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Abstract. The sharp increase in next-generation sequencing technologies’ capacity has created a
demand for algorithms capable of quickly searching a large corpus of biological sequences. The com-
plexity of biological variability and the magnitude of existing data sets have impeded finding algorithms
with guaranteed accuracy that efficiently run in practice. Our main contribution is the Tensor Sketch
method that efficiently and accurately estimates edit distances. In our experiments, Tensor Sketch
had 0.956 Spearman’s rank correlation with the exact edit distance, improving its best competitor
Ordered MinHash by 23%, while running almost 5 times faster. Finally, all sketches can be updated
dynamically if the input is a sequence stream, making it appealing for large-scale applications where
data cannot fit into memory.

Conceptually, our approach has three steps: 1) represent sequences as tensors over their sub-sequences,
2) apply tensor sketching that preserves tensor inner products, 3) implicitly compute the sketch. The
sub-sequences, which are not necessarily contiguous pieces of the sequence, allow us to outperform
k-mer-based methods, such as min-hash sketching over a set of k-mers. Typically, the number of
sub-sequences grows exponentially with the sub-sequence length, introducing both memory and time
overheads. We directly address this problem in steps 2 and 3 of our method. While the sketching of
rank-1 or super-symmetric tensors is known to admit efficient sketching, the sub-sequence tensor does
not satisfy either of these properties. Hence, we propose a new sketching scheme that completely avoids
the need for constructing the ambient space.

Our tensor-sketching technique’s main advantages are three-fold: 1) Tensor Sketch has higher accuracy
than any of the other assessed sketching methods used in practice. 2) All sketches can be computed in a
streaming fashion, leading to significant time and memory savings when there is overlap between input
sequences. 3) It is straightforward to extend tensor sketching to different settings leading to efficient
methods for related sequence analysis tasks. We view tensor sketching as a framework to tackle a
wide range of relevant bioinformatics problems, and we are confident that it can bring significant
improvements for applications based on edit distance estimation.

Keywords: sequence distance metrics, tensor sketching, edit distance estimation

1 Introduction

The emergence of next-generation sequencing technologies and a dramatic decrease in cost have
led to an exponential increase in biological sequence data, frequently stored in exceptionally large
databases. While alignment scores are considered the gold-standard of sequence distance in many
bioinformatics applications, the growing number of sequences to be analyzed poses serious chal-
lenges to exact distance computation via alignment. This problem has motivated research on time-
and space-efficient alignment-free methods that try to estimate rather than compute sequence
similarity. Especially applications relying on comparing millions of sequences have turned towards
choosing approximate methods over exact alignments [2]. Out of many possibilities, we have se-
lected the task of phylogeny reconstruction to further motivate distance estimation. In this task,
the estimated distances between sequences are used to reconstruct the evolutionary history in form
of a phylogenetic tree. Instead of using exact alignment scores, many alignment-free methods in-
stead rely on k-mer statistics as a proxy. (Where the term k-mer refers to all length k substrings
of a given string.) The multiplicity, frequency, mode, and reappearance statistics of k-mers have
been utilised to directly estimate evolutionary distance [I7/16/1]. Other approaches include variable
lengths matches in their statistics [18].

To break the stringent dependency of adjacent letters in a k-mer, spaced k-mers have introduced
“match” and “ignore” positions. For example, if a match-pattern “11011” is used, then “CTGAC”
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versus “CTTAC” constitutes a match. Spaced k-mers have been shown to improve mapping sen-
sitivity, the accuracy of phylogenies, and the performance of sequence classification [B7JT3|T5].
Analogously, substring-based methods can be relaxed to allow for some mismatches [6]. Since the
quality of the estimations will greatly depend on the selected match-pattern, several works have
focused on optimizing these patterns [3JITI8/10]. However, finding combinatorially optimal patterns
becomes intractable as the number of ignore-positions increases. Furthermore, any optimization
is prone to be task-dependent, which would require the optimization to be repeated for each task
separately.

More recently, hashing based methods have become increasingly popular. MinHash sketch meth-
ods have been primarily used for set similarity estimation [2], that have shown promise in fast
genomic and metagenomic distance estimation by representing sequences as collections of infor-
mative substrings [12]. From locality sensitive hashing literature we know that any sketch over the
P-norm (p € (0,2]) will automatically lead to sub-quadratic nearest neighbor search by locality
sensitive hashing [4]. This provides further motivation for focusing on sketching the edit distance,
leaving behind the inherent problems of seed-based methods. One of the most accurate sketching
methods currently available is Ordered MinHash (OMH) [9], which considers tuples k-mers that
are non-adjacent. Therefore, we will compare our approach against the classical k-mer methods
MinHash, and Ordered MinHash.

An especially difficult task for most current methods is the estimation of edit distance for
longer, less closely related sequences. To illustrate the main limitations of using k-mer statistics in
this context, we look at two examples that act as opposing forces in deciding the size of k.

