficult task for most current methods is the estimation of edit distance for
longer, less closely related sequences. To illustrate the main limitations of using k-mer statistics in
this context, we look at two examples that act as opposing forces in deciding the size of k.

Example 1. Consider two sequences x ,y ∈ AN drawn randomly over the alphabet of size #A = 4,
and let vx , vy ∈ R4k denote the k-mer frequency profile for each sequence. For long sequences with
N � 4k, k-mer frequencies will converge to their mean, that is 4−k for all their components, which
implies that ‖vx− vy‖ → 0. Therefore, any k-mer profile-based method will severely underestimate
distance between these two random sequences. In order to avoid this, k has to be restricted to
larger values k & log4(N).

Example 2. Now, consider a second pair of sequences, where y is generated by substituting every
character of x with 8% probability. Plugging this value back into our lower bound for k, the
probability that a k-mer would not overlap any substitution equals (1/8)log4(N) = N−1.5. Therefore,
the total number of k-mers not overlapping any mutation will be N · N−1.5 = ( 1

N )1/2 which
converges to 0 as N grows. Since the sequences share a 92% similarity in global alignment by
design, the frequency vectors are guaranteed to overestimate the distance.

By combining the insights from these examples, we conclude that any value of k will fail with
high probability in one of these scenarios for distantly related sequences. Since both results hold
for k-mer frequency vectors in general, any such statistic on the k-mer profile is also bound to fail.
This inherent problem with k-mers is our main motivation for designing sketches that are more
resilient to mutations.

Conceptually, our method can be seen as expectation over all spaced seeds, without any limits
on the number of ignore positions. In other words, Tensor Sketching resolves the inherent limita-
tions of any seed-based method by taking an average of all possible seeds, and thereby reducing
the risk of selecting a seed that reduces the sensitivity. In statistical terms, this implies that the
resulting sketch is a Bayesian admissible estimator.

We will begin by introducing our notation and terminology in Section 2.1 and then proceed to
presenting the Tensor Sketch and Tensor Slide sketch methods in Sections 2.2 and 2.3, respectively.
In subsequent Section 3 we first summarize our data generation scheme and then compare our
approach to the available state-of-the-art methods. We then discuss applications such as phylogeny
reconstruction and graph distance estimation. In the final Section 4 we put our work into context
and give an outlook into future work.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.381814doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.381814


Sequence Tensor Sketching 3

2 Methods

2.1 Preliminaries and Notation

Sets For integer N , [N ] denotes the integer set [N ] := {1, . . . , N}. For finite set S, let HS denote
set of all permutations of indexing S

HS :=
{
h : S 7→ [|S|] | {h(a) : a ∈ S} is a permutation

}
. (1)

Vectors Throughout the manuscript bold face fonts are used to distinguish vectors, tensors, and
sequences, from scalar variables a = (a1, a2). 1N and 0N are all-ones and all-zeros vectors of

length N , respectively. We use i
N≡ j when integers i and j are equal modulus N . The circular

r-shift shiftr (a), will shift the elements of a to the right shiftr (a) = (aN−r+1, . . . aN , a1, . . . , aN−r),
defined formally as

shiftr (a) := (aσ(i))i∈[N ], σ(i)
N≡ i− r, σ : [N ] 7→ [N ] (2)

where the mapping σ, circularly shifts indices to the right.

Strings A,AN , and A? denote the alphabet, strings of length N , and all strings respectively. x ◦y
denotes concatenation, and |x | is the length of x , x i denotes the i-th character, x [i:j] is a slice
from ith to jth index x [i:j] := x i . . .x j , referred to as a substring of x , while x [i] := x i1 . . .x ik , is a
k-ary subsequence (or just subsequence) of x , when i = (i1, . . . , ik) is a strictly increasing sequence
that 1 ≤ i1 < · · · < ik ≤ |x |. For two strings x ,y ∈ A?, the edit distance ded(x ,y) denotes the
minimum number of edit operations needed to transform one string to the other. It can be defined
recursively using x ′ = x [2:|x |],y

′ = y [2:|y |] as follows

ded(x ,y) := min
{

ded(x ′,y) + 1, ded(x ,y ′) + 1, ded(x ′,y ′) + 1{x1 6=y1}
}
, (3)

with ded(ε, ε) := 0 as the recursion basis.

Minimum hash sketching For sequence x ∈ AN , let Xi denote the ith k-mer Xi := x [i:i+k−1],
and #Xi denote its occurrence number #Xi := #{j ≤ i : Xj = Xj}, and unified k-mer refers to
the pair (Xi,#Xi).

In MinHash (MH), a random hash is used to sort the k-mers, the k-mer with the lowest index,
with respect to hash functions h1, . . . , hD ∼ HAk

ϕmh(x ) := (Xj1 , . . . , XjD) jr := argmin
i
{hr(Xi)} (4)

Weighted MinHash (WMH) draws hash functions from unified k-mers h1, . . . , hD ∼ Ak × [N ]

ϕwmh(x ) := (Xj1 , . . . , XjD) jr := argmin
i
{hr(Xi,#Xi)} (5)

Ordered MinHash (OMH) [9], generalize WMH by sampling from multiple k-mers that that
appear in the same order in sequence. The sampling uses hashes over the k-mers space h1, . . . , hD ∼
HAk×[N ], and select indices that are mapped to the t lowest hash values. Formally, for each has
function hr, we sketch (Xσ1 , . . . , Xσt), when monotone indices 1 ≤ σ1 < · · · < σt ≤ |X| are mapped
to the lowest hash values

(ϕomh(x ))r := Xσ1 ◦ · · · ◦Xσt

∣∣{i : hr(Xi,#Xi) ≤ hr(Xσj ,#Xσj )
}∣∣ ≤ t, for all j ∈ [t] (6)

Finally, we can compute MinHash distance via the Hamming distance dH(X,Y ), defined as the
number of indices that two points X and Y differ dH(X,Y ) = #{i ∈ [N ] : Xi 6= Yi}. Therefore,
when ϕ is a MinHash sketch, dH(ϕ(x ), ϕ(y)) becomes an estimator for Jaccard set similarity index
|X∩Y |
|X∪Y | . Therefore, different MinHash methods differ in their choice of set they sketch. Observe that
MH, WMH, and OMH are MinHash over k-mers, unified k-mers, and t-tuples of k-mers respectively,
which in turn implies the equivalence of OMH with WMH for parameter choice of t = 1.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.381814doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.381814


4 Amir Joudaki et al.

2.2 Tensor Sketch

First, define ItN to be set of all increasing subsequences of [N ]t

ItN := {(σ1, . . . , σt) ∈ [N ]t : strictly increasing σ1 < · · · < σt}, (7)

Without loss of generality let the alphabet be relabeled to A := {1, . . . ,m}, and m := #A be the
size. The main idea behind sequence tensor sketch is counting subsequences as opposed to k-mers.