Example 1. Consider two sequences x, y € A" drawn randomly over the alphabet of size #.A4 = 4,
and let vg,vy € R4 denote the k-mer frequency profile (multiplicity of each k-mer divided by
total number of k-mers) for each sequence. For long sequences with N > 4%, k-mer frequencies
will converge to their mean, that is 4~ for all their components, which implies that |lv, —vy||1 — 0.
Therefore, any k-mer profile-based method will severely underestimate distance between these two
random sequences. In order to avoid this, k& has to be restricted to larger values k 2 log, (V).

Ezxample 2. Consider the scenario that we want to rely on k-mer matching to find similar parts
of two sequences y and «, and y is generated by independently mutating every index of & with
probability r € (0,1). Therefore, the probability that a k-mer belonging to  and y is not mutated
is 1 —(1—r)" ~1—exp(—%). This implies that k& < r~! is necessary to avoid the k-mer match
probability to converge to zero.

By combining the insights from these examples, we conclude that any value of k will fail with
high probability in one of these scenarios for distantly related sequences. Since both results hold
for k-mer frequency vectors in general, any such statistic on the k-mer profile is also bound to fail.
This inherent problem with k-mers is our main motivation for designing sketches that are more
resilient to mutations.

Conceptually, our method can be seen as expectation over all possible spaced seeds, without any
limits on the number of ignore positions. In other words, Tensor Sketching resolves the inherent
limitations of any seed-based method by taking an average of all possible seeds, and thereby
reducing the risk of selecting a seed that reduces the sensitivity. In statistical terms, this implies
that the resulting sketch is a Bayesian admissible estimator.

We will begin by introducing our notation and terminology in Section and then proceed to
presenting the Tensor Sketch and Tensor Slide sketch methods in Sections and respectively.
In subsequent Section |3| we first summarize our data generation scheme and then compare our
approach to the available state-of-the-art methods. We then motivate possible applications such
as phylogeny reconstruction and graph distance estimation. In the final Section [4] we put our work
into context and give an outlook into future work.


https://doi.org/10.1101/2020.11.13.381814

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.13.381814; this version posted March 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Sequence Tensor Sketching 3

2 Methods

2.1 Preliminaries and Notation

Sets We use 1{-} to denote the indicator function, taking a value of 1 when the logical expression
between the brackets is true, and zero otherwise. For integer N, [N] denotes the integer set [N] :=
{1,..., N}. For finite set S, let |S| and #S interchangeably denote its cardinality, and define Hg
to be all bijective maps from S to [|.S]]

Hs = {h :S =[S | {h(a) :a€ S}isa permutation}. (1)

Finally, we use X ~ S to denote that X is uniformly drawn from the set S.

Vectors Throughout the manuscript bold face fonts are used to distinguish vectors, tensors, and
sequences, from scalar variables a = (ay,az). 1Y and OV are all-ones and all-zeros vectors of

N
length N, respectively. We use ¢ = j when integers ¢ and j are equal modulus N. The circular
r-shift shift, (a), will shift the elements of a to the left shift, (a) = (ay+1,...an,a1,...,a,), defined
formally as

shift, (a) := (ag(i))ie[m, o(i)=i—r, o: [N]— [N] (2)

where the mapping o, circularly shifts indices to the left.

Strings Let A, AN, and A* denote the alphabet, the strings of length N, and all strings respec-
tively. Let & o y denote concatenation of  and y, and |z| be the length of string . We use x;
to denote the i-th character. Define @;.;) to be a slice from ith to jth index z;.; = z;... zj,
referred to as a substring of x, and define zfy = @®; ... x; to be a subsequence of x, when
1 <y < -+ < < |z| are strictly increasing indices of x. For two strings =,y € A*, the edit
distance deq(x, y) denotes the minimum number of edit operations needed to transform one string
to the other. It can be defined recursively using =’ = T(2:[x)]s y = Y2:|y[] S follows

ded(ma y) = min{ded($/7 y) + 17ded(m7 y,) + 17 ded(m/7 y/) + IL{xl 7£ yl}}a (3)

with deg(e,€) := 0 as the recursion basis.

Minimum hash sketching For a sequence = € A"V, let X := (Xi)ie[N—k+1) denote its k-mer
sequence, with X; denoting the ith k-mer X; := @411}, and #X; the occurrence number of this
k-mer #X; := #{j <i:X; = X,;}. Furthermore, the pairs (X;, #X;) will be referred to as unified
k-mers.