Define T
(t)
x : At → [0, 1] to be the probability mass function of a random t-ary subsequence of x

T
(t)
x [a ] = P(x [i] = a | i ∼ It|x |). (8)

With a slight abuse of notation, we treat T
(t)
x both as a probability mass function, and an mt-

dimensional tensor. A simple yet elegant observation links the tensor representation to ordered
MinHash. The inner product equals the number of ordered t-ary tuples that are shared between
x and y , normalized by the total number, which appears as the numerator in the Jaccard index.
Therefore, OMH and Tensor Sketch are closely related from a theoretical perspective. Then for
two arbitrary strings x ,y ∈ A?, define order t similarity s(t)(x ,y) and distance d(t)(x ,y) as

s(t)(x ,y) = 〈T (t)
x , T

(t)
y 〉, d(t)(x ,y) := ‖T (t)

x − T (t)
y ‖22. (9)

However, naive computation of equations (8) and (9) requires
(
N
t

)
time and mt memory, which

becomes prohibitive for even moderate values of these variables. Our tensor sketching scheme,
provides a (1 + ε)-approximation for tensor distance, but only requires O( 1

ε2
Nt) time to compute.

Furthermore, any downstream analysis will operate on sketches of size 1
ε2

, regardless of the original
sequence length.

Since we are interested in preserving the Euclidean norm after sketching, we follow the definition
of tensor sketch by Pham and Pagh [14]. For integer D, tensor sketch Φ : Rmt → RD sketches an
mt-dimensional tensor into RD. Let us assume a series of pairwise independent hash functions
h1, . . . , ht : A → [D], and sign hash functions s1, . . . , st : A → {−1, 1}. Moreover, define hash sum
H : At → [D] and hash sign product S : At → {−1, 1} as follows

H(a) :=
t∑
i

hi(ai) mod D, S(a) :=
t∏
i

si(ai), a ∈ At (10)

Finally, tensor sketch Φ(T ) := (φr(T ))r∈[D] is defined as

φr(T ) :=
∑

a∈At:H(a)=r

S(a)T [a], (11)

where T ∈ Rmt
is an arbitrary tensor. Crucially, tensor sketch preserves the Euclidean norm in

expectation E‖Φ(T )‖22 = ‖T‖22, and its accuracy increases with sketch size Var ‖Φ(T )‖22 ≤ 1
D‖T‖

2
2

which leads to the second moment bound (for proof, see Lemma 7 of Pham and Pagh [14]):

P
(∣∣‖Φ(T )‖22 − ‖T‖22

∣∣ ≥ ε‖T‖22) ≤ 2

ε2D
. (12)

Therefore, a sketch size of D = 4ε−2 suffices to bound the multiplicative error by ε with probability
1
2 , and sketch size of D = O(ε−2 log(1/δ)) suffices to boost the probability of success to 1− δ, for
arbitrary δ ∈ (0, 1), by taking the median of log(1/δ) independent O(ε−2)-size sketches.

If we could compute sketches Φ(T
(t)
x ) and Φ(T

(t)
y ) efficiently, distance computation ‖Φ(T

(t)
x )−

Φ(T
(t)
y )‖22 merely requires O(D) time, as opposed to the exponential cost of constructing the

ambient space. However, since the tensors T
(t)
x are never rank-1, the conventional efficient tensor

sketching schemes cannot be applied here. Therefore, we have designed an efficient algorithm to
compute (11), and provide several extensions of the algorithm in the next section. In summary, for
sequence x , the tensor sketch ϕts(x ) is computed by applying the tensor sketch on tuple tensor

T
(t)
x

ϕts(x ) := Φ(T
(t)
x ). (13)

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.381814doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.381814


Sequence Tensor Sketching 5

Implicit sketching by dynamic programming First, observe that the rth component of

the sketch φr(T
(t)
x ), can be rewritten based on the probability mass of (H(x [i]), S(x [i])), when i

uniformly drawn ordered t-tuple i ∼ ItN

φr(T
(t)
x ) =

∑
b∈{1,−1}

(b)
∑

a∈At:H(a)
D
≡r,S(a)=b

T
(t)
x [a ] (14)

=
∑

b∈{−1,1}

(b) P
(
H(x[i]) = r, S(x[i]) = b

∣∣ i ∼ It|x |) (15)

We set out to design a dynamic program that computes probability mass for ordered t-tuples, based

on probability mass of shorter smaller ordered tuples. Therefore, for p ∈ {1, . . . , t} let T
(p)
x (r, b)

be the probability mass function of (Hp(x [i]), Sp(x [i])), when i ∼ INp is a random ordered p-tuple
over [N ], while Hp : Ap → [D] and Sp : Ap → {−1, 1} are partial hash sum and products up to p,
respectively

Hp(a) :=

p∑
j=1

hj(aj) (mod D), Sp(a) :=

p∏
j=1

sj(aj), a ∈ Ap (16)

T
(p)
x (r, b) := P

(
Hp(x [i]) = r, Sp(x [i]) = b

∣∣ i ∼ Ip|x |), b ∈ {−1, 1} (17)

To recursively compute T
(p)
x [1:N ]

(r, b) for p ≥ 2, we separate it into two cases depending on whether
the last index is part of the tuple (ip = N) or not (ip < N)

T
(p)
x [1:N ]

(r, b) = P(Hp(x [i]) = r, Sp(x [i]) = b | i ∼ IpN ) (18)

=

z:=︷ ︸︸ ︷
Pi(ip = N)P(Hp(x [i]) = r, Sp(x [i]) = b | i ∼ IpN , ip = N)+

Pi(ip < N)P(Hp(x [i]) = r, Sp(x [i]) = b | i ∼ IpN , ip < N) (19)

= z P
(p−1∑
j=1

hj(x ij ) +

r′:=︷ ︸︸ ︷
hp(xN ) = r,

p−1∏
j=1

sj(x ij )

b′:=︷ ︸︸ ︷
sp(xN ) = b

∣∣∣ i ∼ Ip−1N−1

)
+

(1− z)P
(
Hp(x [i]) = r, Sp(x [i]) = b

∣∣∣ i ∼ Ip−1N−1

)
(20)

= z P
(
Hp−1(x [i])

D≡ r − r′, Sp−1(x [i]) = bb′
∣∣∣ i ∼ Ip−1N−1

)
+

(1− z)P
(
Hp(x [i]) = r, Sp(x [i]) = b

∣∣∣ i ∼ IpN−1) (21)

= z T
(p−1)
x [1:N−1]

(r − r′ (mod D), bb′) + (1− z)T (p)
x [1:N−1]

(r, b), (22)

where z = p
N , since

(
N−1
p−1
)
/
(
N
p

)
= p

N . Defining vector T
(p)
x (b) := (T

(p)
x (r, b))r∈[D], the index shift

r − r′ (mod D), amounts to a circular r′-shift of T
(p)
x [1:N−1]

(b). Hence, the recursion in vector form
can be written as

♦ Recursive insert (p ∈ [t]):{
T

(p)
x [1:N ]

(±1) = (1− z)T(p)
x [1:N−1]

(±1) + z shiftr′
(
T

(p−1)
x [1:N−1]

(±b′)
)

r′ := hp(xN ), b′ := sp(xN ), z := p
N

(23)

♦ Basis (p = 0):

T
(0)
x (±1) :=

(
1

{
r
D≡ 0

})
r∈[D]

(24)

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.381814doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.381814


6 Amir Joudaki et al.

Interestingly, the recursion relation for variables in T
(p)
x [1:N ]

(·, ·) depends only on variables in the

previous layer T
(p)
x [1:N−1]

(·, ·). Therefore, it is sufficient to store the variables corresponding to layer
i, which implies a memory complexity of O(tD). This fact is exploited in Algorithm 1, which is
why the subscript x [i] is drooped from T, and uses ±1 for brevity4. The number of sub-problems

needed to compute Φ(T
(t)
x ) is exactly 2NtD, and the cost of each recursion is O(1). Therefore, we

can compute the sketch with dynamic programming in O(DtN).

Algorithm 1: Sequence Tensor Sketching

Output : Sequence Tensor Sketch Φ ∈ RD

Input : string x ∈ AN ,
hash functions h1, . . . , ht : A → [D],
sign hashes s1, . . . , st : A → {−1, 1}

Parameter: D: sketch size, t: subsequence length
T

(p)
±1 ← 0D for all p ∈ [t]

T
(0)
±1 ←

(
1
{
r

D≡ 0
})

r∈[D]

for i← 1 to N do
for p← t to 1 do

z ← p
i

T
(p)
±1 ← (1− z)T(p)

±1 + z shifthp(xi)

(
T

(p−1)

±sp(xi)

)
end

end

Φ← T
(t)
+1 −T

(t)
−1

2.3 Tensor Slide Sketch

In this section, we assume that our task involves sketching sequences that have a significant overlap.
Instead of applying Algorithm 1 to each sequence separately, we can exploit the fact that many sub-
problems in the recursion (18) are shared. This idea is exploited in Algorithm 2, to compute sketches
for all w-mers of a reference sequence with length N with O(NDt2) time and memory complexity,
which is only t times more expensive than Algorithm 1. The length of the sliding window w does
not appear in any complexity term, which could provide significant savings, considering that t is
typically much smaller.

The tensor slide sketch, is defined as

ϕtss(x ) := (ϕts(x [iw+1:(i+1)w]))i∈{0,1,...,bN/wc}. (25)

where ϕts(x ), is Tensor Sketch(13), the only difference being, that successive sketches are computed
dynamically. It is important to note that Tensor Slide Sketch (TSS) only stores 1

w of the indices.
Because sliding windows that are too overlapping cannot improve our estimate, we can down-
sample the slide sketch to keep the sketch condense.

3 Experimental Results

The primary objective of our tensor sketching framework is to efficiently sketch global alignment
scores between sequences. In order to put our method into context, we compare its performance

4 The plus-minus signs are shorthand for two equations: one by taking all to be +, and another taking all to be
−, but not any other combination, for example sin(a ± b) = sin(a) cos(b) ± sin(b) cos(a). If there are ∓ in the
equation, their order for execution must the reversed, for example cos(a± b) = cos(a) cos(b)∓ sin(a) sin(b).