In MinHash (MH), a random hash is used to sort the k-mers, the k-mer with the lowest index,
with respect to hash functions hi,...,hp ~ H gx

Pmn(T) == (le, e 7XjD) Jr = arggnin{hT(Xi)} (4)

In Weighted MinHash (WMH), hash functions are drawn from a hash family over unified k-mers
hi,...,hp ~ H pk < [N]

prmh(m) = (lev s 7XjD) Jr = argmin{hT(X’ia #XZ)} (5)

Finally, Ordered MinHash (OMH) [9], generalizes WMH by sampling from multiple k-mers that
appear in the same order within the sequence. The sampling uses hashes over the k-mers space
hi,....,hp ~H gry (N> and selects indices that are mapped to the t lowest hash values. Formally, for


https://doi.org/10.1101/2020.11.13.381814

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.13.381814; this version posted March 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

4 Amir Joudaki et al.

each hash function h,, we sketch (X,,,...,Xy,), when monotone indices 1 < o1 < -+ < 0 < | X|
are mapped to the lowest hash values

(Pomn(@))r = Xy 0+ 0 Xy, [{i s he( Xy, #Xi) < he( Xy, #Xo,) }| <t forall je[t] (6)

We can compute distances via the Hamming distance du(a,b), defined as the number of indices
that the input sequences differ dy(a,b) = #{i: a; # b;}, where a and b have equal length. When ¢
is a MinHash sketch, di(¢(z), ¢(y)) is closely related to the Jaccard set similarity index between
k-mer sets

’SX ﬁSy’

1
EEdH(Lth(m)Nth(?J)) =1- SxUSy|’ Sx =A{Xi}ticpmirr Sy = {Yibiqyopsr (7

Note that MH, WMH, and OMH are defined as elements with lowest hash over a set of k-mers,
unified k-mers, and ordered tuples of k-mers, respectively. For example, in WMH we can change
the definition of Sx to a set of unified k-mers Sy := {(X;, #X;) : i < |z| — k + 1} (analogous for
Sy ). It is worth mentioning that OMH becomes equivalent to WMH if we set the tuple length to
one, t = 1.

2.2 Tensor Sketch

First, define Z4; to be set of all increasing subsequences of [N]*
T4 = {(o1,...,01) € [N]': strictly increasing o < --- < 04}, (8)

Without loss of generality let the alphabet be relabeled to A :={1,...,m}, and m := #.A4 be the
size. The main idea behind sequence tensor sketch is counting subsequences as opposed to k-mers.

Define Ta(f) : A® — [0, 1] to be the probability mass function of a random t-ary subsequence of
T a] = Pl = a|i~Th,). (9)

With a slight abuse of notation, we treat T, gﬁt) both as a probability mass function, and a t-
dimensional tensor with size m!. Then, for two arbitrary strings x, y € A*, define order ¢ similarity
s®(z,y) and distance d)(z, y) as

sO(z, y) = (T, 1), dV(z,y) = |8 - 13" 3. (10)

The inner product equals the probability of getting a match, if we draw two t-ary tuples from x
and y, respectively, which is closely related to OMH sketch.

Naive computation of equations @ and requires (127 ) time and m! memory, which becomes
prohibitive for even moderate values of these variables. Our tensor sketching scheme provides a
(1+e€)-approximation for tensor distance, but only requires O (6%]\7 t) time to compute. Furthermore,
any downstream analysis will operate on sketches of size }2, regardless of the original sequence
length.

Since we are interested in preserving the Euclidean norm after sketching, we follow the definition
of tensor sketch by Pham and Pagh [14]. For integer D, tensor sketch & : R™ — RP sketches an
m'-dimensional tensor into RP. Let us assume a series of pairwise independent hash functions
hi,...,hy: A — [D], and sign hash functions si,...,s; : A — {—1,1}. Moreover, define hash sum
H: A" — [D] and hash sign product S: A" — {—1,1} as follows

H(a) := Zhi(ai) mod D, S(a) := Hsi(ai), ac A (11)

Finally, tensor sketch &(T') := (¢(T')),¢|p) is defined as

¢ (T) = Y  S@T[al, (12)

acAt:H(a)=r
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where T' € R™ is an arbitrary tensor. Crucially, tensor sketch preserves the FEuclidean norm in
expectation E||®(T)|%3 = ||T||3, and assume ¢ to be constant, the variance decreases with sketch
dimension Var [|@(T)[|3 < %[/T||3. Therefore, |&(T)|]3 is concentrated around its mean by second
moment bound (see Lemma 7 of Pham and Pagh [I4]). Therefore, a sketch size of D = O(e?)
suffices to bound the multiplicative error by e.

If we could compute &(T3 T )) and &(T, it )) efficiently, distance computation H@(Tﬂ(f) ) — @(Tgst))H%
merely requires O(D) time, as opposed to the exponential cost of constructing the ambient space.
However, since the tensors Ta(,t) are never rank-1, the conventional efficient tensor sketching schemes
cannot be applied here. Therefore, we have designed an efficient algorithm to compute , and
provide several extensions of the algorithm in the next section. In summary, for sequence x, the
tensor sketch ¢ys() is computed by applying the tensor sketch on tuple tensor ngt)

ous(z) = B(TY). (13)