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.381814doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.381814


Sequence Tensor Sketching 7

Algorithm 2: Tensor Slide Sketch

Output : Sketches Φ1 := Φ(T
(t)

x [1 :w]), . . . , ΦN−w+1 := Φ(T
(t)

x [N−w+1 :N+])

Input : reference sequence x ∈ AN ,
hash functions h1, . . . , ht : A → [D],
sign hashes s1, . . . , st : A → {−1, 1}

Parameter: D: sketch size,
w: sliding window,
t: tuple length

T
(p:q)
±1 ← 0D for all 1 ≤ p ≤ q ≤ t

T
(p:q)
±1 ←

(
1
{
r

D≡ 0
})

r∈[D]
for all 1 ≤ q < p ≤ t

for i← 1 to N do
xins ← xi
for all 1 ≤ p ≤ q ≤ t in descending (q − p) do

z ← q−p+1
w

T
(p:q)
±1 ← (1− z)T(p:q)

±1 + z shifthq(xins)

(
T

(p:q−1)

±sq(xins)

)
end
if i ≤ w then

Continue;
end
xdel ← xi−w

for 1 ≤ p ≤ q ≤ t in ascending (q − p) do
z ← q−p+1

w−q+p

T
(p:q)
±1 ← (1 + z)T

(p:q)
±1 − z shifthq(xins)

(
T

(p:q−1)

±sq(xins)

)
end

Φ(i−w+1) ← T
(1:t)
+1 −T

(1:t)
−1

end

to MH, WMH, and OMH [9], three state-of-the-art sketching techniques (see Section2 for formal
definitions).

3.1 Synthetic data generation

As a basis for evaluation, we generated a set of synthetic sequence pairs over the full spectrum of
edit distances using Monte Carlo sampling. We draw a reference sequence at random x ∼ AN , and
for the desired edit distance d ∈ [N ], we generate y by mutating with d edit operations at random
x =: x 0 → x 1 → · · · → xd =: y , where x i+1 is created by selecting a random index from [|x i|],
and either delete, substitute, or insert a random character at that index. We accept the pair x ,y ,
if we have ded(x ,y) = d, and compute the sketches and sketch-based distances for each method.
This process is repeated to create the full data set. In total, we generated 1000 sequence pairs of
length N = 20000 over an alphabet of size #A = 4. (See Figure B.1 for a raw presentation of
approximate vs. exact distances as scatter plot).

3.2 Tensor slide sketch achieves high rank correlation with edit distance

For each sketching method, Spearman’s rank correlation with the edit distance, the execution time,
and the execution time relative to the edit distance is determined (see Table 1). In particular, Tensor
Slide Sketch achieves a correlation of 0.881 while reducing the computation time by 98.6%. The 0
rank correlation for MinHash indicates the fact that very long sequences have 0 distance, as they
contain every possible k-mer. Furthermore, the AUC are calculated for classification of sequences
based on a threshold for their exact edit distance (normalized by length). For all thresholds, TSS
clearly outperforms other sketches.

We then assessed the performance and execution time of all considered methods utilizing the
synthetically generated data set (Figure 1). We observe that the quality of both MinHash (MH)
and Weighted MinHash (WMH) greatly diminishes as the sequences become more distant from

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.381814doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.381814


8 Amir Joudaki et al.

Table 1: 1000 sequence pairs of length N = 20000 were generated over an alphabet of size #A = 4.
with the number of random edit operations, uniformly drawn from {0, 1, . . . , N}. The time column
shows normalized time in microseconds, i.e., total time divided by number of sequences, while the
relative time shows the ratio of sketch-based time to the time for computing exact edit distance.
As for the the model parameters, embedding dimension is set to D = 50, and model parameters
are (a) MinHash k = 3, (b) Weighted MinHash k = 3, (c) Ordered MinHash k = 3, t = 3, (d)
Tensor Sketch t = 3, (e) Tensor Slide Sketch w = 32, t = 3.

Correlation AUROC (ded ≤ ·) Time

Method Spearman 0.10 0.20 0.5 Abs. (10−6 sec) Rel.(1/ED)

MH 0 0.500 0.500 0.500 1.398 0.001
WMH 0.361 0.795 0.746 0.670 6.497 0.004
OMH 0.466 0.917 0.817 0.700 194.195 0.120

TS 0.687 0.968 0.890 0.837 45.591 0.028
TSS 0.881 0.980 0.965 0.939 22.198 0.014

ED - - - - 1614.040 1.000

one another (Figure 1a) and the quality of MH and WMH drops with increasing sequence length
(Figure 1b). In both plots, the accuracy of OMH and the tensor sketch methods maintains a much
higher level. Notably, the increased accuracy of TS and TSS comes only at a very small additional
cost in time when compared with MH (Figure 1c), while both methods run much faster than
OMH. Lastly, we assessed the relationship of sketching accuracy to the number of embedding
dimensions for each method (Figure 1d). Remarkably, TSS achieves a rank correlation of 0.74%
even when using only 10 embedding dimensions.

In summary, TSS produces the most accurate sketches across the board, while introducing a
small time and memory overhead when compared with min-hashing. Furthermore, TS and TSS
can be computed in a streaming fashion. For example, in order to sketch all 100-mers of a reference
sequence, the time complexity grows only linearly with the length of the reference sequence, while
WMH and MH need to be computed separately for each sequence of length m, rendering them m
times slower for this task.

While sorting creates an iterative bottleneck for all hash-based schemes, the tensor sketch
operation is based on a vector shift and sum, which explains the faster execution in practice.
Although we have only reported times for single-thread execution, we can expect tensor sketch
to achieve a greater boost from multi-threading, as vector shift and sum can be easily vectorized
for parallel execution. Moreover, vector operations can be executed in a single step on some CPU
or GPU architectures to achieve an even greater boost. Finally, the hash-based methods store
k-mers, or tuples of k-mers as the sketch, which grows with alphabet size and model parameters.
In contrast, the tensor sketches can be stored as small integers, namely in a single byte.

3.3 Tensor Sketching helps estimate phylogenies

We further explored the task of estimating all pairwise distances of a given set of evolutionary re-
lated sequences, resulting in a well structured distance matrix. This task is reminiscent of important
bioinformatics applications, such as the binning of metagenomic reads or phylogeny reconstruction.
In both cases, the reconstruction of the good distance matrix as a whole, and not only individual
components, forms the basis for a good approximation. While there are several ways to formulate
this problem, we can simply visualize the exact and approximate matrices and compare them with
an overall metric such as Spearman’s rank correlation. Figure 2, shows such a distance matrix.
The sequences were generated to emulate a phylogeny tree.