Implicit sketching by recursive computation First, observe that the rth component of the
sketch ¢T(T§;t)), can be rewritten based on the probability mass of (H(z[;), S(zy))), when i is a
uniformly drawn ordered t-tuple i ~ Z%

o= 3 0 > Tl "
be{1,—1} acAt:H(a)2r,5(a)=b

= Y O)P(H(y) =rSay) =b|i~I},) (15)

be{-1,1}

We set out to recursively compute the probability mass for t-ary tuples, based on probability mass

of shorter ordered tuples. Therefore, for p € {1,...,t} let T; gﬁp ) (r,b) be the probability mass function

of (Hp(zfy)), Sp(z(y)), when i ~ II],V is a random ordered p-tuple over [N], while Hy,: AP — [D] and
Sp: AP — {—1,1} are partial hash sum and products up to p, respectively

p p

Hpy(a) := Y hj(a;) (mod D), = H (aj), ac AP (16)
j=1 j=1

TP (r,b) := P(Hy(p) =1, Sp(mg) =b|i~1T0,), be{-1,1} (17)

To recursively compute T;Ell) N] (r,b) for p > 2, we separate it into two cases depending on whether

the last index is part of the tuple (ip = N) or not (i, < N)

T4 . (r,b) = P(Hy(2) =1, Sp(zp) = b|i~IR) (18)

zi=

——N—
= Pi(ip = N)P(Hp(zp;)) = 7, Sp(x)3)) = b| i~ Th,ip = N)+

]Pi(ip < N)P(Hp(:l:[l]) =7, Sp(zc[l]) =b ‘ 1~ IN,Zp < N) (19)
r= . W=
=z P(Z hj(:cij) + hp(wN) = T,i_[ sj(:cij) Sp(CCN) =b ‘ i~ Ig;_ﬂ)—l—
j=1 Jj=1

(1= 2)P(Hy(@p) =7, Sy(@y) =b|i~ T8 (20)
—zIP’<Hp 1z )_r—r Sp1(zp)) = bb' ‘1~Ip )

(1—-2)P Hp xp) =7, Sp(xp) =b|i~IF_ 1) (21)
=2 T8V (r =+ (mod D),b¥) + (1 — )T | (r,b), (22)
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where z = £, since (];[__11)/(];[) = & Defining vector T(p)(b) = (Ta(cp) (7,0))re[p]; the index shift

r —r’ (mod D), amounts to circularly shifting of T(mp[1 }V) ;(0) to the left by r” indices. Hence, the
recursion in vector form can be written as

O Recursive insert (p € [t]):

[1:N—1]

2 shifty (Y (+0))
"i=hp(zn), U i=splen), z2:=F

{ TE) o (F1) = (1— )T (+1) +

O Basis (p=0):

TO(£1) := <]l{7“ 2 0}>T€[D] (24)

(p)
T[1:N] (
previous layer Tg[’l ]3) 1]( -). Therefore, it is sufficient to store the variables corresponding to layer

i, which implies a memory complexity of O(¢D). This fact is exploited in Algorithm I, 1} which is
why the subscript ;) is dropped from T, and uses +1 for brev1tyﬁ The number of sub-problems

Interestingly, the recursion relation for variables in 715 -) depends only on variables in the

needed to compute @(ngt)) is exactly 2NtD, and the cost of each recursion is O(1). Therefore, we
can compute the sketch in O(DtN) time.

Algorithm 1: Sequence Tensor Sketching

Output  : Sequence Tensor Sketch & € R”
Input : string ¢ € AV,
hash functions h1,...,h: : A — [D],
sign hashes s1,...,s: : A— {—1,1}
Parameter: D: sketch size, t: subsequence length
Tgfl) «— 0P forallp €|

e (1{r20).

for i< 1 to N do
for p<t to1do

T (1= 2)TE) + 2 shiftn, oy (TE0)))

end
end

&+ T - T

2.3 Tensor Slide Sketch

In this section, we improve the precision of tensor sketch by concatenating sketches of overlap-
ping subsequences of the original sequence. However, instead of applying Algorithm [I] to compute
each sketch separately, we can exploit the fact that many sub-problems in the recursion are
shared. The main idea is to consider sub-problems ngp :q)(-, -), that correspond to hash functions
Spy...,8q and hy, ..., hy, for all 1 < p < ¢ < ¢, so that we can efficiently remove characters

from the initial position. Formally, T. TP (r,b) for all » € [D],b € {—1,1}, is the probability of
4 The plus-minus signs are shorthand for two equations: one by taking all to be 4, and another taking all to be

—, but not any other combination, for example sin(a + b) = sin(a) cos(b) % sin(b) cos(a). If there are F in the
equation, their order for execution must the reversed, for example cos(a =+ b) = cos(a) cos(b) F sin(a) sin(b).
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( ?:p hj(x;;)( mod D), H?:p sj(mij)) being equal to (7, b), when i is a randomly drawn (¢g—p+1)-
ary increasing subsequence i ~ 1-‘q$—|p + (See Supplementary Section |A|for more details).

In Algorithm TZ()p ) Jenotes the probability vector Tlgp ) . (ngp a) (r,0))rep. The time and
memory complexity of computing sketches for all w-mers of a reference sequence with length N
are O(NDt?) and O(t), respectively. The length of the sliding window w does not appear in any
complexity term.

Equipped with the streaming algorithm, we can concatenate sketches of windows as we slide the
window along the sequence. More specifically, because sliding windows that have a large overlap
cannot improve our estimate, we can down-sample by a factor of s, referred to as the stride. In
other words, we store the sketch of a window every s basepairs. Formally, let us define ¢;s5(x) as
follows

‘Ptss(w) = (Sots(w[iw+1:(i+1)w])){i: zéO} : (25)

where ¢ys(x) is Tensor Sketch(13). If we naively call tensor sketch for each step, (’)(tw%) time
is required per embedding dimension. Applying the tensor slide sketch algorithm, this can be
computed in O(t2L). In our experience, moderate values of ¢t < 5 suffice for most applications,
implying that for all > 5, the streaming algorithm will run faster. Finally, the distance between
two tensor slide sketches is defined as the squared Euclidean norm, with zero-padding for shorter
sequences if two sequences are not equal in length.

Algorithm 2: Tensor Slide Sketch

Output : Sketches @ := @(Tﬁ;:w]), e s PNl = QS(Ta(EV—w+1:N+])
Input : reference sequence z € A",
hash functions hi,...,h: : A — [D],
sign hashes s1,...,s : A — {-1,1}
Parameter: D: sketch size,
w: sliding window,
t: tuple length
Tf{‘”eOD foralll<p<qg<t

T (]1{r£o}) oy foral l<g<p<i
re[D
for i <~ 1 to N do
Tins < Tj
for all 1 <p < g <t in descending (¢ — p) do
5 ¢« azptl
w
T « (1= TR + 2 shifty, oy, (T )
end
if « <w then
| Continue;
end
Tdel < Ti—w
for 1 <p < q<tin ascending (3 — p) do
q—p+1
Z = w—q+p
TED (14 2)TH? = 2 shifty, o) (TEZ )
end
Di—wt1) T(ﬁt) -7

end
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3 Experimental Results

The primary objective of our tensor sketching framework is to efficiently sketch global alignment
scores between sequences. In order to put our method into context, we compare its performance
to MH, WMH, and OMH [9], three state-of-the-art sketching techniques (see Section [2|for formal
definitions).

3.1 Synthetic data generation and parameter selection

As a basis for evaluation, we generated a set of synthetic sequence pairs. Given a mutation rate
r € (0,1), and a reference sequence at random = ~ AN we mutate each index with probability
r, with mutations being insertion, deletion, or substitution, with equal probabilities. While the
mutation rate for each pair is fixed, it is uniformly drawn from the unit interval for each pair
anew, which ensures the diversity of the edit distances.

One can evaluate the sketch-based distance of each pair against the exact edit distance, by
quantifying how well each method preserves the order of distances, as captured by the Spearman’s
correlation. We select parameters for each hashing method such that it achieves the highest rank
correlation for a fixed embedding dimension D (See Supplementary Section [B|for more details
regarding parameter selection).

3.2 Tensor slide sketch achieves high rank correlation with edit distance

For each sketching method, we determined Spearman’s rank correlation between edit distance
and sketch distance, as well as absolute and relative execution time (Table . In particular,
Tensor Slide Sketch achieves a rank correlation of 0.956 while reducing the computation time by
96.3%. Furthermore, we calculated the area under the receiver operating characteristic (AUROC)
for a classifier discriminating two sequences based on a threshold for their exact edit distance
(normalized by length), indicating that TS and TSS outperform other methods in detection of
distantly related sequences (normalized edit distance threshold 0.5), while TSS outperforms other
methods on all but the smallest edit distance threshold.

Table 1: 1000 sequence pairs of length 10000 were generated over an alphabet of size 4, with
the mutation rate uniformly drawn from [0.00, 1.00]. The time column shows normalized time in
milliseconds, i.e., total time divided by number of sequences, while the relative time shows the
ratio of sketch-based time to the time for computing exact edit distance. The values shown are
average over independent trials followed by their standard deviation. The embedding dimension is
set to D = 64, and individual model parameters are (a) MinHash k£ = 12, (b) Weighted MinHash
k = 12, (c) Ordered MinHash k = 2,t = 7, (d) Tensor Sketch ¢ = 6, (e) Tensor Slide Sketch
w = 1000, s = 100, ¢t = 3.