3.4 Tensor Sketching supports Discretization

While the result of sketching is a rational number, in our applications, these numbers were dis-
cretized to take less space. In fact, one can store the sign bit, plus its logarithm with (1 + ε) base

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.381814doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.381814


Sequence Tensor Sketching 9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ED threshold

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
U

C
AUROC

MH

WMH

OMH

TenSketch

TenSlide

(a)

10
2

Sequence Length

0

0.2

0.4

0.6

0.8

1

S
p
e
a
rm

a
n
 R

a
n
k
 C

o
rr

. 

Spearman's corr. vs. Sequene Length

MH

WMH

OMH

TenSketch

TenSlide

(b)

10
2

Sequence Length

10
-8

10
-7

10
-6

10
-5

T
im

e
 (

s
e
c
)

Time vs. Sequene Length

MH

WMH

OMH

TenSketch

TenSlide

(c)

0 20 40 60 80 100 120 140 160 180 200

Embedding dimension

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
p

e
a

rm
a

n
 C

o
rr

e
la

ti
o

n

MH

WMH

OMH

TenSketch

TenSlide

(d)

Fig. 1: The dataset for these experiments consisted of 10000 sequence pairs independently generated
over an alphabet of size #A = 4, and models parameters: MH: k = 3, WMH: k = 3, OMH:
k = 3, t = 3, TS: t = 3, TSS: w = 32, t = 3 (1a) Area Under the ROC Curve (AUC) distribution, for
detection of distance pairs below a threshold sketch-based distances. The x axis, shows which edit
distance rank (normalized) is used, and the y axis shows AUC for various sketch-based distances.
(1b) For the same dataset as in (1c), the Spearman’s rank correlation is plotted against the
sequence length (logarithmic scale), 1c) Execution time of each sketching method (y-axis, log-
scale) as a function of sequence length one (x-axis, log scale). The reported times are normalized,
i.e., total sketching time divided by the number of sequences. (1d) Accuracy of various sketching
methods as a function of number of embedding dimensions D. All methods reach a plateau at
some point, after which quality of estimation does improve with sketch size.

rounded to the nearest integer i, to ensure an ε-bound on the error, as the original number must
lie in the interval between (1 + ε)i and (1 + ε)i+1. We used 256 bins, which implies one byte per
dimension. In contrast, MH and WMH sketch k-mers for each embedding dimension, which will
take k log(#A) bits per dimension. As OMH sketches t separate k-mers, this complexity will even
increase to tk log(#A) bits.

3.5 Tensor Sketch opens up a wide range of applications

Sketching de-Brujin graph distances The slide-sketch algorithm presented in 2, assumes only
having access to a stream of characters coming in and that the task involves sketching substrings
of the entire sequence. While the task description may sound to be restricted to a linear reference
sequence, the same assumptions actually apply to any Euler path on a string graph. For example,
if the input is a de-Brujin graph and the task is to sketch all vertices of the graph, any traversal of
the graph that walks through adjacent vertices can be mapped to the streaming of incoming and
outgoing characters, which will fit the assumptions of the slide sketch algorithm. Consequently,
the time complexity of sketching vertices of a de-Brujin graph will grow only as a function of its
size, i.e., the number of its vertices, as opposed to the size of each vertex.

Robustness to Global Mutations Tensor Sketch is sensitive to global shifts and transpo-
sitions of characters, while k-mer statistics are entirely local. To illustrate this, consider case
when sequence y is constructed from x , by swapping the first and second half of the sequence
y := x [1 : N2 ] ◦ x [N2 + 1 : N ]. It is evident that (N − k + 1) out of N k-mers are intact under this
block permutation, implying that for sufficiently large N � k the k-mer profile of y will converge
to x . This may severely overestimate their alignment score. In contrast, only 2

(
N/2
t

)
/
(
N
t

)
' 2−(t−1)

of t-ary subsequences remain intact. This greater sensitivity makes tensor sketch an appealing
method for applications that such block permutations are likely to occur.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.381814doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.381814


10 Amir Joudaki et al.

(a) ED

200 400 600 800 1000

seq #

100

200

300

400

500

600

700

800

900

1000

s
e

q
 #

(b) MH

200 400 600 800 1000

seq #

100

200

300

400

500

600

700

800

900

1000

s
e

q
 #

(c) WMH

200 400 600 800 1000

seq #

100

200

300

400

500

600

700

800

900

1000

s
e

q
 #

(d) OMH

200 400 600 800 1000

seq #

100

200

300

400

500

600

700

800

900

1000

s
e

q
 #

(e) TenSketch

200 400 600 800 1000

seq #

100

200

300

400

500

600

700

800

900

1000

s
e

q
 #

(f) TenSlide

200 400 600 800 1000

seq #

100

200

300

400

500

600

700

800

900

1000

s
e

q
 #

Fig. 2: 1000 sequences of length n = 100 were generated over an alphabet of size 4. The phylogeny
constructed as a perfectly balanced binary tree, by starting from a single sequence, and at each
generation mutate every sequence in the pool and add it to the pool. Children were generated
with a point-mutation rate of 0.1. Subplot (a) shows the pairwise edit distances normalized by
length n, while subplots (b)-(f) are approximate sketch-based distances normalized by embedding
dimension m = 128

4 Discussion

We presented tensor sketching, a method for estimating sequence similarity for biological sequences.
We demonstrated that Tensor Slide Sketch achieves a high Spearman’s rank correlation, but runs
an order of magnitude faster than computing the exact alignment. When compared with other
sketching methods, Tensor Sketch and Tensor Slide Sketch both achieve a more accurate preser-
vation of the order between distances than MinHash, Weighted MinHash, and Ordered MinHash.

Hyper-parameters The results presented in Section 3 have focused on a fixed set of parameters
for the models. However, our results are fairly robust to the choice of parameters. Namely, varying
the size of k-mers will be beneficial to hash-based sketches for small edit distances, while it will hurt
the performance for more distant pairs. Hence, Spearman’s rank correlation will not substantially
improve. While tensor sketch achieves the best accuracy in our set of experiments, a comprehensive
study of different parameter regimes and settings under which they will be beneficial merits further
investigation. In particular, min-hash methods typically show good performance at detecting small
distances, as it is evident in our AUROC plot in Figure 1. This suggests the possibility of having a
hybrid-version of tensor sketching and ordered MinHash to combine the best features of the two.
Moreover, such a study could shed more light on the connections between min-hashing and tensor
sketching.