Correlation AUROC (deqa < +) Time
Method| Spearman 0.1 0.2 0.5 Abs. (1072 sec)| Rel.(1/ED)
MH |0.647 +0.003 [0.998 £ 0.000(0.990 £ 0.003 | 0.723 £ 0.005 | 13.801 4 0.084 | 0.041 £ 0.001
WMH | 0.650 = 0.001 {0.998 £ 0.000| 0.988 £ 0.004 | 0.722 £ 0.002 | 83.058 £ 1.630 | 0.249 £ 0.006
OMH |0.776 £ 0.017 | 0.979 4 0.003 | 0.971 £ 0.004 | 0.842 £ 0.017 | 62.931 + 0.677 | 0.189 £ 0.005
TS ]0.793 £0.020 [ 0.979 &+ 0.006 | 0.963 £ 0.008 | 0.868 £ 0.010 | 52.850 £ 0.298 | 0.159 £ 0.004
TSS |0.956 £ 0.003(0.998 £ 0.000{0.995 + 0.000|0.974 + 0.002|12.457 + 0.088|0.037 + 0.001

[ ED [1.000 = 0.000 [1.000 = 0.000 [ 1.000 % 0.000 [ 1.000 % 0.000 [333.506 & 8.272]1.000 = 0.000 |

We then assessed the performance and execution time of all considered methods utilizing the
synthetically generated data set (Figure . We observe that the quality of both MinHash (MH)
and Weighted MinHash (WMH) greatly diminishes as the sequences become more distant from
one another (Figure and the quality of MH and WMH drops with increasing sequence length
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Fig. 1: The dataset for these experiments consisted of 2000 sequence pairs independently generated
over an alphabet of size 4. The embedding dimension is set to D = 256, and model-specific
parameters are MinHash & = 12, Weighted MinHash £ = 12, Ordered MinHash k£ = 2,t = 7,
Tensor Sketch ¢ = 6, Tensor Slide Sketch ¢ = 3, with window and stride set to 10% and 1% of
the sequence length, and its embedding dimension is set to the square root of D. Area Under
the ROC Curve (AUROC), for detection of edit distances below a threshold using the sketch-
based approximations. The x-axis, shows which edit distance (normalized) is used, and the y axis
shows AUROC for various sketch-based distances. The Spearman’s rank correlation is plotted
against the sequence length (logarithmic scale). (L) Similar setting to , plotting the execution
time of each sketching method (y-axis, logarithmic scale) as a function of sequence length (x-axis,
logarithmic scale). The reported times are normalized, i.e., average sketching time plus average
distance computation time for each method. Spearman rank correlation of each sketching
method as a function of the embedding dimension D (x-axis, logarithmic scale). In all subplots
the solid line and shades indicate mean and standard deviation, computed over independent runs
with the same configuration.

(Figure . In both plots, the accuracy of OMH and the tensor sketch methods maintains a much
higher level. Notably, the increased accuracy of TS and TSS comes only at a very small additional
cost in time when compared with MH (Figure , while both methods run much faster than
OMH. Lastly, we assessed the relationship of sketching accuracy to the number of embedding
dimensions for each method (Figure . Remarkably, TSS achieves a rank correlation of 0.74%
even when using only 10 embedding dimensions.

In summary, TSS produces the most accurate sketches across the board, while introducing a
small time and memory overhead when compared with min-hashing. Furthermore, TS and TSS
can be computed in a streaming fashion. For example, in order to sketch all 100-mers of a reference
sequence, the time complexity grows only linearly with the length of the reference sequence, while
WMH and MH need to be computed separately for each sequence of length m, rendering them m
times slower for this task.

While sorting creates an iterative bottleneck for all hash-based schemes, the tensor sketch
operation is based on a vector shift and sum, which explains the faster execution in practice.
Moreover, vector operations can be executed in a single step on some CPU or GPU architectures
to achieve an even greater boost. Finally, dependence on large values of k will introduce additional
memory and time overhead if k-mers no longer fit into built-in types. In contrast, tensor sketch
can be stored in efficient built-in types regardless of the choice of parameters.

3.3 Tensor Sketching helps estimate phylogenies

We further explored the task of estimating all pairwise distances of a given set of evolutionary re-
lated sequences, resulting in a well structured distance matrix. This task is reminiscent of important
bioinformatics applications, such as the binning of metagenomic reads or phylogeny reconstruction.
In both cases, the reconstruction of the good distance matrix as a whole, and not only individual
components, forms the basis for a good approximation. While there are several ways to formulate
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this problem, we can simply visualize the exact and approximate matrices and compare them with
an overall metric such as Spearman’s rank correlation. Figure [2] shows such a distance matrix.
The sequences were generated to emulate a phylogeny tree. Furthermore, each sequence is mutated
from its parent with a fixed rate of 15%. The optimal parameters of each model are chosen again
based on the Spearman’s rank correlation, while window and stride length for TSS are fixed to 10%
and 1% of the sequence length, giving an advantage to the competing methods. It is evident that
MH and OMH are only accurate for small distances, but fail to do so for more distant sequences,
which could negatively affect tree reconstruction based on these estimate distances. On the other
hand, OMH and tensor sketching are capable of preserving a wider range of distances, which makes
them better candidates for approximate phylogeny construction.

(a) ED, Sp. Corr. 1.000 (b) MH, Sp. Corr. 0.322 (c) WMH, Sp. Corr. 0.337
of codl ;o i =

seq #
seq #
seq #

seq # seq # seq #

(e) TS, Sp. Corr. 0.462
I g1 =

seq #

seq #

Fig. 2: The subplot (a) illustrates the exact edit distance matrix, while the subplots (b)-(f) demon-
strate the approximate distance matrices based on sketching methods. To highlight how well each
method preserves the rank of distances, in all plots, the color-code indicates the rank of each
distance (lighter, shorter distance), and the Spearman’s rank correlation is shown at the top of
each plot. The phylogeny was simulated by an initial random sequence of length N = 10000, over
an alphabet of size #A4 = 4. Afterwards, for 6 generations, each sequence in the gene pool was
mutated and added back to the pool, resulting in 64 sequences overall. The mutation rate set to
0.15. The embedding dimension is set to D = 64, and individual model parameters are set to (b)
MinHash k& = 12, (c) Weighted MinHash k& = 12, (d) Ordered MinHash k = 2,¢ = 7, (e) Tensor
Sketch ¢t = 5, (f) Tensor Slide Sketch t = 2, w = 1000, s = 100.

3.4 Tensor Sketch opens up a wide range of applications

Sketching de-Bruijn graph distances The slide-sketch algorithm presented in 2] assumes only
having access to a stream of characters coming in and that the task involves sketching substrings
of the entire sequence. While the task description may sound to be restricted to a linear reference
sequence, the same assumptions actually apply to any Euler path on a string graph. For example,
if the input is a de-Bruijn graph and the task is to sketch all vertices of the graph, any traversal of
the graph that walks through adjacent vertices can be mapped to the streaming of incoming and
outgoing characters, which will fit the assumptions of the slide sketch algorithm. Consequently,
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the time complexity of sketching vertices of a de-Bruijn graph will grow only as a function of its
size, i.e., the number of its vertices, as opposed to the size of each vertex.

Robustness to Global Mutations Tensor Sketch is sensitive to global shifts and transpo-
sitions of characters, while k-mer statistics are entirely local. To illustrate this, consider case
when sequence y is constructed from x, by swapping the first and second half of the sequence
y:==z[1: J]oz[§ +1:N]. It is evident that (N — k + 1) out of N k-mers are intact under this
block permutation, implying that for sufficiently large N >> k the k-mer profile of y will converge
to . This may severely overestimate their alignment score. In contrast, only 2(N t/ 2) / (ZX ) ~ 2~ (t=1)
of t-ary subsequences remain intact. This greater sensitivity makes tensor sketch an appealing
method for applications that such block permutations are likely to occur.

4 Discussion

We presented tensor sketching, a method for estimating sequence similarity for biological sequences.
We demonstrated that Tensor Slide Sketch achieves a high Spearman’s rank correlation, but runs
an order of magnitude faster than computing the exact alignment. When compared with other
sketching methods, Tensor Sketch and Tensor Slide Sketch both achieve a more accurate preser-
vation of the order between distances than MinHash, Weighted MinHash, and Ordered MinHash.

Bayesian estimation with tensor sketching Spaced k-mers were introduced motivated by
applications involving distantly related sequences. If we are to allow for i ignore positions, there
will be (]:) ~ (k /z)l possible patterns. Considering all such patterns is clearly not an option if ¢
is anything larger but a small constant. Not only is it highly non-trivial to search for the optimal
pattern in this large combinatorial space, but any incremental step for pattern optimization also
has to be repeated if different tasks require a different set of patterns. Seen from this angle,
Tensor Sketch can be interpreted as an average of all possible spaced t-mers patterns with (N —t)
ignore positions, while the sketching step avoids the exponential cost of explicitly representing all
combinatorial options.

The core idea of tensor sketching, that is to average over all possible seed patterns, can be
alternatively viewed as Bayesian estimation. This implies that our estimate is admissible, i.e., no
other estimator can outperform it across the board. This provides some intuition into why our
approach achieves an acceptable or better accuracy over the entire range of edit distances. In
other words, the risk of selecting a bad seed or size of k-mer is minimized by taking the mean
over all possible seeds. While this corresponds to a uniform prior on our seeds, one can introduce
a non-uniform prior by setting different weights for vertices on our tensors, namely to penalize
more number of gaps in the pattern. Therefore, we can strengthen or weaken the contribution of
individual patterns. Weighted average can help to reduce background statistics into the distance
metric, as well as introduce nonuniform mismatch penalties. These variations and extensions come
naturally within the tensor sketching framework, in contrast with hash-based approaches that
require heuristic steps.