Bayesian estimation with tensor sketching Spaced k-mers were introduced motivated by
applications involving distantly related sequences. If we are to allow for i ignore positions, there
will be

(
k
i

)
≈ (k/i)i possible patterns. Considering all such patterns is clearly not an option if i

is anything larger but a small constant. Not only is it highly non-trivial to search for the optimal
pattern in this large combinatorial space, but any incremental step for pattern optimization also
has to be repeated if different tasks require a different set of patterns. Seen from this angle,

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.381814doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.381814


Sequence Tensor Sketching 11

Tensor Sketch can be interpreted as an average of all possible spaced t-mers patterns with (N − t)
ignore positions, while the sketching step avoids the exponential cost of explicitly representing all
combinatorial options.

The core idea of tensor sketching, that is to average over all possible seed patterns, can be
alternatively viewed as Bayesian estimation. This implies that our estimate is admissible, i.e., no
other estimator can outperform it across the board. This provides some intuition into why our
approach achieves an acceptable or better accuracy over the entire range of edit distances. In
other words, the risk of selecting a bad seed or size of k-mer is minimized by taking the mean
over all possible seeds. While this corresponds to a uniform prior on our seeds, one can introduce
a non-uniform prior by setting different weights for vertices on our tensors, namely to penalize
more number of gaps in the pattern. Therefore, we can strengthen or weaken the contribution of
individual patterns. Weighted average can help to reduce background statistics into the distance
metric, as well as introduce nonuniform mismatch penalties. These variations and extensions come
naturally within the tensor sketching framework, in contrast with hash-based approaches that
require heuristic steps.

Conclusion This work’s main contributions are the introduction of two tensor-based sketching
methods to sequence similarity estimation: Tensor Sketch, providing an efficient algorithm to com-
pute it, and Tensor Slide Sketch, a streaming version of the algorithm. Our results indicate that
the tensor sketching method and its applications open up exciting research directions to explore
for the bioinformatics community. The main advantages of tensor sketching compared with hash-
based methods are that it 1) can run in a streaming fashion, 2) achieves much higher accuracy,
and 3) runs much faster in practice.

Acknowledgements

We would like to thank Kjong-Van Lehmann and Ximena Bonilla for their constructive feedback
on the manuscript. AJ was funded by ETH Zurich core funding to GR. AK was partially funded
by PHRT Project #106 and the Swiss National Science Foundation Grant No. 407540 167331
“Scalable Genome Graph Data Structures for Metagenomics and Genome Annotation” as part of
Swiss National Research Programme (NRP) 75 “Big Data”.

References

1. Apostolico, A., Denas, O.: Efficient tools for comparative substring analysis. Journal of Biotechnology 149(3),
120–126 (2010). DOI 10.1016/J.JBIOTEC.2010.05.006. URL https://www.sciencedirect.com/science/

article/pii/S0168165610002403?via%3Dihub

2. Broder, A.Z.: On the resemblance and containment of documents. Proceedings of the International Conference
on Compression and Complexity of Sequences pp. 21–29 (1997)

3. Hahn, L., Leimeister, C.A., Ounit, R., Lonardi, S., Morgenstern, B.: rasbhari: Optimizing Spaced Seeds for
Database Searching, Read Mapping and Alignment-Free Sequence Comparison. PLoS computational biology
12(10), e1005,107 (2016). DOI 10.1371/journal.pcbi.1005107. URL http://www.ncbi.nlm.nih.gov/pubmed/

27760124http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5070788

4. Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing for scalable image search. In: 2009 IEEE 12th
international conference on computer vision, pp. 2130–2137. IEEE (2009)

5. Leimeister, C.A., Boden, M., Horwege, S., Lindner, S., Morgenstern, B.: Fast alignment-free sequence compari-
son using spaced-word frequencies. Bioinformatics (Oxford, England) 30(14), 1991–9 (2014). DOI 10.1093/
bioinformatics/btu177. URL http://www.ncbi.nlm.nih.gov/pubmed/24700317http://www.pubmedcentral.

nih.gov/articlerender.fcgi?artid=PMC4080745

6. Leimeister, C.A., Morgenstern, B.: Kmacs: the k-mismatch average common substring approach to alignment-
free sequence comparison. Bioinformatics (Oxford, England) 30(14), 2000–8 (2014). DOI 10.1093/
bioinformatics/btu331. URL http://www.ncbi.nlm.nih.gov/pubmed/24828656http://www.pubmedcentral.

nih.gov/articlerender.fcgi?artid=PMC4080746

7. Ma, B., Tromp, J., Li, M.: PatternHunter: faster and more sensitive homology search. Bioinformatics
18(3), 440–445 (2002). DOI 10.1093/bioinformatics/18.3.440. URL http://www.ncbi.nlm.nih.gov/pubmed/

11934743https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/18.

3.440

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.381814doi: bioRxiv preprint 

https://www.sciencedirect.com/science/article/pii/S0168165610002403?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0168165610002403?via%3Dihub
http://www.ncbi.nlm.nih.gov/pubmed/27760124 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5070788
http://www.ncbi.nlm.nih.gov/pubmed/27760124 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5070788
http://www.ncbi.nlm.nih.gov/pubmed/24700317 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4080745
http://www.ncbi.nlm.nih.gov/pubmed/24700317 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4080745
http://www.ncbi.nlm.nih.gov/pubmed/24828656 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4080746
http://www.ncbi.nlm.nih.gov/pubmed/24828656 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4080746
http://www.ncbi.nlm.nih.gov/pubmed/11934743 https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/18.3.440
http://www.ncbi.nlm.nih.gov/pubmed/11934743 https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/18.3.440
http://www.ncbi.nlm.nih.gov/pubmed/11934743 https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/18.3.440
https://doi.org/10.1101/2020.11.13.381814