Conclusion This work’s main contributions are the introduction of two tensor-based sketching
methods to sequence similarity estimation: Tensor Sketch, providing an efficient algorithm to com-
pute it, and Tensor Slide Sketch, a streaming version of the algorithm. Our results indicate that
the tensor sketching method and its applications open up exciting research directions to explore
for the bioinformatics community. The main advantages of tensor sketching compared with hash-
based methods are that it 1) can run in a streaming fashion, 2) achieves much higher accuracy,
and 3) runs much faster in practice.
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Appendix A Tensor Slide Sketch Algorithm

For all 1 < p <gq <t let Hy,: AP — [D] and Sp,q: ATPT1 — {—1,1} be partial hash sum
and products from p up to ¢, respectively, and define Ta(,p ) (r,b) be the probability mass function
of (Hp:q(x[y)), Sp:g(®fy))), when i is a uniformly drawn ordered (¢ — p + 1)-tuple.

q q
Hpg(a):=> hj(a;) (mod D), Spy(a):=]]s;(a)), ac AP (26)
J=p J=p

TP (r,0) i= P(Hpq(mpy) = 7, Spg(mg) = b | i~ T8 P, be{-1,1} (27

The recursive insertion is analogous to , as we can derive T;’ﬁfﬁ] (r,b) based on the previous
layer T, (plqg ; () and smaller problems T;,(,.flq 1)( -). Recursive deletion is equivalent to rolling

+

back insertion of the first character. We can derive ng[l 12 4y (r,b) based on T, (7[32 w +)1] (r',v') and
Tg;zz ] (r,b), by separating it into two cases when the random tuple starts at the first index being

in the tuple

T (r,b) = (1= )TED | (r,b) + ¢ T (0 — ' (mod D), bY), t:=P(iy = 1|i~ T2 5

[1:w+1] T[2:w41] T(2:w+41]
(28)

p—g+1
w—+1

recursive hashes as before. We can rearrange this identity to compute THE%Q)] (r,b) based on other
terms

where ¢ =

analogous to the insertion only case, and r’ := h,(z;) and b’ := sp(x1) are

1
TED | (r,b) = 1—T;f;‘{jﬂ](r b) - 1— T8 ) (- — 1/ (mod D), bY), (29)
ov
Defining probability vector T (b) := (T(p ) (r,b))reqp]> and calculating 14 = q‘f}__};:;?, we can
write the recursion in the vector form more concisely as:
O Recursive delete (p < q):
) 1:
{ T | (+1) = (1 +2)TE? (1) — 2 shift,s (T;”[jwf}] (ib’)) 50)
b = sp(x1), = hy(x1), z:= 3}:{’11;
O Recursive insert (p < q):
T (+1) = (1 - 2)TE? | (£1) + 2 shift,s (T%’[f;]”(ib’)) , a1
V= sq(xn), 1 :=he(zn), z:= 7‘175“

O Basis (q < p):

T (b) = <]l{'r 2 o})re[D] (32)

In order to implement an iterative algorithm, one can roll back the recursive calls and ex-

ecute them in the reverse order. Namely for deletion, recursive relation for TS}’[;]L)U +1](-) depends

on T;”[lq) 4y (+); and ngp[j 1]Q)( -), implying that updates for Tg,p[;lule() must precede updates for
T;(,;plqu)u ("), imposing a partial order corresponding to tuple length (¢ — p + 1). This in turn

corresponds with the random subsequence length. For insertion recursion , sub-problems cor-
respond to shorter subsequence lengths, while for deletion recursion , sub-problems correspond
to longer subsequence lengths, which impose an ascending and descending dependency on subse-
quence length, respectively.
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Appendix B Parameter selection

The parameters for each model were selected according to the highest Spearman’s rank correlation.
Figure [S1|shows the accuracy of each method as a function of its parameters. The only model that
was optimized for more than one parameter is OMH, where tuple length ¢ and k-mer length k were
jointly optimized.

B.1 Hashing algorithm

In our parameter search both CRC32 and MurmurHash3 hashing algorithms were used to in-
vestigate the effect of hashing on the accuracy of min-hashing methods. We did not observe a
significant effect of hashing on the accuracy of min-hashing. Therefore, MurmurHash3 was used in
all experiments following the grid search, as it is more commonly used in bioinformatics practice.

B.2 Tensor Slide Sketch

As TSS produces a 2-dimensional output, in all experiments the embedding dimension was set
to v/D. For example, if MH, WMH, OMH, and TS were run with 64 embedding dimensions,
TSS sketch dimension was set to 8. T'SS concatenates these 8-dimensional sketches every s steps.
Throughout the experiments the length of window and stride were always set proportional to
sequence length, 10% and 1% of the length respectively. As a result, the overall sketch size of TSS
remains comparable to other methods.
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Fig. S1: Hyper-parameters for each method: subplots (a) to (f) show the Spearman’s rank correla-
tion of each sketching method versus their respective parameters. The shades in the plots indicate
the standard deviation of Spearman’s correlation, calculated for over independent runs of the same
configuration. The grid search is defined over 1 < k < 16 and 2 <t < 10. The tuple length t = 1
is not included, because such a case is covered by WMH. In subplot (a) the accuracy of MH is
depicted versus the k-mer size, and the hashing algorithm is indicated by the color. (b) similar to
subplot (a), but for WMH, In subplot (c), Spearman’s correlation of OMH is for k-mer size and
tuple length, with the hashing algorithm fixed to CRC32. Subplot (d) is similar to (c¢), and the
only difference is that the hashing method is set to MurmurHash3. Subplots (e) and (f) illustrate
the average accuracy of TS and TSS respectively, as a function of tuple length t.
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