12 Amir Joudaki et al.

8. Mak, D.Y., Benson, G.: All hits all the time: parameter-free calculation of spaced seed sensitivity. Bioin-
formatics 25(3), 302–308 (2009). DOI 10.1093/bioinformatics/btn643. URL https://academic.oup.com/

bioinformatics/article-lookup/doi/10.1093/bioinformatics/btn643

9. Marcais, G., Deblasio, D., Pandey, P., Kingsford, C.: Locality-sensitive hashing for the edit distance. Bioinfor-
matics 35(14), i127–i135 (2019). DOI 10.1093/bioinformatics/btz354

10. Noé, L.: Best hits of 11110110111: model-free selection and parameter-free sensitivity calculation of spaced seeds.
Algorithms for molecular biology : AMB 12, 1 (2017). DOI 10.1186/s13015-017-0092-1. URL http://www.ncbi.

nlm.nih.gov/pubmed/28289437http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5310094

11. Noe, L., Martin, D.E.: A coverage criterion for spaced seeds and its applications to support vector machine
string kernels and k-mer distances. Journal of Computational Biology 21(12), 947–963 (2014). DOI 10.1089/
cmb.2014.0173. URL http://www.ncbi.nlm.nih.gov/pubmed/25393923http://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=PMC4253314

12. Ondov, B.D., Treangen, T.J., Melsted, P., Mallonee, A.B., Bergman, N.H., Koren, S., Phillippy, A.M.: Mash:
Fast genome and metagenome distance estimation using MinHash. Genome Biology 17(1), 1–14 (2016). DOI
10.1186/s13059-016-0997-x. URL http://dx.doi.org/10.1186/s13059-016-0997-x

13. Onodera, T., Shibuya, T.: The Gapped Spectrum Kernel for Support Vector Machines. In: Interna-
tional Workshop on Machine Learning and Data Mining in Pattern Recognition, pp. 1–15. Springer,
Berlin, Heidelberg (2013). DOI 10.1007/978-3-642-39712-7{\ }1. URL http://link.springer.com/10.1007/

978-3-642-39712-7_1

14. Pham, N., Pagh, R.: Fast and scalable polynomial kernels via explicit feature maps. In: Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 239–247 (2013)

15. Röhling, S., Dencker, T., Morgenstern, B.: The number of k-mer matches between two DNA sequences as a
function of k. bioRxiv p. 527515 (2019). DOI 10.1101/527515. URL https://www.biorxiv.org/content/10.

1101/527515v2

16. Sims, G.E., Jun, S.R., Wu, G.A., Kim, S.H.: Whole-genome phylogeny of mammals: Evolutionary information
in genic and nongenic regions. Proceedings of the National Academy of Sciences of the United States of America
106(40), 17,077–17,082 (2009). DOI 10.1073/pnas.0909377106. URL http://www.ncbi.nlm.nih.gov/pubmed/

19805074http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2761373

17. Sims, G.E., Kim, S.H.: Whole-genome phylogeny of Escherichia coli/Shigella group by feature frequency profiles
(FFPs). Proceedings of the National Academy of Sciences of the United States of America 108(20), 8329–34
(2011). DOI 10.1073/pnas.1105168108. URL http://www.ncbi.nlm.nih.gov/pubmed/21536867http://www.

pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3100984

18. Ulitsky, I., Burstein, D., Tuller, T., Chor, B.: The Average Common Substring Approach to Phylogenomic
Reconstruction. Journal of Computational Biology 13(2), 336–350 (2006). DOI 10.1089/cmb.2006.13.336. URL
http://www.liebertpub.com/doi/10.1089/cmb.2006.13.336

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.381814doi: bioRxiv preprint 

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btn643
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btn643
http://www.ncbi.nlm.nih.gov/pubmed/28289437 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5310094
http://www.ncbi.nlm.nih.gov/pubmed/28289437 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5310094
http://www.ncbi.nlm.nih.gov/pubmed/25393923 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4253314
http://www.ncbi.nlm.nih.gov/pubmed/25393923 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4253314
http://dx.doi.org/10.1186/s13059-016-0997-x
http://link.springer.com/10.1007/978-3-642-39712-7_1
http://link.springer.com/10.1007/978-3-642-39712-7_1
https://www.biorxiv.org/content/10.1101/527515v2
https://www.biorxiv.org/content/10.1101/527515v2
http://www.ncbi.nlm.nih.gov/pubmed/19805074 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2761373
http://www.ncbi.nlm.nih.gov/pubmed/19805074 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2761373
http://www.ncbi.nlm.nih.gov/pubmed/21536867 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3100984
http://www.ncbi.nlm.nih.gov/pubmed/21536867 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3100984
http://www.liebertpub.com/doi/10.1089/cmb.2006.13.336
https://doi.org/10.1101/2020.11.13.381814


Sequence Tensor Sketching 13

Appendix A Tensor Slide Sketch Algorithm

The main idea is to extend the data structures, to dynamically append the string or remove
a character from the beginning. The procedure is detailed in Algorithm 2 (See Section A for
derivation of recursive step in detail). In order to implement an iterative algorithm, one can roll back
the recursive calls and execute them in the reverse order. Namely for deletion, recursive relation

for T
(p:q)
x [2:w+1]

(·) depends on T
(p:q)
x [1:w+1]

(·), and T
(p+1:q)
x [2:w]

(·), implying that updates for T
(p+1:q)
x [2:w+1]

(·) must

precede updates for T
(p:q)
x [2:w+1]

(·), imposing a partial order corresponding to tuple length (q−p+ 1).
This in turn corresponds with the random subsequence length. For insertion recursion (18), sub-
problems correspond to shorter subsequence lengths, while for deletion recursion (31), sub-problems
correspond to longer subsequence lengths, which impose an ascending and descending dependency
on subsequence length, respectively.

For all 1 ≤ p ≤ q ≤ t, let Hp:q : Aq−p+1 → [D] and Sp:q : Aq−p+1 → {−1, 1} be partial hash sum

and products from p up to q, respectively, and define T
(p:q)
x (r, b) be the probability mass function

of (Hp:q(x [i]), Sp:q(x [i])), when i is a uniformly drawn ordered (q − p+ 1)-tuple.

Hp:q(a) :=

q∑
j=p

hj(aj) (mod D), Sp:q(a) :=

q∏
j=p

sj(aj), a ∈ Aq−p+1 (26)

T
(p:q)
x (r, b) := P

(
Hp:q(x [i]) = r, Sp:q(x [i]) = b

∣∣ i ∼ Iq−p+1
|x |

)
, b ∈ {−1, 1} (27)

The recursive insertion is analogous to (18), as we can derive T
(p:q)
x [1:w]

(r, b) based on the previous

layer T
(p:q)
x [1:w−1]

(·, ·) and smaller problems T
(p:q−1)
x [1:w−1]

(·, ·). Recursive deletion is equivalent to rolling

back insertion of the first character. We can derive T
(p:q)
x [1:w+1]

(r, b) based on T
(p+1:q)
x [2:w+1](r

′, b′) and

T
(p:q)
x [2:w+1]

(r, b), by separating it into two cases when the random tuple starts at the first index being
in the tuple

T
(p:q)
x [1:w+1]

(r, b) = (1− t)T (p:q)
x [2:w]

(r, b) + t T
(p+1:q)
x [2:w]

(r − r′(mod D), b′), t := P(i1 = 1 | i ∼ Iq−p+1
w+1 )

(28)

where t = p−q+1
w+1 , analogous to the insertion only case, and r′ := r − hp(x 1) and b′ := bsp(x 1) are

recursive hashes as before. We can rearrange this identity to compute T
(p:q)
x [2:w]

(r, b) based on other
terms

T
(p:q)
x [2:w+1]

(r, b) =
1

1− t
T
(p:q)
x [1:w+1]

(r, b)− t

1− t
T
(p+1:q)
x [2:w+1]

(r − r′(mod D), bb′), (29)

Defining vector T
(p:q)
x (b) := (T

(p:q)
x (r, b))r∈[D], and calculating t

1−t = q−p+1
w−q+p , we can write the

recursion in the vector form more concisely as:

♦ Recursive delete (p ≤ q):{
T

(p:q)
x [2:w+1]

(±1) = (1 + z)T
(p:q)
x [1:w]

(±1)− z shiftr′
(
T

(p+1:q)
x [2:w]

(±b′)
)
,

b′ := sp(x 1), r′ := hp(x 1), z := q−p+1
w

(30)

♦ Recursive insert (p ≤ q):{
T

(p:q)
x [1:w]

(±1) = (1− z)T(p:q)
x [1:w−1]

(±1) + z shiftr′
(
T

(p:q−1)
x [1:w]

(±b′)
)
,

b′ := sq(xN ), r′ := hq(xN ), z := q−p+1
w−q+p

(31)

♦ Basis (q < p):

T
(p:q)
x (b) :=

(
1

{
r
D≡ 0

})
r∈[D]

(32)

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.381814doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.381814


14 Amir Joudaki et al.

Fig. B.1: Normalized sketch distance ranks versus normalized edit distance ranks. 50000 sequence
pairs of length N = 256 were generated over #A = 4 alphabets. One sequence was generated
randomly, and the second was mutated randomly, to generate a spectrum of edit distances. Subplot
(a-e) show rank of sketch-based distances vs. rank of edit distances, both normalized by the total
number of pairs. The embedding dimension for all models, and parameters for each model are
D = 100, and parameters models are (a) MinHash k = 3, (b) Weighted MinHash k = 3, (c)
Ordered MinHash k = 3, t = 3, (d) Tensor Sketch t = 3, (e) Tensor Slide Sketch w = 32, t = 3.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.381814doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.381814


Sequence Tensor Sketching 15

Appendix B More results

Figure B.1 shows individual pair of sequences as a scatter plot, while the solid lines indicate median
and quartiles. As the Spearman’s rank correlation indicates, that rank of edit distances are better
preserved by the two tensor sketching methods, and more so by tensor slide sketch. This difference
is due to the fact that hash-based sketches are sensitive to small edit distances, namely below 0.1
(normalized to length), they plateau more quickly.

We can evaluate these methods more quantitatively, by requiring them to solve a decision edit
distance problem. In the decision version of the problem, the task is to decide which points are
bellow a certain threshold and which ones are not. Therefore, the performance of each method
can be depicted by ROC curve, which are plotted for four different thresholds in Figure B.2, with
the dataset remains the same as Figure B.1. The main takeaway of ROC plots is that while hash-
based methods are effective at very low thresholds, they lose their sensitivity for higher thresholds,
and their sensitivity declines as task moves away from comparing very similar sequence pairs.
Interestingly, tensor slide sketch seems to perform nearly as optimal in the lower threshold, but
outperforms other methods on most lower thresholds significantly.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive

0.8

0.85

0.9

0.95

1

T
ru

e
 P

o
s
it
iv

e

ROC Curve for ED<18

MH

WMH

OMH

TenSketch

TenSlide

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive

0.8

0.85

0.9

0.95

1

T
ru

e
 P

o
s
it
iv

e

ROC Curve for ED<44

MH

WMH

OMH

TenSketch

TenSlide

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive

0.8

0.85

0.9

0.95

1

T
ru

e
 P

o
s
it
iv

e

ROC Curve for ED<52

MH

WMH

OMH

TenSketch

TenSlide

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive

0.8

0.85

0.9

0.95

1

T
ru

e
 P

o
s
it
iv

e

ROC Curve for ED<57

MH

WMH

OMH

TenSketch

TenSlide

Fig. B.2: 10000 sequence pairs of length n = 100 were generated over an alphabet of size 4. with
the number of random edit operations, uniformy drawn from {0, 1}

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.381814doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.381814

	Fast Alignment-Free Similarity Estimation By Tensor Sketching

